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ABSTRACT

This paper presents an effective and robust speech endpoint
detection method based on 1/f process technique, which is
suitable for robust continuous speech recognition system in
variable noisy environments. The Gaussian 1/f process, which is
a mathematical model for statistically self-similar random
processes from fractals, is selected to model both speech and
background noise. Then, an optimal Bayesian two-class
classifier is developed to discriminate between real noisy speech
and background noise by the wavelet coefficients with
Karhunen-Loeve-type properties of the 1/f processes. Finally, for
robust requirement, a few templates are built for speech and the
parameters of the background noise can be dynamically adapted
in runtime to deal with the variation of both speech and noise. In
our experiments, 10 minutes long speech with different types of
noises was tested using this new endpoint detector. A high
performance with over 90% detection accuracy was achieved.

1. INTRODUCTION

Endpoint detection, which aims at distinguishing the speech and
non-speech segments from digital speech signal, is considered as
one of the key primary preprocessing components in automatic
speech recognition (ASR) systems. Proper estimation of the start
and end of the speech (vs silence or background noise) can avoid
the wasting ASR evaluations on preceding or ensuing silence,
which leads to efficient computation, and more importantly, to
accurate recognition because misplaced endpoints cause poor
alignment for template comparison. In some special but
significant applications of ASR, the environments include many
high level or nonstationary noises, such as in the mobile phone
with speech command system. Noise comes from speakers (lip
smacks, mouth clicks), environment (door slams, fans, machines)
and transmission (channel noise, cross talk). The variability of
durations and amplitudes for different sounds makes reliable
speech detection difficult.

Some functions of signal short-time energy, zero-crossing rate or
spectral energy have been conventionally used as the major
features in the traditional endpoint detectors achieving good
results for clean speech, but they fail considerably for speech
with noises [1-3]. Pitch and entropy information are also chosen
as the characteristics to distinguish speech signals from noisy
signals, but the performances are dissatisfied, especially in the

environments with high or nonstationary noises [4-5]. Other
schemes use speech recognizer to determine the endpoints based
on the output by a Viterbi algorithm by aligning the vocabulary
word preceded and followed by a silence model or a noise model,
but they require large computational resources [6].

The endpoint detection can be viewed as a speech/background-
noise classification. For ASR systems, the ideal characteristics
for such classification are: reliability, robustness, accuracy,
adaptation, simplicity, real-time processing and no a priori
knowledge of the noise. Among these characteristics, robustness
against noise conditions has been the most difficult to achieve.
From the above directions of research, in this paper, the 1/f
process, which is a mathematical model for statistically self-
similar random processes from fractals, is chosen to model both
speech and background noise, and a dynamically adapted
endpoint detector by the wavelet coefficients of the 1/f processes
is developed. The dynamics of airflow during speech and noise
production may often result in some smaller or larger degree of
turbulence. The geometry of these turbulence as reflected in the
fragmentation of the time signal could be quantified by using 1/f
process, and the wavelet basis expansions in terms of
uncorrelated random variables are very good mathematic
analyzing tools for such 1/f type behavior [7]. Therefore, in the
new method, both the clean speech and background noise are
modeled as two Gaussian 1/f processes. In addition, the wavelet
coefficients of the real digital speech signal obtained in noisy
environment are represented as the summation of the wavelet
coefficients of these two 1/f processes. And then, an optimal
Bayesian two-class classifier is developed to distinguish between
the two Gaussian 1/f processes presenting real noisy speech and
background noise by their robust wavelet coefficients with
Karhunen-Loeve-type properties. Finally, for accurate and robust
requirement, a few templates for speech are trained by clustering
process, and the parameters of background noise can be
dynamically adapted in runtime to deal with the variation of both
speech and noise. In our experiments, 10 minutes long speech
with different noises, whose average SNR is 10dB, was tested
using the new endpoint detector. A high performance with over
90% detection accuracy was achieved.

2. 1/F WAVELET MODEL FOR SPEECH

The dynamics of airflow during speech production may often
result in some smaller or larger degree of turbulence. Based on



the fractal theory, the signal of speech is a statistically self-
similar random process whose statistics are invariant to dilations
and compressions of the waveform in time [7]. More specifically,

the speech signal )(ts obeys the scaling relation with parameter

H .
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Where ))(( tsp denotes the probability density function of

)(ts .

Based on equation (1), the mean and covariance functions of the
statistically self-similar process are also self-similar. Such
statistically self-similar process is generally defined as the 1/f
process having measured power spectra obeying a power law
relationship of the form
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The wavelet basis expansions in terms of uncorrelated random
variables constitute very good models for such 1/f-type behavior
because the orthonormal wavelet basis expansions play the role
of Karhunen-Loeve-type expansions for 1/f-type processes [8].

The 1/f process )(ts can construct via such expansions
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where the )()( tm
kϕ constitute a complete orthonormal set,

)(m
ks are collection of mutually uncorrelated random variables

which also called the wavelet coefficients of )(ts with zero-

means and variances via equation(2)
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Consider the problem of endpoint detection of speech: the clean

speech )(ts , background noise )(tn and real speech with noise

)(ˆ ts are separately modeled by Gaussian 1/f process via

wavelet expansions
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where T is the number of sampling points. M represents the

finite set of available distinct scales, and )(mN is the set of

available coefficients at each scale m . [8] shows that such
wavelet-based representations are robust characterizations of 1/f-
like behavior with Karhunen-Loeve-type properties.

In addition, exploiting the Karhunen-Loeve-type properties if the
wavelet decomposition for 1/f-type processes, and using the fact

that
)(m

ks are independent of the
)(m

kn and are decorrelated for

any wavelet basis, the observation coefficients of real speech
with background noise
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can be modeled as mutually independent zero-mean, Gaussian
random variables with variance
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Then, for the speech/background-noise detection, an optimal
Bayesian two-class classifier is built, which shows in Table 1.

Table 1: The description of the Bayesian two-class classifier of

the speech/background-noise detection for the input signal )(tr .

Class ID
Input

Parameters
PDF

Parameters
of PDF

Noise 0H { }),0( m
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Speech 1H
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Based on the Bayesian principle, the classifier can be represents
as
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Similarly,
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Equation (7) can be rewritten as via equations (8) and (9)
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3. ENDPOINT DETECTION ALGORITHM

3.1 Classifier Training

To obtain the parameter
2

ˆ )( m
sσ of real noisy speech, the

parameter
2)( m

sσ should be trained before classification.

Because different type of speech has its own special
characteristics in wavelet coefficients, a few templates for speech
are trained separately to achieve high performance.

Assume { }QqMmm
sq ≤≤∈ 1|}|){( 2σ represents

the set of Q templates for clean speech
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where )(tsq means the training speech data with size qT

belonging to the template q )1( Qq ≤≤ .

A short period T ′ of background noise is first taken as the
initial reference for the endpoint detection.
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Another prior knowledge
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is assumed to be

equal to zero.

3.2 Adaptation in Runtime

In stable noisy environment,
2)( m

nσ is invariable. But to

increase the detection accuracy in nonstationary noisy
environments, the parameter of noise must be adapted in runtime.

The adaptation method is written as equation (13).
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Where t means the current speech segment is the t th

background-noise segment, ( ) )(
2
im

nσ represents the variance

of the wavelet coefficients at scale m for the i th noise segment.
c a the exponential decay factor.

3.3 Algorithm

The input speech signal can be divided into F frames

{ } { }{ } )1()(,),2(),1( FiTrrrR i
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assume the first frame
1R is the noise segment.

Step 1: Train the initial parameter of noise { }2)( m
nσ via

equation (12) using the data of
1R . Set the current frame

number 1=i .

Step 2: 1+= ii . If Fi > , the algorithm ends, unless
compute the set of wavelet coefficients
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of frame
iR .

Step 3: Compute the variance of the wavelet coefficients at each
scale.
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Step4: For every template of clean speech, use equation (10) to

classify with { }2)( m
rσ , { }2)( m

sqσ and { }2)( m
nσ . If

iR is



classified as speech segment with any one template,
iR is just

labeled as speech segment, then go to Step 2; unless,
iR is

labeled as background noise segment.

Step 5: The parameter of noise { }2)( m
nσ is update via equation

(13). Go to Step 2.

When all frames are labeled as speech or background-noise
segments, the endpoint boundaries can be found in the change
points of segment type. Finally, some boundary pairs with the
period of the corresponding speech segment less than a
predefined minimum duration are rejected.

4. EXPERIMENT RESULTS
The speech database used in the experiments is a 20 minutes
speech stream with about 300 Mandarin Chinese sentences from
10 speakers (native Chinese males and females) in clean
environment. The sampling rate is 16KHz with 16bits resolution.
The first half of the database is used as training data to get the
parameters of clean speech, and the last half one is added
randomly with some different types of noises and tested by the
new algorithm to obtain its performance. The noises in the test
corpus are from speakers and environments, such as white noise,
pink noise, breath, mouth clicks and door slams, but don’t
include the background speech noise such as another speaker’s
speech or transmission noise. The level of noise is variational
with average SNR of 10dB. In processing, the frame size is
16ms with floating size of 8ms. The standard
speech/background-noise classifications are labeled by manual.
In the experiments, three clustering methods are tested to train
the parameters of clean speech:

1. Clean speech is classified as 4 templates, including

• Unvoiced consonant
• Voiced consonant
• Vowel
• Transient region between consonant and vowel
Label the training data by manual into above four types,
and train the parameters separately.

2. Clean speech is classified as 4 templates, and labeled
the training data by Vector quantization (VQ) method.

3. Clean speech is classified as 10 templates, and labeled
the training data by Vector quantization (VQ) method.

The experiments results in showed in Table 2.

Table 2: The classification accurate rate of the test data by the
new speech/background-noise detection method based on the 1/f
process.

Training
Method

4 templates
labeled by
manual

4 templates
labeled by
VQ

10 templates
labeled by
VQ

No
Adaptation

85.6% 78.2% 80.7%

Adaptation
in Runtime

92.0% 89.8% 90.5%

It can be noted from Table 2 that the new endpoint detection
algorithm obtains high performance to deal with nonstationary
noisy environments, which is suitable for ASR systems in noisy
conditions. The self-adaptation in runtime for the parameters of
background noise is very useful for nonstationary noisy
conditions, which increase over 10% accurate rate. Other fact is
that increasing the number of templates for clean speech could
not result in high increase of accurate rate because more
templates will cause more errors in clustering.

5. CONCLUSION

A 1/f process based self-adapting endpoint detection algorithm is
presented in this paper. It's worthwhile to point out three
advantages of the proposed method in comparison with other
existing algorithms for speech endpoint detection. First, because
of the production principles of speech and noise, the 1/f process
is chosen to accurately and compactly model the speech and
background noise and the robust wavelet coefficients with
Karhunen-Loeve-type properties of the 1/f processes are used as
the features for classifier to detection, which can represent the
characteristics in different multi-resolutions of speech and noise.
Second, the multi-templates for clean speech and dynamical
parameters adaptation for background noise in runtime will keep
high performance in both variable background noises and speak
styles. Third, none threshold and prior knowledge of noise is
required in the new method. Future work will combine the
speech endpoint detection together with the denoise methods
based on 1/f process theory.
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