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ABSTRACT
Pedestrian detection in still image should handle the large
appearance and pose variations arising from the articulated
structure and various clothing of human bodies as well as
view points. So it is difficult to design effective classifier for
this problem. In this paper, we address these variations in
detection via multiple instance learning, specifically logistic
multiple instance boosting (LMIB). In LMIB, a example is
represented as a set of instances, which implicitly encode the
variations. Giving different confidence to the instances in a
bag, the LMIB will automatically reduce the influence of the
variations at training stage. To obtain rapid detection speed,
the LMIBs are grouped into the cascaded structure. The pro-
posed detection algorithm is tested on MIT and INRIA hu-
man datasets where promising detection results are compara-
ble with the baseline algorithms.

Index Terms— pedestrian detection, multiple instance
learning, boosting, object detection, machine learning

1. INTRODUCTION

When machine learning is used for object detection, the posi-
tive examples should be well normalized for training. For in-
stance, the face examples illustrated in Fig. 1(a) are approx-
imately aligned according to eyes in face detection. How-
ever, in pedestrian detection, the effective normalization is
ill-posed. Compared with the face examples, pedestrian ex-
amples have the large appearance and pose variations which
are caused by the articulated structure and variable clothing of
human bodies. Some examples shown in Fig. 1(b) describe
the problem. Moreover, the test sets have also large discrep-
ancy with training examples (Compared with Fig. 1(a), some
detection results in Fig. 7 partly illustrate the discrepancy).
Pedestrian detection is considered among the hardest exam-
ples of object detection problems [1].
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(a) (b)

Fig. 1. Training samples for different object detection. (a)
the aligned frontal faces have little appearance and pose vari-
ations; and (b) the pedestrians have large variations, although
the samples are already aligned according to shoulders.

Several existing publications have been aware of the ap-
pearance and pose variations, and handle it by“divide and
conquer” [7, 10, 11]. In [10], body parts are represented by
co-occurrences of local orientation features, and detectors are
trained separately for each part using Adaboost. Human loca-
tion is determined by maximizing the joint likelihood of part
occurrences according to the geometric relation. In [11], local
appearance feature and their geometric relation are combined
with global cues by segmentation based on per pixel likeli-
hoods. However, “divide and conquer” approaches have two
drawbacks. First, different detectors have to be applied to
the same image patch. This will reduce the detection speed.
Second, labeling and aligning the local parts are tedious and
time-costing work.
Inspired by face detection [2], we handle the variations by

explicitly acknowledging that the object detection is a Multi-
ple Instance Learning (MIL) [8, 3] problem. In MIL, train-
ing examples are not singletons; instead, they come in “bag”,
where all of the instances in a bag share a single label. A posi-
tive bag means that at least one instance in the bag is positive,
while a negative bag means that all instances in the bag are
negative. Intuitively objects are located in some region of the
image, but the exact position of object is not known. There-
fore, the training object can be represented as a bag having a
set of instances, and the “well” aligned instances are expected
to be located by MIL to train a bag-level classifier.
In pedestrian detection setting, A pedestrian example is
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represented as a bag of instances, which do not need to be well
normalized, but to be a set of instances with large variations
between each other. In training stage, MIL learner can au-
tomatically give high confidence to “well” aligned instances,
and train a bag-level classifier. During detection, if one of
the instances occurs, the pedestrian is located. The seemingly
most similar work to ours is [2]. In [2], multiple instance
learning, noise-OR boosting is used for face detection in tele-
confencing setting. Here, we introduce the MIL into a more
challengeable problem: pedestrian detection. The main con-
tributions of this paper are two folds:

• Multiple instance learning is first introduced into
pedestrian detection for handling the large varia-
tions between training examples (alignment prob-
lem). Specifically, logistic multiple instance boosting
(LMIB) [3] is exploited to learn the non-aligned pattern
of pedestrian.

• Considering the pedestrian detection problem, a method
to generate individual instances is proposed.

Experimental results show that by learning with MIL frame-
work, the detector significantly outperforms Adaboost [5]
with strong discriminative histogram of oriented gradients
(HOG) feature [4], and slightly outperforms the kernel Sup-
port Vector Machine(SVM) [4] with HOG feature.

2. LOGISTIC MULTIPLE INSTANCE BOOSTING

In detection, the appearance and pose variations are repre-
sented within each instances and within the uncertain instance
labels in multiple instance learning. For pedestrian detec-
tion, most person are standing stance. Therefore, we propose
one method to generate the instances: the instance window is
shifted around the body. The created instances can take ad-
vantage of all information of the “omega shape” of heads and
the rectangle shape of bodies in Fig. 2(a). During training,
“well” aligned instances is automatically given higher bag-
level class confidence.
Compared with supervised learning, an instance xij is in-

dexed with two indices: i which indexes the bag, and j which
indexes the instance within the bag. Here, we assume that
all instances contribute equally and independently to a bag’s
class label. Given a bag xi, the probability of the bag-level
class label yi is given by

p(yi|xi) =
1

ni

ni∑
j=1

p(yij |xij) (1)

where ni is the number of instances in the i-th bag. yij is the
instance-level class label. The instance-level class probability
is given as p(y|x) = 1/(1+eβx), where β is the parameter to
be estimated. Controlling β value gives different instance-
level probability, which contributes different confidence to

Algorithnm. 1 Logistic Multiple Instance Boosting
1: Initialize weight of each bagWi = 1/N, i = 1, 2, . . . , N .
2: form = 1 toM do
3: Set instance weights wij ←Wi/ni, and find an instance-l-

evel weak classifier fm which minimizes Eq. (4).
4: Calculate the i-th bag’s εi.
5: If εi < 0.5 for all i, go to 8.
6: Compute cm = argmin

�
j
Wje

((2εi−1)cm).
If cm ≤ 0, go to 8.

7: Update weightWj ←Wje
((2εi−1)cm)

8: end for
9: returnH = sign

��
j

�
m

cmfm(xj)
�

bag-level probability. Ideally, “well” aligned instances should
be given higher probability than the non-aligned. Based on
Eq. (1), the parameter β can be estimated by maximizing the
bag-level binomial log-likelihood function

L =

N∑
i

[ylogp(y = 1|x) + (1 − y)logp(y = 0|x)] (2)

Eq. (2) can not be solved analytically. Xu el al [3] propose
an boosting method to maximize the log-likelihood function.
Given a collection of N i.i.d bags x1, . . . ,xN and every bag
xi having xi1, . . . , xij instances, we need to learn a bag-level
function F(x) =

∑
m cmfm(x), m = 1, . . . , M and the cor-

responding strong classifier H = sign(F(x)). The parame-
ters c1, . . . , cM ∈ R, and the f is the bag-level weak hypoth-
esis. The empirical loss

E[I(F(x) �= y)] = −
1

N

N∑
i=1

yiF(xi) (3)

where I(·) is the indicator function. We interest in wrap-
per the bag-level weak hypothesis f using the instance-level
weak hypothesis f . Combining Eq. (1), Eq. (3) is converted
into the instance-level’s exponential loss ExEy|x[e−yf ] as
e−yf ≥ I(H(x) �= y), ∀M . One searches for the optimal
updating cmfm to minimize

ExEy|x

[
e−yjFm−1(xij)−cmyjfm(xij)

]
=

∑
i

wie
[(2εi−1)cm]

(4)
where error εi =

∑
j 1fm(xij) �=yi

/ni. The εi indicates the
discrepancy between the bag label and instance label.
The result of the LMIB is not only a bag-level classifier,

but also a set of the instance-level classifier. The instances
in positive bags with higher scores f(xij) give higher con-
fidence to the bag’s label, even there are some negative in-
stances (to detection, non-aligned examples) occurring in pos-
itive bags. Therefore, the final classifier decides these bags as
positive. The discrepancy in training bags will be automati-
cally reduced. The LMIB is summarized in Algorithm. 1.
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(a) A positive bag (b) 5 type rectangle feature

Fig. 2. Some instances in one positive bag and 5 type feature.

3. PEDESTRIAN DETECTION

To achieve the fast detection speed, we adopt the cascade
structure of detector [9] shown in Fig. 3. Each level is de-
signed to achieve high detection rate and modest false positive
rate. Let Npi and Nni be the number of positive and nega-
tive training examples at i stage. Considering the influence of
asymmetric training data on the classifier and computer RAM
limitations, we constrain Npi and Nni to be approximately
equal.
Assuming that we are training the k-th stage, we classify

all the possible detection windows on the negative training
images with the cascade of the previous (k− 1) LMIB classi-
fier. The examples which are misclassified form the possible
negative training set. The positive training examples do not
change during bootstrap.
According to “There is no free lunch” theorem, it is very

important to choose suitable number of the instances for train-
ing and detection. The more instances in a bag will reduce
more variations and improve the detection accuracy, but de-
crease the training and detection speed. We experimentally
set 5 instances for training and 3 instances for detection.
To test the power of the LMIB, efficient descriptor HOG is

not taken into the detection framework. On the contrary, five
type weak discriminative Haar rectangle feature [9] is used as
descriptor in Fig. 2(b). During training, 3617 weak feature
are designed for each instance normalized as 128 × 64 pixel.
We build the 30 stage cascade detector. Each level of cascade
classifier is optimized to correctly detect at least 95% of the
positive bags, while reject at least 50% of the negative bags.
Here 99.9% hit rate is not adopted for two reasons: (1) the
rectangle feature are too weak discriminative to obtain better
classification ability; (2) some bags is hard to be classified
correctly at the cost of higher false positive rate.

4. EXPERIMENTAL RESULTS

We evaluate our algorithm by experimenting on two different
datasets. One is the MIT pedestrian datasets [7, 6], a com-
monly used database for evaluation of pedestrian systems.
Another is INRIA dataset [4]. Note that MIT dataset only
has the upright, frontal and back viewpoint pedestrian images.
This set only contains 923 pedestrian examples and does not
contain a negative set. The positive samples are also not sepa-
rated into training and testing set. We use 600 of them as posi-
tive training set and the left for testing, and negative examples
supplied in INRIA dataset are used as negative training set. In

Fig. 3. The cascade of LMIB detector. The k-th classifier
selects the Haar rectangle feature (blue region represents it).

Fig. 4, we plot the detection error tradeoff curves on a log-
log scale [4] as evaluation criterion. The y-axis corresponds
to the miss rate, and the x-axis corresponds to false positives
per window (FPPW). The curve for our method is generated
by adding one cascade level at a time. As illustrated in Fig. 4,
our approach achieves near zero false negative results.

Fig. 4. Comparative results on MIT dataset.

We perform the comparative experiments on another more
challenging dataset, the INRIA dataset [4]. The database con-
tains 1239 pedestrian images (2478with their left-right reflec-
tions) and 1218 person-free images for training. In the test set,
there are 566 images containing pedestrian. In Fig. 5, we per-
form the same separation of training-testing sets to directly
compare the results [4, 5, 9]. Note that motion patterns in
[9] are ignored for still image, and we consider both the ker-
nel and linear SVM method of [4]. L2-norm in HOG feature,
the best performance, is only considered. Our method signif-
icantly improves the classification ability of rectangle feature
[9]. Although the weak discriminative rectangle feature is uti-
lized, our method achieves better results than Zhu et al [5].
Multiple instance boosting can handle more variations and
brings more discriminative ability for detector than Adaboost.
The detection results can be compared with the kernel SVM.
If we consider the 10−4 as an acceptable FPPW, our miss
rate is 9.4%, while the kernel SVM is 9.3%. However, kernel
SVM is significantly computationally expensive. Compared
with our work, [4, 1] all focus on developing stronger fea-
ture, while our work focuses on the classifier. These are two
complementary directions.
We scan the image at 0.8 scale and 2 pixel step. In Fig. 6,
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Fig. 5. Comparative results on INRIA dataset. The curves for
approach [4, 5] are generated from the respective papers.

Fig. 6. the accumulated rejection rate over the cascade level.

we plot the accumulated rejection rate over the cascade lev-
els. The first five levels reject 90% of the negative windows
(without pedestrian). A total of 620 weak classifiers are used
in 30 cascade levels. On average our method requires to eval-
uate 55.07 rectangle features per negative detection windows.
Scanning a 320× 240 image needs average 100 ms under PC
with 2.8 GHz CPU and 512 RAM, while 250ms for 320×240
image is reported in Zhu et al [5].
In Fig. 7, several detection results are shown for different

scenes with human having variable illumination, appearance
and stance. Although there are still few false positive, strong
discriminative descriptors will reduce more false positive.

5. CONCLUSION AND DISCUSSIONS

We present a new approach to solve the large appearance and
pose variations in pedestrian detection utilizing multiple in-
stance learning, specifically LMIB. The training examples do
not need to be well aligned, but to be represented as a set of
instances. During training, the variations are automatically
reduced with multiple instance learning. For detection, the
LMIBs are builded into cascade detector to achieve rapid de-
tection speed. The promising performance is shown on IN-
RIA and MIT datasets.
Although we show that multiple instance learning has

achieved good performance, weighted average instance label

Fig. 7. Some detection results on INRIA dataset. Note that
significantly overlapping detection windows are averaged into
a single window.

may be unsuitable for detection, when only one instance is
used for detection. Better method to model the bag label can
enhance the power of multiple instance learning. In future,
strong discriminative feature, such as, HOG will be exploited
to reduce the number of average features per negative detec-
tion window and to reduce false positive.
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