

Towards a new implementation approach for rapid development of text-based dialog systems

Zhibo Liu, Thomas Fang Zheng, Xiaojun Wu, and Mingxing Xu

Center for Speech Technology, National Laboratory for Information Science and Technology,
Tsinghua University, Beijing, China

{lzb, wuxj}@cst.cs.tsinghua.edu.cn, {fzheng, xumx}@tsinghua.edu.cn

Abstract
Dialogue Systems are now more and more used in real life. However, such
systems are usually difficult for lay people to create. Some less complicated
methods have been proposed, although with less powerful understanding
capability. After introducing and comparing the approaches mentioned above,
the grammar parsing part, named GrammarTool, of a natural language text
interface Spoken Dialogue System (SDS) toolkit, named SDS Lite, is
described in detail. Our system deals with Chinese dialogue and makes it
very easy for lay people to learn and create their own SDS.

1. Introduction
Spoken Dialogue System (SDS) is now more and more
used in real life, especially for information queries in
restricted domains. However there are usually many
different and unique ways of expression --
corresponding to unique grammar rules and keywords --
that frequently appear in such areas. Thus in order to
develop an SDS, it’s very important to extract domain
specific grammar rules and keywords in advance
(assuming a knowledge-based system) or have a large
corpus library (assuming a statistics-based system). A
knowledge-based approach is assumed in this paper
because of the difficulty of collecting corpora for new
domains.

There are already several mature and capable SDSs,
created by CMU, MIT and other universities and
organizations(Seneff, 1992; Tomko, Toth, Sanders,
Rudnicky & Rosenfeld, 2005; Ward, 1990). In general,
their systems process English while ours, named d-Ear
SDS Lite (with a grammar generation tool named
GrammarTool), processes Chinese.

Because of the broad utility of SDS, we consider it
very important that lay people be able to develop their
own systems. In general, such systems must be more
constrained than a system developed by experts. Our
system is one such system, whose goal is simple:
develop a useful SDS toolkit that can be used by non-
experts who know little about programming, natural
language understanding or speech processing.

Our system is based on a subset of Enhanced
Context Free Grammar, or ECFG (Yan, 2002). Of the
five rule-types in this system (the strict rule, jumping
rule, unordered rule, long-distance rule, and crossing
rule types), GrammarTool currently only supports the

jumping rule type, which is the most often used type
among the five. Other rule types such as the unordered
rule type will be taken into consideration in future work.

2. Related work
Several similar toolkits have been developed for a
similar purpose. Two of them, Phoenix and the
Application Generation Toolkit (Toth, Harris, Sanders,
Shriver & Rosenfeld, 2002), are introduced below.

The Phoenix parser can be used to develop simple
but robust SDS applications. The basic semantic unit is
a frame, and Phoenix parses every input sentence into a
set of frames. The target developer must manually
define the frames and grammar rules used for each
application.

The Application Generation Toolkit is a module of
the Universal Speech Interface (USI) project
(Rosenfeld, Zhu, Shriver, Toth, Lenzo and Black, 2000;
Rosenfeld, Olsen and Rudnicky, 2000). It allows lay
people who do not know a lot about programming to
create and use fully capable SDS applications with a
specific chosen database in a short time, as depicted in
Figure 1(Toth et al., 2002).

Proceedings of the 11th Australian International Conference on Speech Science & Technology, ed. Paul Warren & Catherine I. Watson. ISBN 0 9581946 2 9

University of Auckland, New Zealand. December 6-8, 2006. Copyright, Australian Speech Science & Technology Association Inc.

Accepted after full paper review

PAGE 48

Figure 1. Application generation process

The Application Generation Toolkit makes it much

easier for people to develop their own SDS. However,
the target developers can just input some column names
and other phrases on the webpage and the system only
supports two input patterns. So in order to improve the
usability the power of this toolkit is limited.

GrammarTool provides a “middle-of-the-road”
solution: our toolkit is less complicated for target
developers to learn and use than Phoenix, while at the
same time more powerful (and thus slightly more
complicated) than the Application Generation Toolkit.

3. General structure of SDS Lite
SDS Lite is composed of a toolkit and a runtime
platform. Developers can use the toolkit’s two tools,
KeywordTool and GrammarTool, to create the domain-
specific configuration files used by the runtime platform.

Before explaining KeywordTool and
GrammarTool, three different types of keyword in the
whole SDS system should be introduced firstly:

(1) Predefined Keyword: these are the commonly
used words, phrases and their synonyms, like “ 你

好”(hello), “ 问我想 一下”(I want ask). They have been
all collected and stored in a text file, which has 134
classes of predefined keywords and around 500
keywords.

(2) User-defined Keyword: these are the core
concepts in the domain and should be defined in
KeywordTool by user.

(3) Extracted Keyword: These are the keywords
extracted from training sentences by GrammarTool and
will be stored to be used in the specific domain.

KeywordTool is used to manage domain specific
keywords and keyword classes. Take the query of NBA
information as an example; in this domain, keywords
might include player and team names. Two keyword
classes (“player” and “team”) could be added.
KeywordTool supports multiple synonyms for a single
keyword entry.

GrammarTool is used to customize the domain
grammar, and will be described in more detail in the
next section.

Web
Interfac

XML
Docume

Pronounciation
Dictionary

Language
Model

Phoenix
Grammar

Application
Code

DB Interface
Code

USI
Applicatio

After finishing domain customization with
KeywordTool and GrammarTool, the generated
configure files can be directly used by the runtime
platform.

4. Introduction to GrammarTool
We define a “topic” as follows:

A topic is a named set of possible input patterns
(or “pseudo-sentences”) such that we expect the system
to reply with the same answer given the same pattern
fillers. For example:

[player_stats]
我想了解一下<player>的统计资料
请说明一下<player>的统计结果
<player>的统计情况有吗

These three Chinese sentence patterns express a

similar meaning (all of them ask for statistical
information for an NBA player), and they form a topic
named “player_stats”. For each topic, grammar rules
and additional “helper” keywords are extracted.

GrammarTool will process all the category names
and sentences and then extract and save domain specific
grammar rules and keywords. After this training process,
the d-Ear SDS Lite parser can analyze and understand
most of the queries in this domain.

When the system is deployed, user queries will be
parsed and identified as belonging to a specific topic.
Slot contents for that topic will also be determined.
Answer generation is then performed based on this
information (response templates must currently be
manually written for each topic).

5. Algorithm design
The main function of GrammarTool is to extract
semantic rules from example sentences.

In GrammarTool, the “semantics” of a sentence
contains:

(1) A topic in the domain
(2) Slots and their contents. The slots represent the

keyword classes while the content of the slots are the
normalized keywords themselves.

Before extracting grammar rules, GrammarTool
will do the following several steps of preprocessing at
first.

Sentences in the same category will be placed in a
group, and then all the words that appear in the
predefined keyword list will be replaced by the name of
the particular predefined keyword class. For example, if
the predefined keyword file includes the following
keyword class:

Proceedings of the 11th Australian International Conference on Speech Science & Technology, ed. Paul Warren & Catherine I. Watson. ISBN 0 9581946 2 9

University of Auckland, New Zealand. December 6-8, 2006. Copyright, Australian Speech Science & Technology Association Inc.

Accepted after full paper review

PAGE 49

 [these]

这些

Then any sentence containing the word “这些” will
have the word replaced by “<these>”.

The predefined keywords include some words with
little substantial semantic meaning, for example “我想

查一下” (“I’m looking for…”) and question suffixes
like “吗” and “呢”. If a training sentence contains the
words like these, GrammarTool will delete such words
to obtain a new training sentence that can be added the
training set to enlarge the coverage.

GrammarTool will also compare sentences in a
topic to find words that might be considered optional.
For example, if the topic is about flight query and
contains the following two training sentences:

从<city_from>到<city_to>
<city_from>到<city_to>

Then GrammarTool will consider “从” as optional,

and if the topic also contains:

从<city_from>飞往<city_to>的航班

GrammarTool will generate the following new
training sentence and add it into this topic automatically:

<city_from>飞往<city_to>的航班

If there're multi optional keywords in one sentence,
according to the algorithm description above, several
grammar rules would be generated, which could cause
over generation of grammar rules to some extent.
Therefore it should be very cautious when judging
whether a keywords is optional. At present actually a
keyword would be considered as optional only when the
structures of two sentences are nearly the same while
only this component is different.

After these preprocessing steps, sentences with the
same structure will be put into a single subgroup, which
will then generate a single grammar rule. For two
sentences to have the “same structure” means that they
contain exactly the same user defined and predefined
keywords, in the same order and same position, for
example:

xxx <keyword A> xxx <keyword B> xxx
where “xxx” represents one or more words, which

will be extracted keywords. For example, suppose there
are the following two sentences in the same topic:

Sentence 1: 我想问一下<actor>的最新作品
Sentence 2: 我想知道一下<actor>的新片

Then suppose that there are the following
predefined keywords:

[wen_yi_xia] [de]
我想问一下 的

 我想知道一下

After the predefined keywords replacement, the

sentence would be:

<wen_yi_xia> <actor> <de> 最新作品
<wen_yi_xia> <actor> <de> 新片

Obviously, these 2 sentences have the same

structure and will be grouped into the same subgroup.
GrammarTool will then generate a new keyword class:

[categoryM_keyword_N]
最新作品
新片
where M and N are non-negative integers.

Finally, this subgroup will generate one grammar

rule:

<wen_yi_xia> <actor><de> < categoryM_keyword_N>

6. Tests and results
Our testing objective was to obtain preliminary results
on the effectiveness of our Grammar generation method.
Here are our steps to test.

First we’ll determine a domain and pick some
sentences in this domain as data set.

Second the domain specific keywords will be
collected from those sentences with KeywordTool.

Third some sentences in the data set will be
selected as training sentences, put into GrammarTool
and others as test sentences.

Using the generated configuration files, we
deployed the system and used the test set to determine
which sentences could be correctly identified as
belonging to the topic.

Three domains with corresponding sentences were
selected for training and testing:

NUM_AGE, with one category [current_age] and
30 sentences, asking the age of a person;

TIME_DAY, with one category [which_day] and 30
sentences, asking the date; and

NUM_SPEED, with one category [speed] and 50
sentences, asking the speed of a person or thing.

For each domain, we used three methods for
picking the training sentences:

(1) Using 5 sentences as a training set and leaving
the other sentences as the test set.

Proceedings of the 11th Australian International Conference on Speech Science & Technology, ed. Paul Warren & Catherine I. Watson. ISBN 0 9581946 2 9

University of Auckland, New Zealand. December 6-8, 2006. Copyright, Australian Speech Science & Technology Association Inc.

Accepted after full paper review

PAGE 50

(2) Using 10 sentences as a training set and leaving
the other sentences as the test set.

(3) Using half of the sentences as a training set and
leaving the other half as the test set.

When choosing n number of sentences from the
data set, we used two strategies. Take the domain
NUM_AGE, which has 30 sentences (5 of them will be
chosen), as an example:

(1) Ordered Method. We took the sentences with
the index of 5i + 1, 5i + 2, 5i + 3, 5i + 4, 5i +5 (0 ≤ i ≤ 9)
as a training set and regarded the other 25 sentences as
the test set. So there were 6 results.

(2) Artificial Method. Manually choose 5
“representative” sentences to cover the other sentences
as much as possible. One result will be given.

We believe the “Artificial Method” is a fairly
realistic picture of how GrammarTool will be actually
used, because when entering the training sentences, the
developer will tend to try to think of different ways of
expression, while in our data set sentences with a very
similar structure were close to each other and thus were
chosen together into the training set using the “Ordered
Method”. The results of our tests are as follows:

Table 1: Test results for NUM_AGE

No. of sentences in training set
NUM_AGE 5 10 Half

Maximum 72.0% 100.0% 100.0%
Minimum 4.0% 50.0% 73.3%

Order
Method

Average 32.0% 73.3% 86.7%
Artificial Method 60.0% 80.0% 100.0%

Table 2: test results for TIME_DAY

No. of sentences in training

set TIME_DAY
5 10 Half

Maximum 40.0% 80.0% 73.3%
Minimum 12.0% 25.0% 46.7%

Order
Method

Average 28.7% 45.0% 60.0%
Artificial Method 40.0% 44.0% 85.0%

Table 3: test results for NUM_SPEED

No. of sentences in training set NUM_SPEED
5 10 Half

Maximum 71.1% 60.0% 92.0%
Minimum 2.2% 47.5% 56.0%

Order
Method

Average 34.7% 54.5% 74.0%
Artificial Method 55.6% 75.6% 90.0%

From the results, it can be seen that the “Artificial

Method” outperforms the “Ordered Method” in nearly
every situation, which confirms what was inferred

before the test. Meanwhile, the results would get better
along with the enlargement of training set. Furthermore,
developers need only prepare 10-20 sentences for each
topic in order to get an SDS with good quality, which
we consider an acceptable task for the average person.

7. Conclusion and future work
In general, GrammarTool has the following unique
characteristics:

(1) It is appropriate for system configuration by
non-experts after short training.

(2) Only a small number of training sentences is
required to obtain broad coverage in the domain.

(3) It is optimized for Chinese, especially
accounting for the loose grammar structure.

There are several areas of improvement we are
considering for GrammarTool, including:

(1) Support for the unordered rule type of ECFG.
(2) Support for simple multi-turn dialogue.

8. Acknowledgements
Our test data was provided by the Information Retrieval
Laboratory of Harbin Institute of Technology.

9. References

Rosenfeld, R., Olsen, D. & Rudnicky A. (2000). A universal
human-machine speech interface. Tech. Rep. CMU-CS-00-
114. School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA.

Rosenfeld, R., Zhu, X.J., Shriver, S., Toth, A., Lenzo, K. &
Black A. W. (2000). Towards a universal speech interface.
Proceedings of International Conference on Speech
Language Processing ’00.

Seneff, S. (1992): TINA a natural language system for spoken
language applications. Computational Linguistics, 18(1),
61-86.

Tomko, S., Harris, T., Toth, A., Sanders, J., Rudnicky, A. &
Rosenfeld R. (2005). Towards efficient human machine
speech communication: The speech graffiti project. ACM
Transactions on Speech and Language Processing, 2(1).

Toth, A., Harris, T., Sanders, J., Shriver, S. & Rosenfeld R.
(2002). Towards every-citizen’s speech interface: An
application generator for speech interfaces to databases.
Proceedings of International Conference on Speech
Language Processing 1497–1500.

Ward, W. (1990). The CMU air travel information service:
Understanding spontaneous speech. Proceedings of the
DARPA Speech and Natural Language Workshop.

Yan, P.J. (2002). The study of natural language understanding
in dialogue systems: [Thesis]. Beijing: Department of
computer science and technology, Tsinghua University.

Proceedings of the 11th Australian International Conference on Speech Science & Technology, ed. Paul Warren & Catherine I. Watson. ISBN 0 9581946 2 9

University of Auckland, New Zealand. December 6-8, 2006. Copyright, Australian Speech Science & Technology Association Inc.

Accepted after full paper review

PAGE 51

http://scholar.google.com/url?sa=U&q=http://portal.acm.org/citation.cfm%3Fid%3D1075389.1075391
http://scholar.google.com/url?sa=U&q=http://portal.acm.org/citation.cfm%3Fid%3D1075389.1075391

	1. Introduction
	2. Related work
	3. General structure of SDS Lite
	4. Introduction to GrammarTool
	5. Algorithm design
	6. Tests and results
	7. Conclusion and future work
	8. Acknowledgements
	9. References

