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ABSTRACT 
The Mel-Frequency Cepstrum Coefficients (MFCC) is a widely 
used set of feature used in automatic speech recognition 
systems introduced in 1980 by Davis and Mermelstein [2]. In 
this traditional implementation, the 0th coefficient is excluded 
for the reason it is somewhat unreliable. In this paper, we 
analyze this term and find that it can be regarded as the 
generalized frequency band energy (FBE) and is hence useful, 
resulting in the FBE-MFCC. We also propose a better analysis, 
called the auto-regressive analysis, on the frame energy, which 
performs better than its 1st and/or 2nd order differential 
derivatives. Experiments show that, the FBE-MFCC and the 
frame energy with their corresponding auto-regressive analysis 
coefficients form the better combination reducing the syllable 
error rate (SER) by 10.0% across a giant speech database, 
compared to the traditional MFCC with its corresponding auto-
regressive analysis coefficients. 

1. INTRODUCTION 

The extraction and selection of the best parameter of acoustic 
signals is important in the design of any speech recognition 
system; it significantly affects the recognition performance. The 
usual objectives in selecting a representation are to compress 
the speech data by eliminating information not pertinent to the 
phonetic analysis of the data and to enhance those aspects of the 
signal that contribute significantly to the detection of phonetic 
differences. When a large amount of reference information is 
stored, such as different speakers' productions of the vocabulary, 
compact storage of the information becomes an important 
practical consideration. 

A compact representation would be provided by a set of 
MFCCs. These coefficients are the results of a cosine transform 
of the real logarithm of the short-term energy spectrum 
expressed on a mel-frequency scale [9]. The MFCCs are more 
efficient than any other kind of feature [1][2].  In many 
automatic speech recognition systems, the 0th coefficient of the 
MFCC cepstrum is ignored because of its unreliability[8]. In 
fact, the 0th coefficient can be regarded as a collection of 
average energies of each frequency bands in the signal that is 
being analyzed. The experiments in this paper will also support 
this hypothesis. 

The energy of speech signal is also a very important feature for 
automatic speech recognition. The common used energy-related 
features include the frame energy and the first order and/or 
second order time derivatives. Many experiments have shown 
that the system performance can be improved when the energy 
information is added as another model feature in addition to 
cepstrums [6]. In this paper, we will conclude that the auto-
regressive analysis of the energy is better than the first/second 

order differential analysis. 

In this paper, several experiments are designed and completed 
step by step to compare the affects of several different 
implementations and of how the energy information is 
integrated. 

2. EXPERIMENTAL FRAMEWORK 

The training database, the 863 Database, which is a standard 
Mandarin database, was jointly established as a task from the 
National 863 Hi-Tech Project of China. It contains 1,560 
sentences (divided into 3 groups) chosen from the People's 
Daily of the years 1993 and 1994, which cover most of Chinese 
di-phones and tri-phones and the basic sentence forms. 397 
toneless syllables appear in the sentences, while 21 least 
frequently used syllables are not present. There are 100 male 
and 100 female speakers, aging from 16 to 45, each of whom is 
asked to speak one group of the sentences at a normal speed. 

Speech signals are sampled at 16 kHz sampling rate with 8 kHz 
cut-off through the SoundBlaster under the office environment 
and then emphasized using a simple first-order digital filter. The 
pre-emphasized speech is then blocked into frames of 32 msec 
(512 sampling points) in length spaced every 16 msec (256 
sampling points). The D-order (where D=16) cepstral analysis is 
performed to every Hamming-windowed frames and the auto-
regression analysis (ARA) is performed to every 5 adjacent 
frames [4]. The cepstral coefficients and their auto-regression 
coefficients form the basic features for the automatic speech 
recognition systems in this paper. 

The 863-Database is divided into training and testing parts. The 
training set covers 180,063 Chinese syllable samples of 30 
males’ utterances and the testing set covers 70,462 Chinese 
syllable samples of 8 males’ utterances. 

A kind of Segmental Probablity Model has been proposed based 
on the desertion of the HMM probability transition matrix 
called mixed Gaussian continuous probability model (MGCPM) 
in our previous paper [13]. MGCPM adopts a left-to-right non-
skipping topology. The intra-state feature space is described by 
mixed Gaussian densities (MGD) where the covariance matrices 
are diagonal. The state transition is controlled by the high robust 
Equal Feature Variance Sum (EFVS) based Non-Linear Partion 
(NLP) [7] algorithm in training while the modified Viterbi 
algorithm [12] in recognition. 

In this experiment, the 6-state 8-MGD based MGCPMs are 
adopted to model the 397 toneless Chinese syllables as the 
speech recognition units (SRUs). 

3. TRADITIONAL MFCC 
CALCULATION 



Many experiments show that the ear’s perception to the 
frequency components in the speech does not follow the linear 
scale but the mel-frequency scale, which should be understood 
as a linear frequency spacing below 1,000 Hz and a logarithmic 
spacing above 1,000 Hz [11], so filters spaced linearly at low 
frequencies and logarithmically at high frequencies have been 
used to capture the phonetically important characteristics of 
speech [10]. Here is the common used formulas to 
approximately reflex the relation between the mel-frequency 
and the physical frequency (the known variation of the ear’s 
critical band-widths with frequency) [8]: 

( )700/1log2595)( 10 ffM +=      (1) 

where f is frequency in hertz. Based on this assumption, the 
mel-frequency cepstrum coefficient is proposed in [2]. The 
MFCC can be computed by the following steps: 

(1) The discrete Fourier transform (DFT) transforms the 
windowed speech segment into the frequency domain. 
The real and imaginary components of the short-term 
speech spectrum are squared and added to get the short-
term power spectrum )( fP . 

(2) The spectrum )( fP  is warped along its frequency axis 

f  into the mel-frequency axis as )(MP  where M  is 
the mel-frequency. 

(3) The resulted warped power spectrum is then convolved 
with the triangular band-pass filter )(MP  into )(Mθ . 
The convolution with the relatively broad critical-band 
masking curves )(MΨ  significantly reduces the spectral 

resolution of )(Mθ  in comparison with the original 

)( fP . This allows for the down sampling of )(Mθ . The 

discrete convolution of )(MΨ  with )(MP  yields 
samples of the critical-band power spectrum as 

KkM k ..1),( =θ  in Equation (2), where kΩ ’s are 

linearly spaced in the mel-scale. Then K  outputs 
( ) )..1()(ln)( KkMkX k =θ=  are obtained. In the 

implementation, )( kMθ  is the average instead of the 

sum. 
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(4) The MFCC is computed as in Equation (3). Because the 
MFCC calculation compresses the signal components 
into the lower dimensions, we often choose KD << . 
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4. STEP-BY-STEP EXPERIMENTS 

In this section, we give the designs and the results of the step-
by-step experiments on Mel-frequency cepstrum analysis. To be 
brief, we define F&aRa as Feature F itself and its auto-regressive 
analysis coefficients, and D1F/D2F as the 1st/2nd order time 
differential derivative of Feature F. We denote the traditional 
MFCC as defined in Section 3 by MFCC0 for simplification. 

Our previous comparison of the combination of the MFCC and 
the derivatives shows that MFCC plus its auto-regressive 
coefficients outperform MFCC plus its 1st or 2nd order 
differential MFCC. Based on these results, the MFCC0&aRa is 
adopted as the baseline in this paper. 

4.1 COMPARISONS ON MFCC IMPLEMENTATION 

According to the calculation steps for the MFCC, the following 
factors may affect the performance of MFCC: (1) the number of 
the filters; (2) the shape of the filters; (3) the way that the filters 
are spaced, overlapped or not; and (4) the way that the power 
spectrum is warped. In order to find which factors are more 
important, we design several comparison experiments. 

4.1.1 Effects of Different Filter Numbers 

The number of triangular band-pass filters is a factor that may 
affect the recognizer’s performance. Table 1 gives the results of 
several different numbers of filters. The recognizer reaches the 
maximal performance at the filter number K =35. Too few or 
two many filters do not result in better accuracy. In this case, 
each filter covers about 158 Mels. Hereafter the number of 
filters is chosen to be K =35, if not specifically stated. 

TABLE 1. DIFFERENT NUMBER OF OVERLAPPED TRIANGULAR 

FILTERS 

# of filters (MFCC0&aRa) Top 1 Top 3 Top 5 Top 10 
25 67.39 86.59 91.56 95.57 
30 67.73 86.78 91.72 95.66 
35 68.01 86.97 91.79 95.77 
40 67.84 87.05 91.92 95.82 
45 67.86 86.88 91.81 95.74 

4.1.2 Effects of Different Filter Shapes 

In the traditional implementation of MFCC, filters are triangular. 
As a matter of fact, rectangular filters can also be taken as 
alternatives. And in PLP analysis [5], Hermansky adopts a 
particular shape of the critical-band curve given by Equation (4). 
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where B  is the warped frequency in Bark. This piece-wise 
shape for the simulated critical-band-masking curve is an 
approximation to the asymmetric masking curve of Schroeder 
[10]. It is an approximation of what is known about the shape of 
auditory filters. It exploits Zwicker’s [15] proposal that the 
shape of auditory filters is approximately constant on the Bark 
scale. The filter skirts are truncated at –40 dB. From this point 
forward in this paper, this curve is referred to as the Schroeder 
curve. 

This experiment compares the affects of the above 3 different 
shapes of the critical-band filters, triangular, rectangular and 
Schroeder curve. The results are given in Table 2. We don’t see 
too much difference. 

4.1.3 Effects of Different Frequency Warping 

Fant compares Beranek’s mel-frequency scale, Koenig’s scale, 
and Fant’s approximation to the mel-frequency scale. The result 
is that the differences between these scales are not significant. 
Here we compare other scales [3]. 



TABLE 2. DIFFERENT FILTER SHAPES AND FREQUENCY WARPING 
(In this table, XTRI stands for crossed/overlapped triangular filters 
while TRI non-overlapped, and XRECT for overlapped rectangular 
filters while RECT non-overlapped. The gray row is the baseline.) 

Features (&aRa) 
Warping Filter Shape 

Top 1 Top 3 Top 5 Top 10 

MEL XTRI 68.01 86.97 91.79 95.77 
MEL TRI 66.35 86.10 91.21 95.42 
MEL XRECT 68.38 87.28 92.14 95.91 
MEL RECT 66.36 86.17 91.18 95.37 

BARK XTRI 67.61 86.58 91.56 95.57 
BARK TRI 66.99 86.30 91.38 95.43 
BARK XRECT 67.59 86.59 91.53 95.57 
BARK RECT 67.00 86.38 91.35 95.53 
BARK SCHROEDER 67.25 86.63 91.53 95.51 

In the traditional MFCC calculation, the mel-scale is used to 
warp the power spectrum, while in the PLP technique, the 
spectrum )( fP  is warped along its frequency axis f  into the 
Bark frequency B  by [14][5]: 
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This particular Bark-hertz transformation is due to [10]. This 
gives us an alternative for the shape of critical-band filters, 
resulting in the Bark-frequency Cepstral Coefficient (BFCC). 
Also see Table 2 for the comparison results. 

4.1.4 Effects of Different Filter Spacing 

In our experiments, filters can be either overlapped or side by 
side, except for the Schroeder filters that are always overlapped 
due to their design purpose. Each of them has the same width in 
the warped frequency axis. In the overlapped scheme, any two 
adjacent filters will overlap one half of the width with each 
other. The experimental results are also shown in Table 2. 

4.1.5 Section Summary 

The experimental results in this section conclude that the 
difference between these scales (Bark or Mel) and filter shapes 
(triangular, rectangular or Schroeder) is insignificant. But 
whether the filters are overlapped or not affects the results 
dramatically. Overlapped filters always achieve higher hit rate 
than non-overlapped ones. Therefore, we use 35 overlapped 
triangular filters for MFCC0. 

4.2 INTEGRATING ENERGY INFORMATION 

Many researches have proved that the energy information, as 
well as the differential derivatives, is useful to improve the 
speech recognizer. In this section, we compare two different 
kinds of energy information, the frame energy (FE) and the 
frequency band energy (FBE). Because the log energy is better 
than the energy itself [6], we provide mainly the results for the 
log energy related experiments. 

4.2.1 Frame Energy 

Many experiments have showed that the frame energy, log 
frame energy and the 1st / 2nd order delta frame energies are 
useful to improve the speech recognition accuracy. The frame 

energy (FE) of a given frame of speech Nnns ≤≤1),(  can be 

defined and calculated as 
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The frame energy is normalized according to the maximal frame 
energy of the current speech segment to enhance the robustness. 

4.2.2 Frequency Band Energies 

In the calculation of traditional MFCC using Equation (3), the 
first dimension is eliminated [8]. Taking 0=d , we have 
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where )()(
k

g
k ME θ= , and )( kMθ  is the output of the k’th 

filter. If the critical-band filter has the rectangular shape, 
)( kMθ  is the average power energy in the k’th frequency band. 

So )(g
kE  can be regarded as the generalized frequency band 

energy (FBE) for any kind of critical band filter. FBE contains 
more information compared to the frame energy, and it contains 
energy information of several different sub-band of the whole 
frequency band. Based on the analysis, we have reasons to think 
that FBE should be included. 

Because the logarithm has the compression function, 

)0(MFCC  is more sensitive to )(g
kE  in low-valued region and 

less sensitive in high-valued region than the original product of 
energies. This is similar to ear’s hearing characteristics. Based 
on this analysis, we change Equation (3) into Equation (3’). 
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The resulted MFCC calculated by Equation (3’) is referred to as 
the FBE-MFCC, denoted by MFCC1 hereafter for 
simplification. 

4.2.3 Section Summary 

The experiment is designed to compare which kind of energy 
information is best, (1) FE – the frame energy, (2) LnFE – the 
logarithm of frame energy, or (3) FBE – the frequency band 
energy. The experimental results are shown in Table 3. 

TABLE 3. THE ENERGY COMPONENT INFORMATION 
(The gray row is the baseline) 

Features (&aRa) Top 1 Top 3 Top 5 
Top 
10 

MFCC0 68.01 86.97 91.79 95.77 
MFCC0 + FE 69.52 87.90 92.50 96.11 

MFCC0 + LnFE 70.46 88.73 92.99 96.35 
MFCC0 + FBE (i.e. MFCC1) 70.51 88.67 92.96 96.39 

From Table 3, the integration with any of the three items is 
better than the original MFCC (i.e. MFCC0), but the FBE is the 
most useful one. The reason why the FBE is better than others is 
that FBE includes energy information of several frequency sub-
bands while (log) frame energy includes only part of them. 



Our comparison of the combination of the MFCC and the time 
derivatives shows that MFCC plus its auto-regressive 
coefficients outperform MFCC plus its first or second order 
differential MFCC (refer to Section 4). This suggests the 
proposal of the definition of the auto-regressive frame energy as 
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where G  is a gain constant. The result in Table 4 is the best 
evidence to the use of the auto-regressive analysis on frame 
energy. 

4.3 COMBINING FRAME ENERGY AND FBE-
MFCC 

Now that the FBE-MFCC is the best among all kinds of 
combinations of the traditional MFCC (MFCC0) and the frame 
energy as well as the frame energy’s derivatives, a good 
question is that whether we can obtain a better result when 
combining the frame energy and its derivatives into the FBE-
MFCC. The results are shown in Table 5 support this hypothesis. 
The log frame energy and its ARA coefficients are the best to 
integrate into the FBE-MFCC and the corresponding ARA 
coefficients. 

TABLE 4. AFFECTS OF THE DIFFERENTIAL DERIVATIVES OF 

FRAME ENERGY 

Features (besides 
MFCC0&aRa) 

Top 1 Top 3 Top 5 Top 10 

LnFE + D1LnFE 68.87 87.76 92.35 96.00 
LnFE + D2lnFE 69.23 88.05 92.53 96.05 

LnFE + D1lnFE + D2lnFE 69.43 88.01 92.55 96.12 
LnFE&aRa 70.46 88.73 92.99 96.35 

TABLE 5. COMBINING THE FRAME ENERGY INFORMATION INTO 

FBE-MFCC (I.E. MFCC1) 

Features (besides 
MFCC1&aRa) 

Top 1 Top 3 Top 5 Top 10 

None 70.51 88.67 92.96 96.39 
LnFE + D1lnFE 70.41 88.37 92.65 96.28 
LnFE + D2lnFE 70.79 88.52 92.84 96.29 

LnFE + D1lnFE + D2lnFE 70.97 88.62 92.85 96.40 
FE&aRa 70.27 88.32 92.68 96.28 

LnFE&aRa 71.19 88.80 92.98 96.41 

5. SUMMARY 

From the step-by-step design and implementation of the 
experiments on the MFCC, we conclude that: 

(1) The MFCC(0), i.e. the frequency band energy (FBE) 
information, is useful to be included in the MFCC, 
referred to as FBE-MFCC in this paper to be 
distinguished from the traditional MFCC. 

(2) The combination of the FBE-MFCC and the frame 
energy with their auto-regressive analysis coefficients 
is the best, reducing the syllable error rate (SER) by 
about 10.0%. 
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