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a b s t r a c t

This paper presents a contour-motion feature for robust pedestrian detection. The space–time contours
are used as the low level representation of the pedestrian. Then we apply 3D distance transform to extend
the 1-dimensional contour into 3-dimensional space. By this way, the relations between the local con-
tours can be maintained implicitly. Further, by encapsulating the static and dynamic information by
3D Haar-like filters, we can generate the middle level pedestrian representation: contour-motion fea-
tures. Then we use boosting method to select the most representative features. Our experiments demon-
strate that the proposed approach can outperform Viola’s well-known pedestrian detector in both
detection accuracy and generalization ability. In addition, even though our approach is presented in
pedestrian detection scenario, it has been extended to human activity recognition application and
remarkable performance has been achieved.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The research of pedestrian detection has received more and
more attention in recent years because of increasing demands in
practical applications, such as smart surveillance, on-board driving
assistance system and content based image/video retrieval.
Remarkable progress has been made to improve the speed and
robustness of the detection procedure (Dalal and Triggs, 2005,
2003, 2006). However, the fundamental problems for reliable pe-
destrian detection are still far from being completely solved. The
human body is highly articulated so its shape may vary radically;
the clothes of a person may have varying colors and texture, so it
lacks in appearance consistency; viewing directions and lighting
may also change the image of a human body. All these make pedes-
trian detection an especially difficult task in object recognition.
Different aspects are addressed in different applications. For image
retrieval and objects recognition, researchers are focusing on solv-
ing the critical issues which are caused by highly articulated hu-
man body and variations in clothing. Typical problems include
pose, occlusion and lighting (Mikolajczyk et al., 2004, 2005). For
surveillance and driving assistance system, more attention has
been focused on improving the speed and the accuracy of detection
(Gavrila, 2000, 2004, 2003). In order to improve the detection
speed, many researchers follow the ‘‘segmentation to recognition”
routine. The segmentation can be accomplished either by back-
ll rights reserved.
ground subtraction (Zhao and Nevatia, 2003) or by some special
image acquisition device such as stereo (Liu and Fujimura, 2004)
or infrared cameras (Xu et al., 2005). These approaches may pro-
vide satisfiable results in some specific applications. However,
their performance relies on the segmentation results of the fore-
ground blobs. Therefore, the segmentation-free pedestrian ap-
proaches may have wider application.

Our approach is based on two basic assumptions. The first basic
assumption is both static and dynamic patterns are important for
identifying a moving human. So modeling pedestrian in space–
time domain is a possible solution for fast and robust pedestrian
detection. Many research results have demonstrated that pedes-
trian can be identified by either dynamic information (Cutler and
Davis, 2000) or static appearance (Dalal and Triggs, 2005,, 2004).
However, these approaches are either not robust enough or not
efficient enough for real time implementation. The work of Viola
et al. (2003) and Dalal et al. (2006) indicate that the combination
of static and dynamic information can improve the detection accu-
racy. Recent promising works on video analysis have also demon-
strated effectiveness of the space–time analysis, such as video
based alignment (Ukrainitz and Irani, 2006), behavior correlation
(Shechtman and Irani, 2005) and in painting (Wexler et al.,
2004). The second basic assumption is the gradient-based descrip-
tors are more robust for representing the appearance of the highly
articulated pedestrian. This assumption is mainly inspired by the
recent success of the gradient-based local descriptors, such as SIFT
(Lowe, 1999), HOG (Dalal and Triggs, 2005), edgelet (Wu and Neva-
tia, 2005) and edgel (Ferrari et al., 2006). Thus, using the gradient

mailto:yzliu@vilab.hit.edu.cn
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


Fig. 2. The space–time volume representation of pedestrians.
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information in space–time domain is another starting point of our
research.

Based on the above two assumptions, we developed our
space–time pedestrian detection approach, which represents the
pedestrians in 3D distance transform volume and extracts its con-
tour-motion features by 3D Haar-like filters. The advantages of our
approach include: (1) the combination of static contour feature and
long term (five frames) motion feature can provide more discrim-
inative information and better generalization ability. (2) Our 3D
Haar-like filter can handle the appearance and motion information
in a consistent and efficient framework. (3) Even though our
approach is presented in pedestrian detection scenario, the pro-
posed space–time analysis technique has been easily extended to
other video analysis applications, such as human activity analysis.

The remaining parts of this paper are organized as follows:
Section 2 gives a brief review of the state of the art pedestrian
detection approaches; followed by Section 3 which describes our
methods in detail. Subsequently, Section 4 presents the evaluation
results of our method against other baseline method and lastly, we
shall state our conclusion and future focus in Section 5.

2. Previous works

For pedestrian detection in static images, most of the detection
approaches fall into two categories according to different human
body representation methods. Some researchers model the pedes-
trian as an integrated whole by its appearance, its shape or both.
For these methods, the detection result is determined by a single
whole-body detector. Earlier work includes the dense Haar+SVM
detector by Papageorgiou and Poggio (2000) and contour based
chamfer matching detector by Gavrila (1998, 2000). Later, with
the rapid development of local descriptors, more researchers tried
to use local gradient histogram to represent the appearance of hu-
man body. Dalal and Triggs (2005) used histograms of oriented gra-
dients (HOG) for human detection and Zhu et al. (2006) extended
this work by combining HOG with a cascade real time detector.
Some researchers used gradient-based local descriptor to represent
the appearance and contour as the global shape constrain, such as
two-layer field model by Wu and Yu (2006) and the implicit shape
model (ISM) by Leibe et al. (2005). Recently, Seemann et al. (2007)
generalized Leibe et al.’s work to make it capable for describing
both the general object class and specific object instance.

Representing human body by its parts is another popular mod-
eling method. These methods divide human body into different
parts and several part-detectors are learned separately. The final
result can be inferred by fusing the outputs of part-detectors (Mo-
han et al., 2001, 2004). Ramanan and Forsyth (2003) searched body
segments by matching the puppet models. Mikolajczyk et al.
(2004) learned seven part-detectors using position-orientation his-
Whole
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Fig. 1. Classification of the state of th
togram features. Sabzmeydani and Mori (2007) developed a two-
layer Adaboost to select Shapelet features for different parts of hu-
man body. Wu and Nevatia (2005) divided the human body into
four parts and use edgelet features representing the contours.
Bayesian inference was used for combining the results of part-
detectors. Tuzel et al. (2007) project the covariance matrices of im-
age patches onto a Riemannian manifold and use LogitBoost to
build a classifier. These methods are normally robust to partial
occlusions. Recently, Munder and Gavrila (2006) presented an
experimental study on pedestrian classification.

Representing the pedestrian by the combination of its appear-
ance and motion pattern is another promising way. Viola et al.
(2003) combined the appearance and motion information into
his famous cascade face detection framework (Viola and Jones,
2001). Dalal et al. (2006) extended HOG features into both spatial
gradient field and optical flow field. These work demonstrated that
space–time analysis technique can yield better performance in
comparison to the solely appearance based detectors. An intuitive
but not strict classification can be seen in Fig. 1.

3. Space–time representation of pedestrian

In order to develop an effective way to represent the pedestrian,
we start our research from the two assumptions mentioned above:
the combination of appearance and motion information can in-
crease the discriminative power for human detection and the gra-
dient-based descriptors are more robust than intensity based ones
for representing the appearance of pedestrians. The first assump-
tion has been verified by Dalal et al. in their recent work (Dalal
et al., 2006) and we verify the second one in our experiments.
Based on the first assumption, we represent the pedestrian by a
space–time volume (STV) and extract its static and dynamic fea-
tures by 3D Haar-like filters. The space–time volume representa-
tion can be seen in Fig. 2, which contains several adjacent frames
of the moving pedestrian. The size of STV is 30 � 15 � 5 in our
approach. In addressing the second assumption, we use the 3D
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Fig. 4. Seven types of 1-order 3D Haar-like features.
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distance transform to build a contour representation in space–time
domain.

An overview of our feature extraction and object detection pro-
cedure can be seen in Fig. 3. Firstly, we apply the edge detection
and distance transform on the space–time volume to generate
the distance transform volume (DTV). Then 3D Haar-like filters
are used to extract the static and the dynamic features. The candi-
date feature number is about 50,000, which are uniformly subsam-
pled from the much larger set of all filters that fit in a 30 � 15 � 5
voxel volume. Then, we uses Realboost (Schapire and Singer, 1999)
to select a subset of features and construct the cascade classifier.

In the following parts of this section, we use V(p) to denote
space–time point p(x,y, t)’s intensity and Vx, Vy, Vt to denote the
gradient along each axis direction. The gradient and the distance
transform volume are denoted by G(p) and D(p), respectively. We
refer to the video sequence without pedestrian as the background
video or just the background. More specifically, the backgrounds
that captured by the static cameras are named as static back-
grounds and the ones that captured by the moving cameras are
named as dynamic backgrounds.

3.1. Distance transform volume

Contour is an effective way to represent the shape of the non-
rigid human body, since the gradient is more robust than the inten-
sity for varying clothes and illumination. Since we model the
pedestrian in a 3D space–time volume, we need to find an effective
way to formulate the contour in this 3-dimensional space. In order
to address both the static and dynamic patterns, the definition of
gradient contains two terms, the spatial gradient and the temporal
gradient, which can be seen in Eq. (1). The first term on the right
side of the equation is the spatial gradient that can capture the
appearance information and the second term is the temporal gra-
dient that can capture the variation along the temporal axis. By
the parameter a we can allocate different emphasis between the
spatial and temporal gradients.

GðpÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVxÞ2 þ ðVyÞ2

q
þ ð1� aÞjVt j ð1Þ

We can further get the contour/edge representation by thresholding
the gradient G(p) in Eq. (1). However, this representation is not very
effective. There exist two critical problems. Firstly, the contour is a
1-dimensional signal (like the space curve) and theoretically it
should be convolved with the 1-dimensional filters for feature
extraction. But the amount of 1-dimensional filters in 3-dimen-
sional space is too huge, making the computation inapplicable. Sec-
ondly, the non-contour regions have not been fully used, which
form the majority of the space–time volume. In addressing these
two problems, a sensible way is to extend the 1-dimensional con-
tour into 3-dimensional space by filling in the non-contour regions
with the values that can reflect the information of neighboring con-
tours. An intuitive explanation is that by contours we can get the
Space-time volume Distance Transform

3D Haar-like Fi

Fig. 3. The overview
skeletons and we now need to attach the muscles to these skeletons
to make the pedestrian become chubby and recognizable.

To fill in the empty regions, a sensible way is to assign every
non-contour point a value reflecting its relative position within
the shape. One popular example is the distance transform, which
assigns to every point a value reflecting its minimal distance to
the boundary contour and has been widely used for binary tem-
plate matching. More sophisticated representation methods can
be found in (Blank et al., 2005). Here we just use the definition
of distance transform and extend this concept into 3D space–time
domain naturely. The distance transform volume can be defined
as:

DðpÞ ¼minðdisyðp; p�ÞÞ; p� 2 fp0jGðp0Þ > hg ð2Þ

where the threshold h is used for edge detection and dis(�, �) is a dis-
tance metric which can be Euclidean or block distance. Thus far, we
have turned the binary contour volume into a continuous distance
transform volume in which each voxel’s value represents the mini-
mum distance between the current position and the contour. By
this way, we can expend the 1-dimensional contour into 3-dimen-
sional space which makes the fast integral image based feature
extraction possible. In addition, the relations between the local con-
tours can be also maintained implicitly.

3.2. 3D Haar-like filter for contour-motion feature extraction

The success of Viola and Jones’ algorithm (Viola et al., 2003) lies
in that it uses the motion information between two consecutive
images. But when person is moving slowly, the motion pattern
between the two images is not obvious, thus the features from
two-frame difference are not so informative. In order to capture
the long-term motion patterns among multiple frames and record
the person’s appearance feature at the same time, we extract 3D
Haar-like features from a series of consecutive frames instead of
two frames. Similar volume filters has been used by Ke et al.
(2005) for visual event detection, but only filters S1, S2, D4 in
Fig. 4a, b and g and a sum filter are defined in their work. Our
experiments demonstrate that features D2 and D3 in Fig. 4e and f
 Volume Cascade Detector

lters

of our approach.



Fig. 5. Calculation of the space–time volume.
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Fig. 6. The first five weak classifiers (features) selected by Realboost.
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are more important for representing the motion pattern of the
pedestrians.

3D Haar-like features are extracted in a 3D distance transform
volume. They can be seen as the convolution results of the 3D
Haar-like filters and space–times volumes. The feature value is just
the difference value between the intensity sums of the dark and
bright regions. We develop seven types of 1-order 3D Haar-like fil-
ters to represent both the static and dynamic information. More
specifically, we use three filters to represent appearance features
which referred to as S1, S2 and S3, and four filters to represent mo-
tion features which referred to as D1, D2, D3 and D4. See Fig. 4 for
details. The cubic filters in Fig. 4a–c are the static features, which
have similar meanings as the 2D Haar-like filters used in (Viola
et al., 2003), the only difference is that these filters are calculated
along several consecutive frames. We use these filters to describe
the pedestrian’s appearance.

The filters D1–D4 in Fig. 4d–g are the dynamic features. They
are used to capture the different kinds of motion information in
the space–time domain.

Translation, is modeled by feature D1 and D2 in Fig. 4d and e.
More specifically, D1 is used to model the vertical movement of
a horizontal edge and D2 is used to model the horizontal move-
ment of a vertical edge. Take feature D2 for example, it computes
the difference between vertical diagonal pairs of cubic in temporal
dimension. So if a vertical edge moving horizontally, the response
of this filter should be large. This motion pattern is very common
for a moving human, such as waving legs and arms. Especially,
when we observe a pedestrian from a distance, this kind of period-
ical motion is very distinctive and helpful to identify the pedes-
trian. Intuitively, we expect this filter to be a powerful one. Our
experiments verify this point. Corresponding to D2, we use feature
D1 to represent vertical motions. This kind of motion may occur
when the pedestrian’s moving plain is not parallel to the camera’s
optical axis, such as most of the surveillance videos where the
cameras look down at the pedestrians.

Rotation, is modeled by feature D3 in Fig. 4f. By D3, we intend to
model rotation of an edge. If an edge rotate by 90�, the response of
this filter should be large. This kind of pattern may happen when
the pedestrians swing their arms and legs.

Appearance and disappearance, is modeled by feature D4 Fig. 4g.
We intend to use this feature to modeled the appearance and dis-
appearance of an edge. When the camera is static, this feature can
be used for removing the edges of the background, for which the
response of D4 should be small.

Integral image is a fast method to compute 2D Haar-like fea-
tures. This led to a real-time face detection system (Viola and
Jones, 2001) and human detection system (Viola et al., 2003). To
compute 3D Haar-like feature value efficiently, we also use the
idea of the integral image. The only difference is that we compute
integral image in 3-dimensional space, and we refer to it as integral
volume. The value of integral volume at location (x,y, t) is the sum
of the intensity of the voxels which location indices are less than
the current location. Specifically:

IVðx; y; tÞ ¼
X

x0<x;y0<y;t0<t

Dðx0; y0; t0Þ ð3Þ

where IV(x,y, t) is the integral volume and D(x,y, t) is the distance
transform volume. Using the integral volume, any cubic sum can
be computed in seven plus/minus operations. If we denote the ver-
texes of the volume as in Fig. 5, the sum of the volume can be cal-
culated as sum(V) = IV(H) � IV(D) � IV(F) � IV(G) + IV(B) + IV(C) +
IV(E) � IV(A), where sum(V) denote the sum of the voxels’ intensity
in the volume V. So the cubic filters in Fig. 4a, b and g need 14 oper-
ations, and the ones in Fig. 4c–e need 28 operations, and filter in
Fig. 4f needs 56 operations.
The computational complexity of calculating the 3D distance
transform volume and integral volume is O(m � n), where m is the
size of each frame and n is the number of frames. For each newly
observed image, we just make it the first frame of the space–time
volume and discard the oldest frame, and make the judgment on
the new image by the detection results of current space–time vol-
ume. By this way, both 3D distance transform and integral volume
can be calculated incrementally, the real computational complex-
ity is O(m). Only the starting stage’s computational complexity is
O(m � n). Therefore, the over all the feature extraction procedure
can be very fast. Our detector can scan 3–8 352 � 288 frames per
second on a PC with 3.0 GHz processing speed without any spe-
cially designed speedup routines.

3.3. Feature selection by Realboost

In our approach, the size of space–time volume of the pedes-
trian is 30 � 15 � 5. By convolving this volume with the 3D
Haar-like filters of different sizes and locations, we can obtain
about 50,000 features for each scan window. We use Realboost
to select the most discriminative features and build a cascade clas-
sifier as in (Viola et al., 2003). We present the first five weak clas-
sifiers (features) in Fig. 6. From Fig. 6 we can see that only the
fourth feature S3 is the static feature and all the other four features
are dynamic features. Take the first dynamic feature D2 in Fig. 6a,
for example. Since our negative training set contains both static
and dynamic backgrounds, D2 is selected by Realboost to discard
static backgrounds. By this single feature, more than 86% static
backgrounds can be discarded. Therefore, when detecting the
pedestrians from the video sequences that captured by the static
cameras, our method can be very efficient. From Fig. 6b and e,
we can see that the motion patterns of human legs are very impor-
tant cues for our detector to identify a pedestrian which is consis-
tent with human perception.

Our final cascade detector contains 20 stages and about 1000
weak classifiers (features). We also calculate the probability distri-
butions of these seven types of filters. The results can be seen in
Fig. 7, by which we can get an intuition on the importance of
different types of features. As we expected, the contribution of
the dynamic features is greater than the static features’. Especially
for feature D2, Fig. 7 demonstrates that it is very important for
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identifying the moving pedestrian. This result verifies our analysis
in Section 3.2, which is the periodical motion patterns of the arms
and legs are important cues for pedestrian detection. Quantitative
evaluation of the different contributions of static and dynamic fea-
tures can be fund in Section 4.

4. Experiments

In this section, we verify the effectiveness of our contour-mo-
tion feature by applying it to pedestrian detection and human
activity recognition. In both applications, we use Realboost to se-
lect the most representative features.

4.1. Pedestrian detection

The evaluation of our method for pedestrian detection contains
three parts: first, the quantitative analysis of the contributions of
static and dynamic features; second, the performance of our meth-
od under different frame rate; third, the comparison with other
baseline methods.

The frame rates of all the sequences in our experiments are
range from 24 to 30 fps. The CAVIAR (CAVIAR, 2004) database is
used as the benchmark database, all the positive training samples
(pedestrians) are collected from this database. The positive sam-
ples are cropped out from the sequences and resize into
30 � 15 � 5 space–time volumes (STV). Our experiments indicate
that longer temporal length (up to 10 frames) can yields better per-
Fig. 8. Some training and testing
formance. But for practical application, if we take more frames, the
adaptivity (reaction speed) of the detector will be sacrificed. So in
order to maintain a satisfiable performance and reaction speed, we
choose five frames as the length of our training samples. If the
frame rate of the video is quite different from 24 to 30 fps, this nor-
malization number may need to be adjusted.

The positive training set contains 20,000 such volumes. Some
selected positive samples can be seen in Fig. 8a. The negative train-
ing set contains 1500 clips selected from the surveillance video se-
quences, movies and our self-captured videos which contain no
human bodies. For a 20-stage cascade classifier, it will take 3–4
days for training.

In order to verify the detection accuracy and generalization
ability of the proposed method, we maintain two testing sets.
The testing set 1 is also from the CAVIAR database and contains
118 video clips; the testing set 2 is selected from our self-capture
video sequences and contains 761 video clips. The variation of
scenes in the testing set 2 is larger than the testing set 1, which
contain both indoor and out door scenes, varying lighting and com-
plex backgrounds. Some pedestrian samples from testing set 2 are
shown in Fig. 8b. The full frame images can be seen in the top row
of Fig. 13. During detection, the size of our scan window is also
30 � 15 � 5, the same as our training samples’. We resize the test
window by 1.2 (horizontally and vertically) for each scale, and
the slide step for both directions is 2 pixels for all the scales. In
addition, the detection results in the following section are the re-
sults of detection window merging.

In the first experiment, we build four cascade detectors to eval-
uate the contributions of static and dynamic features. For the first
one, all of the seven types of features in Fig. 4 are used, we refer to
this detector as combined feature detector (CMF). For the second
detector, we intend to evaluate the contribution of the dynamic
features, so only dynamic features D1–D4 in Fig. 4 are used. In
addition, we build two detectors to evaluate the static features,
and both of these detectors are using the static features S1–S3 in
Fig. 4. The difference between these two detector is that the one
using the combined spatial-temporal gradient (a = 0.5 in Eq. (1),
the same as above two detectors) and the other using the spatial
gradient only (a = 1.0 in Eq. (1)). The receiver operating character-
istic (ROC) curves of these four detectors on testing set 1 are pre-
sented in Fig. 9. The results reveal some observations: (1) the
combined feature detector can achieve the best performance; (2)
the dynamic features are more powerful than the static features
in describing the pedestrian and (3) the temporal gradient is also
helpful for improving performance, but the contribution is not as
large as dynamic features. This result verifies our former assump-
tion, the pedestrian is a space–time entity and both motion and
appearance information are important for robust pedestrian
detection.
samples for our experiments.
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Our second experiment is to evaluate the influence of the frame
rate on the proposed method. For most of the object detection
methods, in order to detect the same object of different scale, they
normally search all the scales exhaustively. Take face detection for
example, they just resize the image into every interested scale and
detect the faces. But for video based detection, we should take the
temporal dimension into consideration. A straightforward solution
is just checking all the combinations of spatial scales and temporal
scales. But it is not plausible for the applications where high detec-
tion speed is required. So it would be favorable if the detection
method can be robust, at least partially, to the variation in the tem-
poral dimension. In this experiment, we vary the sample steps of
the images in the STVs from 1 to 5. Then we use the STVs with sam-
ple step 2 to train the detector and use STVs of other sample step
for evaluation. The results are shown in Fig. 10, from which we can
see that the ROC curves of sample step 1–3 are very close. The per-
formances of step 4 and 5 drop slightly, but are still satisfiable.
These results indicate that the propose method is robust to small
variations of frame rate.

Based on the experimental results above, in practical applica-
tion, we handle spatial scale and temporal scale separately. The
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Fig. 10. The effect of different sample step.
spatial scales are covered by resizing the input frames during the
detection procedure and the spatial scales are covered by using
the training samples with different speed and frame rate.

In the third experiment, we manage to verify two critical issues
of the proposed method. Are the gradient-based features really
superior to the intensity based features for representing the pedes-
trian? Are the 3D Haar-like filters really effective for representing
both the static and dynamic information? These two issues are clo-
sely related to our former two assumptions. We select two baseline
approaches for comparison. In the first approach, we apply the 3D
Haar-like features directly on the voxels of the space–time volume.
This method is referred to as Intensity+3DHaar. Since the frame-
work and performance evaluation criteria of our approach are very
similar to Viola et al.’s well-known pedestrian detector (Viola et al.,
2003), we select their method as the second baseline approach and
refer to this method as Viola03. We refer to the proposed method
in this paper is as CMF+3DHaar.

The testing results on dataset 1 are presented in Fig. 11. From
these ROC curves, we can see all these three methods perform well.
CMF+3DHaar is slightly better than Viola03 and Intensity+3DHaar
when the false alarm rate is large than 0.4 � 10�5.

We further test these three approaches on testing set 2. The ROC
curves are presented in Fig. 12. The results of CMF+3DHaar are still
satisfiable. The Intensity+3DHaar’s performance is decreased. But
the results of Viola03 are somewhat surprising. Its performance
is deteriorated radically, even worse than Intensity+3DHaar. One
possible explanation is that the backgrounds of these testing
images are much complex than ones in the training sets, which
can be seen in Fig. 8b. Another possible reason is that Viola03 relies
on motion information between two consecutive images. But when
person is moving slowly and the background is cluttered, the mo-
tion pattern between the two images is not obvious, thus the fea-
tures from two frame difference are not so informative and
discriminative. In order to verify this assumption, we decrease
the number of frames used by the proposed method from five
frames to two frames, and present the evaluation results in the
Fig. 12 (referred to as CMF+3DHaar(n frame)). As we expected,
when decrease the number of frame to 2, the method will yield
comparable results as the Viola’s one. These experiments reveal
the following observations: (1) the long-term motion pattern is
more distinctive for describing the pedestrian and can increase
the generalization ability of the method and (2) the gradient-based
descriptors are more robust than intensity based ones for repre-
senting the appearance of pedestrians.
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Fig. 11. Evaluation results on testing set 1.
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Fig. 13. Some detection re
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We also present some detection results in Fig. 13. The top two
images are selected from our self-captured sequence; and the bot-
tom two images are selected from PETS06 (PETS06, 2006) dataset.
In these experiments, the complex background (the top left image),
the illumination conditions (the top two images) and the viewing
directions (the bottom two images) are quite different from the
training samples. Our approach can still achieve satisfiable detec-
tion results. The false detection window in the top-right image
(the third detected window from left to right) is mainly because
of our unpolished window fusion method. Here, we just combine
the seriously overlapped windows into a single one; this simple
strategy will not work well when two pedestrians are close to each
other. Bayesian inference based window fusion strategy may pro-
vide better result.

4.2. Human activity recognition

We put forward our method into human activity recognition.
The benchmark data set used in this experiment is the same as
Schuldt et al. (2004). This dataset contains six types of human ac-
tions (walking, jogging, running, boxing, hand waving and hand
sults of our approach.

an activity analysis.



Table 1
The confusion matrix of the proposed method with the trace 463.1

Ours Tr = 463.1 Walk Jog Run Box Clap Wave

Walk 80.1 11.3 6.1 0.8 0.6 1.1
Jog 10.6 63.7 22.4 0.7 1.8 0.8
Run 4.6 14.1 77.6 2.1 1.2 0.5
Box 1.3 1.8 2.1 87.4 6.1 1.3
Clap 0.6 0.3 5.6 15.1 75.6 2.8
Wave 2.7 2.6 0.9 7.3 7.8 78.7

Table 2
The confusion matrix of the Keyan’s method with the trace 377.8

YanKe Tr = 377.8 Walk Jog Run Box Clap Wave

Walk 80.6 11.1 8.3 0 0 0
Jog 30.6 36.1 33.3 0 0 0
Run 2.8 25 44.4 0 27.8 0
Box 0 2.8 11.1 69.4 11.1 5.6
Clap 0 0 5.6 36.1 55.6 2.8
Wave 0 5.6 0 2.8 0 91.7

Table 3
The confusion matrix of the Schuldt’s method with the trace 430.3

Schuldt Tr = 430.3 Walk Jog Run Box Clap Wave

Walk 83.8 16.2 0 0 0 0
Jog 22.9 60.4 16.7 0 0 0
Run 6.3 38.9 54.9 0 0 0
Box 0.7 0 0 97.9 0.7 0.7
Clap 1.4 0 0 35.4 59.7 3.5
Wave 0.7 0 0 20.8 4.9 73.6
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clapping) performed several times by 25 subjects in four different
scenarios. The size of STV is 30 � 30 � 15, and some samples can
be seen in Fig. 14. The average number of STVs for each action is
about 16,000 (with vertical flip).

Our experimental setting is the same as Schuldt et al. (2004),
and we also use eight persons’ actions for training, eight persons’
for validation and nine persons’ for testing. We build a 1-to-rest
cascade classifier for each action, then use the validation set to
determined the best threshold. We compare our method against
(Schuldt et al., 2004; Ke et al., 2005). The confusion matrices of
these three methods are presented in Tables 1–3. The trace of
the confusion matrix is the measure of classification accuracy, big-
ger trace indicate better classification performance. The trace of
the proposed method is 463.1, which outperform the Keyan’s
method with the trace 377.8 and Schuldt’s method with trace
430.3.

5. Conclusion and further focus

In this paper, we present a segmentation-free pedestrian detec-
tion approach in space–time domain. The camera can be either sta-
tic or dynamic. Our two basic assumptions are: the combination of
appearance and motion information can yield better results for pe-
destrian detection; the gradient-based descriptor can be more ro-
bust in representing the highly articulated human body. Based on
these two assumptions, we represent the pedestrians in 3D dis-
tance transform volume and extract its contour-motion features
by 3D Haar like filters. Experiments show that our contour-motion
feature has remarkable generalization ability. Further, our space–
time analysis method has been easily extended to human action
recognition application and satisfiable performance have been
achieved. This further verifies that our contour-motion feature
can capture the appearance and motion feature simultaneously,
which is a basic property of human activities.
There are two aspects should be addressed in our future work.
First, our current detector is a full body detector and is not robust
enough to the occlusion problem. One possible solution is to ex-
tend the current method into a multiple-part detector and using
Bayesian inference to fuse the detection results. Second, we only
use amplitude of the gradient. Many research results indicate that
the orientation of the gradient can provides very useful informa-
tion for complex object recognition. So we will focus on exploiting
the efficient gradient orientation based pedestrian detection ap-
proach in space–time domain in our future work.
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