Recovering 3D Facial Shape via Coupled 2D/3D Space Learning
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Abstract

This paper presents a method for recovering 3D facial
shape from single image via learning the relationship be-
tween the 2D intensity images and the 3D facial shapes.
With a coupled training set, the intensity images and their
corresponding facial shapes make up two vector spaces
respectively. But only the correlated components in both
spaces are useful for inference, so there must be embedded
hidden subspaces in each space which preserve the inter-
space correlation information. Thus by learning the projec-
tion onto hidden subspaces based on Maximum Correlation
Criteria and optimizing the linear transform between the
hidden spaces, 3D facial shape is inferred from the inten-
sity image. The effectiveness of the method is demonstrated
on both synthesized and real world data.

1. Introduction

Shape recovery is a classic problem in computer vision.
A popular approach to solve this problem using single im-
age is shape-from-shading (SFS), which is usually with the
assumption of Lambertian reflectance and a single point
light source at infinity [1]. Unfortunately, for recovering
facial shape from real world images, SFS has proved inef-
fective. Because the information in a single image is inad-
equate for recovering accurate facial shape. For this rea-
son, approaches using multiple images such as photometric
stereo [2] perform much better than SFS.

To tackle this problem, real facial shapes obtained from
laser scanner are used as prior knowledge for facial shape
recovery. Kemelmacher and Basri [3] used only one ref-
erence 3D facial shape as constraints in SFS framework.
Their method is simple and effective, but the accuracy of
the recovered facial shapes is dependent on the selection of
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the reference shape. Hassner and Basri [4] propose a similar
example based approach using more facial shapes. They di-
vide faces into shape-appearance patch pairs. Facial shapes
are synthesized from the most referenced patch pairs. Be-
sides the example based approaches, more methods build
statistical model on facial shapes [5, 6, 7, 8, 9, 10] . Atick
et al.[5] first used statistical 3D face model to enhance SFS.
Under classical SFS framework, facial shapes are recovered
from a set of eigenheads derived from principle component
analysis. Dovgard and Basri [6] propose a statistical sym-
metric SFS approach that applied the statistical SFS frame-
work of Atick et al. on the self-ratio image developed by
Zhao and Chellappa [11]. The self-ratio image has two mer-
its. First, it preserves the symmetry of human faces. Sec-
ondly, it is an albedo free formulation of shape and inten-
sity. However human faces are not strictly symmetric ob-
jects, asymmetry of human faces results in errors in recov-
ered shapes. Smith and Hancock [7] propose a statistic SFS
approach that represents facial shape in surface normal do-
main. Surface normal directions are transformed into Carte-
sian points using azimuthal equidistant projection. Princi-
ple component analysis is applied to construct a statistical
model of surface normal, and then this model is embedded
in their SFS framework. Recently, they developed a new
statistical model of surface normal using principle geodesic
analysis. With a robust statistic model, this deformable
model can be fitted to facial images with self-shadowing
[8]. Different from the above approaches that use simple
single point light source, Zhang et al. [9] combined sta-
tistical 3D shape model with the spherical harmonic illu-
mination model [12]. With this illumination model, facial
shape can be reconstructed under unknown lighting condi-
tion. In the facial shape reconstruction literature, the 3D
morphable model (3DMM) proposed by Blanz and Vetter
[10] is considered state-of-the-art. Statistical models are
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Figure 1. Framework of coupled 2D/3D space learning.

built for shape and texture separately. With a complex opti-
mization process, facial shape and texture can be recovered
across pose and illumination variations.

One commonality of the above-mentioned approaches is
that they either use a single statistical model of facial shapes
or two separate statistical models for shapes and appear-
ances. In the training set they used, each facial shape can be
coupled with a 2D appearance image. However, this useful
information is ignored in these approaches. Recently re-
searchers begin to realize this problem. To make use of the
coupling information, Casteln et al. [13] proposed a cou-
pled statistical model for facial shape recovery. The main
idea of this coupled model is coefficients sharing. In the
linear subspace an intensity image can be represented as a
linear combination of images in the training set. For each
intensity image has a corresponding 3D shape in the train-
ing set, the facial shape can be recovered using the same
combination coefficients and replacing the intensity images
by corresponding 3D shapes. However, the best fit coeffi-
cients in the intensity space are not necessarily the best fit
coefficients in the shape space. To solve this problem, they
performed similar coupled statistical model on the coeffi-
cients obtained from the original coupled model [14]. This
approach is similar to the active appearance model proposed
by Cootes et al. [15]. But in the active appearance model
both the 2D shape and appearance to be fitted are known,
while for facial shape recovery only the intensity image is
known. The problem of coefficients mismatch still exists.

This paper aims at exploring the statistical relationship
between 2D face appearance and 3D facial shape. We be-
lieve that in the appearance space and shape space only the
components correlated to the other space are useful for in-
ference. This explains why the best fit appearance coef-
ficients different from the best fit shape coefficients. Dis-
criminating the correlative components from independent
components can improve the inference from appearance to

shape. Based on similar observation on images of differ-
ent resolution, Lin and Tang [16] proposed a coupled space
learning framework for 2D face hallucination. We bor-
row this framework to explore the statistical correlations
between 2D intensity appearance and 3D shapes of faces.
With a set of coupled intensity images and facial shapes,
two subspaces are constructed respectively. Assuming that
the correlative components make up a hidden subspace,
we learn the projections onto the hidden subspace. Then
3D facial shape can be recovered by projecting the inten-
sity image to the shape space via the hidden subspace that
maximizes the correlations between appearance and shape
spaces.

The remaining part of this paper is organized as fol-
lows.In Section 2, we describe the coupled 2D/3D space
learning framework in detail. Section 3 shows experimental
results of facial shape recovery. Finally, we draw conclu-
sions in Section 4.

2. 3D Facial Shape Recovery via Coupled
2D/3D Space Learning

In this section, we describe the coupled statistical model
on 3D facial shapes and 2D appearances and how it can be
used for facial shape recovery.

2.1. Framework of Coupling 2D Appearance Space
and 3D Facial Shape Space

Given a 2D intensity facial image, our aim is to re-
cover its surface height based on a coupled training set.
Let {(X, S)} be the training set, which is composed of the
vectorized intensity images and their corresponding surface
height of the same faces. Here, X ={x1,z2,25...2,}
denotes the intensity face image set composed of n sub-
jects, and S ={s1, s2, 83 ...y} is their corresponding fa-
cial shapes represented as surface height. And we denote



the dimensions of the image and shape spaces as d,, and d
respectively. Based the observation that in one space only
the components correlated to the other space contribute to
inference, it is reasonable to assume that there is an intrinsic
hidden space reflecting the inter-space correlations and the
intensity and shape spaces are some transformed versions
of the hidden space. Denote the hidden space as H and the
vectors in hidden space as h, the transforms from hidden
spaces to observed spaces as T’y and Ts.

xr=T.h+m; , s=Tsh+my (D

Here, m, denotes the mean vector of intensity vectors
x and ms denotes the mean vector of the facial height s.
Assume the dimension of the hidden subspace is d, then the
dimension of matrix T'x is d, X d and the dimension of
matrix Ts is ds X d. For analysis the composition of T'x
and T, perform singular value decomposition on T’x and
Ts, we have

Tx =UxDxVE | Ts=UsDgVE )
Here, the dimension of Uy is d, x d , and the dimension

of Ug is dg x d, while Dx, Dy, Vx, Vy are all d x d
matrices. Considering equation (1), we have

UL(z —my) = DxVER
Ul(s—my) = DsVIh

For right part of the equation, projecting d x d matrix
Dx and Vx on d dimension vector h, the dimension of
the final vector is still d. So, the right part of this equation
can be considered as a rotated and scaled version of h. For
the whole equation, it means that using matrix Ux vector
r — my can be projected to a subspace, which is the rotated
and scaled version of the hidden subspace H. Lets denote
this embedded subspace as U. Applying similar analysis to
s, we can get a similar embedded subspace denoted as V.
Then we have two d dimensional embedded subspaces as-
sociated with X and S respectively. To emphasize the pro-
jection role of Ux and Ug, we denote them as Px and Ps.
Consider that d,, and ds; may be different, directly solving
the transform between two spaces is difficult and unstable.
To avoid this problem, we add d X d matrix A and B as
transform between U and V. Then the whole framework of
Coupled Space Learning can be illustrated as Figure 1, and
the transformation between appearance and shapes can be
described as the following equations.

3)

s —mg = PsAPE(x —my,)
r —mg = PxBPL (s —m,)

Under this framework, the problem left is how to deter-
mine Py, Pg, A and B. In the rest part of section 2 we
describe the solutions in detail.

“4)

2.2. Maximize Correlations between Shapes and
Appearances

Statistical dependency between shape space and appear-
ance space is the foundation for inferring shape from inten-
sity image. For two linear subspaces under Gaussian dis-
tribution assumption, statistical dependency is equivalent to
correlation. In the coupled 2D/3D space model illustrated
in Figure 1, there are two linear subspaces. Each subspace
can be decomposed into two embedded subspaces. One is
corresponding to the correlated variations, while the other
is corresponding to the independent variations. Only the
former is useful for inference. As described in section 2.1,
using Px and Pgs a vector can be projected to a rotated and
scaled version of this ideal embedded subspace. The closer
the projected space to the ideal space, the better inference
we can get. In another word, the projection Py and Ps we
pursue are those can maximum the correlation between U
and V.

Denote the vectors in the projected hidden space as U
and V as {uy,us,us ... u,} and {vy, vy, v3 ... v, } respec-
tively. They can be computed as follows

T T
u; = Px(x; —myg) , v, = Pg(s;i —ms) 5)

Under the assumption of Gaussian distribution, z ~
N(mg,C;) and s ~ N(ms, Cs). For a pair of vectors u;
and v;, their correlation can be measured in terms of covari-
ance as

E[(PE(x; — my))(PE (s; —my))T] = PYCusPs  (6)

Here, C.s = E[(x; — m,)(s; — ms)T] is the covariance
matrix between x; and s; .

Unfortunately the value of C,; may be negative. It is not
a symmetric semidefinite matrix. However it is the magni-
tude not the sign of the value represents the intensity of the
correlation. For mathematical convenience, we can use the
square of covariance as Correlation Intensity:

CI(Px, Ps) = (P£C.sPs)? (7)

For hidden subspace U and V/, the total correlation in-
tensity can be derived as

CI(Px, Ps) = tr((P% Cys Ps)(P% Cys Ps)T)
= tr(PYCysPsPECs: Px)  (8)
= tT(PngxPXP};stPS)

For the given training set { X, S}, the total covariance
matrix can be computed as C,s = %X ST and C,, =

1oyT v —
=SX* . Here, X = [x1 — My, To — My, T3 — My ... Ty —



M) and S = [s1 —ms, S2 — Mg, Sp — Mg, . .. S, — M) are
the mean offset sample matrix.

Based on the above analysis, and deriving Maximum
Correlation Criteria, the Px and Ps we pursue can be

described as
(Px,Ps):aI‘g max CI(Px,PS) (9)
Px,Ps
Here,

CI(Px, Ps) = tr(PE X ST PsPYSXT Px) (10)

= tr(PYSXT Px PEX ST Ps)

2.3. Implementation Algorithm for 3D Facial Shape
Recovery

Note that for equation (9) we have two unknown varia-
tions to be solved. Directly solving the objective function
can not offer result for both Px and Ps. Hence, an iterative
framework is used. Using Pg to solve Px and using Py
to solve Pg, repeat the process iteratively, then final solu-
tion can be obtained. The detailed procedure is described in
Table 1:

1. Initialize P)((0 ) and Péo)to be identity matrices.
2. Iterate the following steps, at the t-th step:
) _ v orpt—1) pt-DT &%T
(a) Compute Sy’ = XS Py ' Pq SX
(b) Update P by P} = arg maxp, Px s pT
(c) Compute 54 = §XTpY pOT X 3T
(d) Update Ps by P% = arg maxp, PSSg)PST
(e) Compute the correlation intensity CT() by
equation (10)
3. Stop when CT®) — CTt=1) < ¢,

Table 1. Algorithm for solving Px and Pgs

Here, Sx and Sg are positive semidefinite matrixes. For
step (b) and (d), Px and Ps can be solved by performing
eigenvalue decomposition on Sy and Sg, by using the d
eigenvectors associated with largest eigenvalues as the col-
umn vectors of Px and Pg respectively.

When Px and Pg are determined, we can use them to
solve A and B. First, we use Py and Ps to project vec-
tors in space X and .S into the hidden subspace U and V
according to equation (5). As illustrated in Figure 1, trans-
forms between spaces U and V' are bidirectional. This re-
flects the essence of coupling. It means that there is a bal-
ance between transform A and B, they should not be opti-
mized separately. Transform accuracy should be measured
not only for a single transform, but also for the backward
transform. Based on this rationale, augmented matrixes are

used to perform the negotiation between A and B. With an
iterative framework similar to that solving for Px and Pk,
the algorithm is described as:

1. Initialize A and B by linear regression:
A = argming ||V — AU||% = (VUT)(UUT) !
B = argming ||U — BV||Z = (UVT)(VVT)~!
2. Repeating the following steps:
(a) Compute the augmented matrix using B(*~1):
Usug = [U, BEDV], Vg = [V, V]
(b) Update A by A®) = argminy ||Vaug — AUgugl|%
(c) Compute the augmented matrix using A®:
Vaug = [V, AVU), Upuy = [U, U]
(d) Update B by B®) = argminp Uaug — BVaug|%
3. Stop when |[|[A®) — AC=D||and ||B® — BE¢=1)|| are
bellow some specified threshold.

Table 2. Algorithm for solving A and B

The whole procedure of coupled 2D/3D space learning
can be summarized as two steps. First, based on the coupled
training set, optimize projections Py and Ps by maximiz-
ing the correlations intensity. After that, project the training
set into the hidden subspaces using Py and Pgs, then opti-
mize the transform A and B between the hidden subspaces.

When Py, Pg, A, and B are all determined, facial shape
can be recovered from input intensity image according to
equation (4).

3. Experiments

In this section we give experiments of facial shape recov-
ery on both synthesized data and real world data. For train-
ing the coupled statistical model, we use the USF Human-
ID 3D face database [17] .This database contains shapes and
textures of 138 human heads. The facial shapes are obtained
from laser scanner. Each shape is associated with intensity
texture of the same person. We use 100 heads for training
the coupled statistical model, while the rest 38 heads are
used for testing.

The facial shapes and the textures that originally repre-
sented in cylindrical coordinates in the database are con-
verted to Cartesian grid of resolution 90x 120 in frontal
view. The facial shapes are represented as surface heights.
The intensity images for training are synthesized using the
textures and surface heights with frontal point light (0, O,
1). To remove the influence of hair, the surface heights and
intensity images are normalized by a facial region mask.

Figure 2 shows some results of facial shape recovery on
the USF database using the remaining 38 heads. From left
to right, the first and fifth column in Figure 2 are original
intensity images with facial region mask. In the second and



sixth column, facial shapes recovered via coupled 2D/3D
space learning are shown, while their corresponding ground
truths are given in the third and seventh column. The recov-
ered facial shapes and the ground truths are illuminated with
frontal point light. Finally, error maps of height difference
between recovered shapes and ground truths are given in the
fourth and eighth column. To analysis the shape recovery
accuracy, we compute the average height difference error
as ||recovered_sur face— ground_truth||/ground_truth.
For the 38 heads the total average reconstruction error is
2.09%.

Figure 2. Example results of facial shape recovery on USF
database

Besides the synthesized data, we also do experiments on
the real world images. We use the same coupled statisti-
cal model obtained by training the 100 heads in the USF
datasets. The images for testing are selected from the Ex-
tended Yale Face database B [2, 18] and CMU PIE database
[19]. Images in the YaleB database are captured under dif-
ferent illumination conditions with pose variations. We se-
lect the images in frontal pose illuminated by a point light
source of zero degree azimuth and zero degree elevation.
The facial shape recovery results on YaleB are shown in
Figure 3. From left to right, in the first two columns are
input intensity images and the recovered facial shape. The
rest four columns show the rendered faces using recovered
shapes and their corresponding actual images under similar
view points.

Similar experiments are performed on PIE database. We
use images captured by camera c27 with frontal illumina-
tion for testing. Some results are shown in Figure 4. From
left to right, first two columns are normalized input images
and recovered facial shapes with frontal light. The rest four
columns are rendered faces and their corresponding actual
images viewed from camera c02 and c05.

The experimental results on both synthesized and real
world data shows that facial shape can be recovered by pro-
jecting the intensity image to the shape space via the cou-
pled hidden subspaces that maximize the correlations be-

tween intensity images and 3D facial shapes. The statistical
dependency between 2D appearance and 3D shapes is well
represented by the coupled space learning framework.

Figure 3. Example results of facial shape recovery on YaleB
database

Figure 4. Example results of facial shape recovery on PIE database

4. Conclusion and Discussions

In this paper we explored the relationship between 2D
appearance and 3D shapes by using a coupled 2D/3D space
learning framework. 3D facial shape can be inferred from
intensity image using the coupled model that maximizes the
inter-space correlations. The experimental result shows that
this framework can well represent the statistical dependency
between intensity images and facial shapes.



One of the merits of this approach is that it needs no
albedo information. For a single intensity image, the albedo
and the shape are both unknown, which is a difficult obsta-
cle for the shape recovery methods based on physical illu-
mination models. The main drawback of the proposed ap-
proach is its sensitivity to illumination variations. It requires
that the illumination condition of the training set should be
similar to the test images. Recent study has proved that illu-
mination variations of face images can be approximated by
a linear combination of several images under different illu-
mination conditions [2, 12]. The problem of illumination
variations can be overcome by extending the training set
with some lighting changes. So it is reasonable to extend
this method to illumination variations in the future work.
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