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Abstract—Speaker segmentation is widely applied in many 

domains such as multi-speaker detection and speaker tracking. 

However, the performance of the conventional metric-based 

methods is neither good enough nor stable due to the stability of 

the between-window distance calculation.  In order to enhance 

the stability and hence to improve the performance, a new 

method based on the between-window correlation over speakers’ 

characteristics is proposed. In this method, a set of reference 

speaker models are trained which can represent the whole 

speaker model space. The between-window correlation of 

likelihood vectors of scores against these reference models is 

taken as the metric. The gender information and the Peak and 

Valley information are also used. Experiments over NIST SRE 

2002 Segmentation BNEWS and SWBD Datasets show that 

better performance can be achieved compared with the BIC and 

the GLR methods. What’s more, the proposed method can 

achieve approximately the best performance in a wider value 

range of predefined thresholds than the BIC and the GLR 

methods, which reduces the threshold sensitivity. 

I. INTRODUCTION 

The goal of speaker segmentation is to segment an utterance 

into acoustically homogeneous segments, each of which 

contains only one speaker. It has been widely applied in 

multi-speaker detection, speaker tracking and so on. The 

state-of-the-art methods can be classified into three 

categories: the metric-based, the model-based, and the hybrid 

of them.  

In the metric-based segmentation, the distance between two 

adjacent analysis windows sliding over the utterance is 

calculated, and if it is greater than a predefined threshold, the 

boundary between the windows is regarded as a speaker 

change point. The commonly used distance measures include 

Bayesian Information Criterion (BIC) 
[1] 、 Generalized 

Likelihood Ratio (GLR) 
[2] 、Kullback-Leibler Divergence 

(KL) 
[3]、Support Vector Machine (SVM) 

[4]
, and Audio 

Entropy
[5]

, and so on. In the model-based segmentation, it first 

of all estimates those possible target speakers from the 

utterance, then searches the target speakers’ change points 

using corresponding speaker models which are updated 

iteratively in the whole process, traditional methods include 

GMM-based
 [6]

, Eigenvoice-based
 [7]

 and HMM-based
 [8]

 ones, 

etc. The hybrid method normally combines the former two 

methods together, for example ELISA
 [9]

 is a hybrid of the 

HMM-based method and the BIC method.  

However the between-window distance calculation in the 

metric-based method is often inaccurate and not stable, or the 

speaker change points locating in the model-based method is 

biased, especially when the speaker change is possible very 

frequent. So we can observe that the performance of 

segmentation method seriously depends on the definition of 

thresholds for the metric-based method or the quality of initial 

target speaker models for the model-based method. In order to 

enhance the stability of the distance calculation for the metric-

based method, a new method is proposed in this paper. A set 

of reference models are defined which can better represent the 

whole speaker model space. Instead of calculating the 

distance between two adjacent windows, we propose to 

calculate the between-window correlation of likelihood 

vectors, each of which consists of the likelihood scores of the 

feature of the corresponding (left or right) window against the 

reference models. 

The definition of the reference models in this paper is 

different from that in the well known Anchor model
 [10]

, in 

which an exact speaker model can be found for the tested 

speaker. The speaker recognition task in this paper is assumed 

to be open-set speaker identification, so the above idea will be 

less useful. The definition of the reference models is in this 

way: based on the K-L distance measure, a sufficient number 

of speakers in the development set are classified into several 

classes using a kind of VQ technique such as K-means
 [11]

, 

and each class forms a reference speaker model which can 

represent the characteristics of the speakers in this class. This 

can be regarded as reference models definition based on 

speakers’ characteristics. 

This paper is organized as follows. In Section II, a detailed 

description about the speakers’ characteristics and the 

segmentation algorithm are described. The experimental 

results are given in Section III. Conclusions are drawn in 

Section IV.  

II. SPEAKERS’ CHARACTERISTICS AND SEGMENTATION 

ALGORITHM 

In this section, the metric definition based on speakers’ 

characteristics and the proposed segmentation algorithm will 

be described in detail. 

A. Speakers’ Characteristics and Metric Definition 

Speakers’ characteristics means the representatives for 

speakers’ model space. The model space described by a set of 

existing speaker models is clustered into several classes and 

each class is represented by a new speaker model called a  
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reference speaker model, or a speaker’s characteristics 

generated from all the speaker models in this class. 

Considering the gender of the speaker is more helpful in 

detecting speaker change points, the gender characteristics is 

used in terms of gender-dependent modeling.  
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Fig. 1   Block Diagram of the Training of Speakers’ Characteristics. 

Here are the details. Let K denote the number of speakers’ 

characteristics (reference speaker models) designed to cover 

the speaker model space. Speakers’ characteristics are trained 

from the development set. In this dataset there are N 

utterances with each spoken by only speaker. The utterances 

are balanced over language, gender and speaking style, and 

the bigger the number of different speakers is the better the 

performance will be. N speaker models are then trained from 

the N utterances using GMM-UBM 
[12]

 modeling method and 

Maximum a posteriori estimation (MAP) 
[13]

. N GMM 

supervectors will be obtained from the N speaker models by 

concatenating the mean vectors. The K-means 
[11]

 method is 

used to cluster the N supervectors into K classes. In each class, 

a quasi speaker model as its speakers’ characteristics 

(reference model) is trained from the utterances in it based on 

the GMM-UBM 
[12]

. 

Two gender-dependent UBMs are trained as speaker 

gender characteristics. The likelihood of an utterance against 

the speaker gender characteristics presents the gender 

information of speaker contained in this utterance. 

Each speaker is modeled by a vector called Likelihood 

Vector, denoted by LV, and defined as the likelihood scores of 

an utterance against those speakers’ characteristics. Let Ci 

denote speakers’ characteristics, where i is 1, 2, …, K, F, or M, 

and F and M are indices to the female and male characteristics, 

respectively. The Likelihood Vector is calculated as 

Lv(X) = [P(X|Ci)]
T, i=1, 2, …, K, F, or M 

where X is an utterance, P(X |Ci) is the log likelihood of X 

against characteristic Ci like in [12]. For two utterances X1 and 

X2, calculate Lv(X1) and Lv(X2) using Equation (1). The 

correlation coefficient between vectors Lv(X1) and Lv(X2) is 

defined as 

12 12 1 2C    

where C12 is covariance between Lv(X1) and Lv(X2), δ1 and δ2 

are standard deviations of  Lv(X1) and Lv(X2), respectively. 

Just as in the VQ technique, the larger the number of 

speakers for training is, and the greater the value of K is, the 

more accurate the between-window correlation coefficient 

calculation will be. But the larger number of speakers and the 

greater value of K will lead to lower efficiency and training 

data sparseness. According to our experience, N = 1,227 and K 

= 300 can achieve a reasonable good performance. 

B. Segmentation Algorithm  

Based on the introduction of the speakers’ characteristics as 

well as the metric, the segmentation is easier. It consists of 

following steps: (1) voice activity detection (VAD); (2) 

feature extraction; (3) speaker change point detection; (4) 

peak and valley validation. Steps (3) and (4) are illustrated in 

Fig.2 and Fig. 3, respectively, which are also to be described 

in details.  
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Fig. 2   Speaker Change Point Detection. 
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Fig. 3   Correlation Coefficient Curve. 

Two same-sized adjacent sliding windows are used in Step 

(3) when calculating the correlation coefficients. The 

correlation coefficient between two neighboring windows at 

frame t, D(t) is computed using Equations (1) and (2) as 

illustrated in Fig. 2. The window size of Windows 1 and 2 

should meet the stability assumption of signal analysis and 

feature extraction. d, the window shift, is the difference of 

starting points of Window 1 between two adjacent calculation 

of the correlation and it stands for the resolution of (2) 

(1) 



segmentation algorithm. After the two windows sliding from 

left to right along the feature sequence, a curve of correlation 

coefficients can be obtained as in Fig. 3.  

There are two assumptions. 

H0: if the speakers of two neighboring windows are the 

same, the correlation coefficient between the two windows’ 

likelihood vectors is bigger. 

H1: if the speakers of two neighboring windows are 

different, the correlation coefficient between the two 

windows’ likelihood vectors is smaller. 

The assumptions indicate that the smaller the correlation 

coefficient is, the more likely there is a speaker change point 

at the boundary between Windows 1 and 2. However the 

problem is that how small the correlation coefficient should 

be when there is a true speaker change. Experimentally, we 

define a threshold for speaker change detection as follows. 

Say a putative speaker change at frame t is found if the 

following conditions are met 

|D(t) - D(t)lmax |> αδ 

|D(t) - D(t)rmax |> αδ 

where D(t) is a local minimum correlation coefficient value at 

frame t ， and D(t)lmax and D(t)rmax are its left and right 

neighboring local maximum correlation coefficient values, δ 

is the standard deviation of correlation coefficient sequence, 

and α is an adjustable factor. Here αδ can be regarded as the 

threshold for speaker change detection. 

C. Peak and Valley Validation 

The validation process is to determine if a putative speaker 

change point found in Step (3) is true or not. The process can 

be seen from the example given below. In Fig. 4, points U, V, 

and W are three adjacent valleys in the correlation coefficient 

curve, points P and Q are two peaks among them.  Denote Rt 

as the corresponding horizontal coordinate (i.e. the time 

coordinate) of point R on the curve. Define: 

A = (Ut + Pt)/2,  B = (Pt  + Vt)/2 

C = (Vt + Qt)/2, D = (Qt + Wt)/2 

Calculate the correlation coefficient of the utterance between 

A and B and the utterance between C and D as peak 

correlation Dp, the correlation coefficient of utterance 

between Ut and A and the utterance between B and Vt as 

valley correlation Dv. Actually, they can be regarded as to 

correspond to the most stable and the most unstable parts of 

the two segments, respectively. 

If Dp > β, V is possibly not a speaker change point, delete V 

from the putative speaker change point set. 

If Dv <γ, it is possibly that there should exist a speaker 

change point between Ut and Vt. We enlarge the resolution to 

analyze this part again using a window size and a window 

shift half of those in the previous analysis. Accordingly the 

putative speaker change point set will be changed or not. Here 

β and γ are two predefined thresholds experimentally learned 

from the development set. In our experiments, when β = 0.4 

and γ = 0.3, best results can be achieved. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental  Data and Set up 

The experiments were conducted based on GMM-UBM. 

The databases used for the speaker segmentation experiments 

were taken from National Institute of Standards and 

Technology (NIST) Speaker Recognition Evaluation (SRE) 
[15]

 

2002 speaker segmentation data set. NIST SRE 2004 1C4W 

dataset was used to train the gender-dependent/independent 

UBMs through EM algorithm
 [14]

. NIST SRE 2005, 2006, and 

2008 8C4W datasets were used to train the speakers’ 

characteristics. A broadcast news dataset named BNEWS and 

a telephone conversation dataset named SWBD were used as 

test sets.  All the utterances were sampled at 8 kHz with 8-bit 

width. 

Feature extraction were performed on a 20ms frame every 

10ms. The pre-emphasis coefficient was 0.97 and hamming 

windowing was applied to each frame. An energy-based VAD 

was performed with each frame labeled either valid or invalid. 

16-dimensional MFCC features were extracted from the 

utterances only for those valid frames with 30 triangular Mel 

filters used in the MFCC calculation. For each frame, the 

MFCC coefficients and their first derivative formed a 32-

dimentional feature vector. The cepstral mean subtraction 
[16]

 

in the feature-domain and session variability subspace 

projection 
[17]

 in the model-domain were applied to reduce the 

affect of channel. The UBM or each speaker characteristic 

was represented by an M = 1,024 Gaussian mixture density 

function, where the value of M was chosen empirically. 

The window size is usually dependent on the speakers’ 

change frequency of the data set. In our experiments the 

window size  was chosen as 2s for BNEWS and 1s for SWBD 

according to performance experimentally while the window 

shift as 300ms for BNEWS and 100ms for SWBD according 

to resolution and efficient, respectively. 

B. Experimental Results 

False alarm rate (FAR) 
[15]

 and miss detection rate (MDR) 
[15]

 are used to evaluate the performance of the segmentation 

algorithm, which are defined as 

FAR  =  FA / (ASC + FA)   

MDR = MD / ASC 

where FA denotes the number of false alarms, MD the number 

of miss detections, and ASC the actual number of speaker 

change points. If the time difference between a reference 

speaker change point and its nearest putative speaker change 

point is shorter than 300ms, this is regarded as a true detection, 

otherwise it is a miss. Results are given in tables I-IV. 

In the following tables, the BIC and the GLR methods were 

chosen as the baseline systems. The proposed method based 

on Speakers’ Characteristics is abbreviated as SC. G means 

the gender information was used while PV the Peak and 

Valley Validation used. 

Comparison experiments show that the gender information 

is helpful for segmentation and the Peak and Valley 

Validation is useful to further reduce FAR and MDR. The 

stability of the distance calculation and accuracy of speakers’ 

characteristics are enhanced compared with BIC and GLR, 

(5) 

(4) 

(3) 



and SC outperformed BIC and GLR on both datasets though 

the improvement was not significant for SWBD dataset. 

TABLE   I  

THE EFFECT OF THE NUMBER OF SPEAKERS’ CHARACTERISTICS 

K value Test Dataset FAR MDR 

100 
BNEWS 

(SC) 

(Window Size 
= 2s) 

35.7% 13.1% 

200 34.2% 12.4% 

300 32.8% 11.7% 

400 32.9% 11.9% 

100 
SWBD 

(SC) 

(Window size 
= 1s) 

45.3% 38.9% 

200 44.1% 37.8% 

300 42.7% 34.1% 

400 42.8% 34.7% 

TABLE   II  

EFFECT OF WINDOWS SIZE 

Window 
Size (s) 

Test Dataset FAR MDR 

1.0 
BNEWS 

(SC) 

(K=300) 

35.7% 10.8% 

1.5 34.2% 11.3% 

2.0 32.8% 11.7% 

2.5 31.9% 12.5% 

0.8 
SWBD 

(SC) 

(K=300) 

45.3% 33.7% 

1.0 42.7% 34.1% 

1.5 42.2% 34.7% 

2.0 41.6% 35.1% 

TABLE   III  

PERFORMANCE COMPARISON WHEN G AND PV ARE  USED OR NOT 

Speakers’ 

Characteristics 
Test Dataset FAR MDR 

SC 
BNEWS 

(K=300) 
(Window size 

= 2s) 

32.8% 11.7% 

SC+G 33.1% 11.3% 

SC+PV 32.2% 10.9% 

SC+G+PV 31.5% 10.6% 

SC 
SWBD 

(K=300) 
(Window size 

= 1s) 

42.7% 34.1% 

SC+G 43.3% 33.8% 

SC+PV 42.4% 33.6% 

SC+G+PV 42.1% 33.2% 

TABLE IV 
COMPARED WITH BIC AND GLR 

Methods Test Dataset FAR MDR 

BIC BNEWS 

(K=300) 

(Window size 
= 2s) 

33.8% 15.8% 

GLR 34.2% 16.5% 

SC+G+PV 31.5% 10.6% 

BIC SWBD 

(K=300) 
(Window size 

= 1s) 

43.8% 35.1% 

GLR 41.2% 34.3% 

SC+G+PV 42.1% 33.2% 

IV. CONCLUSIONS AND FUTURE WORK 

In this paper we propose a speaker segmentation method 

based on between-window correlation over speakers’ 

characteristics. Using the correlation of likelihood vectors of 

utterances against speakers’ characteristics, the algorithm can 

remarkably improve the segmentation result in practice. Our 

experiments have shown that the speakers’ characteristics and 

the gender information together are helpful for speaker 

segmentation.  From the experiments we can find that the 

proposed method can achieve approximately the best 

performance in a wider value range of the adjustable factor 

than the BIC or the GLR method does. In other words, the 

performance of the proposed method depends on the 

definition of the threshold to a quite small extent.  

Enough training data is needed to achieve a good 

performance for the proposed method, which is a shortcoming 

and needs further study. 
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