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ABSTRACT 

This work aims at developing a scalable vision-based 
location recognition system where the backend database can 
be updated incrementally. Our proposed framework enables 
incremental indexing of vocabulary tree model, which 
efficiently includes new data into model refinement without 
re-generating entire model from overall dataset. An adaption 
trigger criterion is presented to lessen system computational 
cost, which is achieved by density-based relative entropy 
estimation between original dataset and newly coming data. 
Experiments on Seattle urban scene datasets with over 20K
street-side images show the effectiveness of our work. 

  Index Terms—scene retrieval, location recognition, 
vocabulary tree, incremental indexing, data similarity

1. INTRODUCTION 
Coming with the popularization of mobile devices, the 
success in patch-based image retrieval [5] facilitates vision-
based location recognition in recent years [1-4, 8]. Generally 
speaking, given a scene dataset in which each scene contains 
multiple images and is associated with a GPS location: In 
server-end computer, images are offline indexed beforehand 
using patch-based scene recognition model [1]. In user-end 
client, user takes a photo of his surroundings online via 
camera-embedded PDA or mobile phone. This photo is 
transmitted to the server, in which patch-based recognition 
process is carried out to identify its belonging scene. 
Consequently, its corresponding GPS location, together with 
other location related information (such as shopping 
information and restaurant comments), are returned to the 
user as query results. 

Figure 1: Vision-based location recognition system 
To ensure sufficient coverage of urban city scene, 

gigantic scene image corpora are demanded. It requires the 
scene recognition model to be effectively constructed and 
maintained in large-scale scenario. In such case, vocabulary 
tree (VT) is popular in literature [1, 8] to address large-scale 
requirement. Images in the database are scanned offline to 
extract salient regions (such as DoG [7]) and then 
descriptors (such as SIFT [7]). These descriptors are 
quantized by hierarchical k-means clustering to generate the 
vocabulary tree, which produces “visual words” (quantized 
clusters with SIFT features) to represent each image as a 
Bag-of-Word (BoW) vector. In retrieval, image similarity is 
evaluated by the Cosine distance between their BoW vectors. 

One important extension to improve system flexibility is 
to enable the recognition model to be maintained in a 
scalable and incremental scenario. In such case, scene 
images from different sources such as web search results 
and user query examples can be incrementally uploaded to 
extend scene dataset in server. 

This paper presents a unified solution to adapt vision-
based location recognition system to dataset variation. We 
investigate How (adaption implementation algorithm) and 
When (adaption trigger criterion) to update recognition 
model in such incremental scenario, based on which a 
unified solution for recognition model adaption is proposed, 
including both system level architecture and theoretical 
adaption algorithm, as well as trigger criterion.  

The rest of this paper is organized as follows: Section 2 
presents our model adaption algorithm. Section 3 presents 
our adaption criterion. Experiments are presented in Section 
4. Finally, this paper concludes in Section 5.    

2.VOCABULARY TREE INCREMENTAL INDEXING 
2.1 Incremental Indexing Algorithm 
Facing an incremental dataset, in the case that the 
recognition system receives new image batchs, a nature 
thought is to re-train the recognition model all over again. 
Although good performance can be expected, the 
computational cost would be extremely unbearable once the 
dataset volume is gigantic.  Especially, to maintain our 
system for online service, such cost would be unbearable.  

A replacement of overall model re-training is that, we 
only use vocabulary tree to generate the BoW vectors for 
new images, without updating or re-training the VT-based 
recognition model. However, once the distribution of new 
image patch is diverse comparing to original dataset, the 
performance would be continuing to decrease with the 
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coming of new image batches. 
Different from above methods to deal with the 

incremental dataset, we address this problem by enabling 
our model to be scalable to data variation. We utilize 
scalable in this paper to indicate that the recognition model 
should be adaptive to data increase & removal in an 
incremental dataset. To achieve scalability in vision-based 
location recognition, adaption algorithm is demanded to 
upgrade the patch-based scene recognition model in such 
incremental scenario. A novel vocabulary tree incremental 
indexing algorithm is presented to fit vocabulary tree based 
recognition model to renewed data distribution.  
    Model adaption methods have been proposed in pattern 
recognition literature [10, 11] for refining the model trained 
from, usually, high-dimensional data. For instance, 
Cadez[10] utilized Kolmogorov-Smirnov statistics to 
evaluate distribution similarity and based on which update 
parameters of mixture model. Campbell [11] adopted linear 
programming to detect data novelty in incremental dataset. 
However, in patch-based scene / object recognition, little 
works has been conducted to address this issue. In 
vocabulary tree based scene recognition, model efficiency 
depends on the fitness of tree structure to current data 
distribution [6]. Once the original dataset is renewed by 
adding new data batch, the overall data distribution diversity 
would largely affects model efficiency and recognition 
performance. To maintain an effective recognition model 
over renewed dataset, vocabulary tree adaption is necessary.  

Firstly, SIFT features of a new data batch are re-indexed 
using the original tree, based on which the new TF-IDF term 
weightings of each word is calculated. The frequency of 
each word reveals its rationality of existence and necessity 
of further expanding. Subsequently, words in vocabulary 
tree that contain overabundant or over-limited features are 
adapted to fit the renewed distribution. 

Three operations are defined to iteratively refine the 
model structure to fit renewed data distribution: 

1). Leaf Split: If number of features contained in a leaf 
node is higher than maximum threshold Lmax, cluster features 
of this node to m leaves in its sub-level (m is the same 
branching factor as in vocabulary tree construction). 
    2). Leaf Delete: If the feature frequency of a newly-
generated leaf is lower than a pre-defined minimum 
threshold Lmin, its features are reassigned to the nearest 
leaves within the sibling nodes of this deleted leaf. 
    3). Parent Withdraw: If 1).the feature frequency of a 
newly-generated leaf is lower than minimum threshold, and 
2).this leaf is the only child of its parent, we withdraw this 
leaf and degrade its parent as a new leaf.  

Table 1: Vocabulary tree incremental indexing 
Input: SIFT feature set of new data batches. 
For each feature in new data batches{

Re-index this feature vector over the VT hierarchy 
Increase the feature frequency of the nodes in VT hierarchy that 
this feature goes through in indexing}

Go through all leaf nodes of VT{
If its feature frequency is lower than Lmin or higher than Lmax, 

push this node into the Operation Array.}
While the Operation Array is not empty{
     Get the first element 

If its feature frequency is higher than Lmax{
        Leaf  Split, push new leaves into Operation Array}
     If its feature frequency is lower than Lmin{
        If there are siblings of this node{
           Leaf  Delete, push renewed leaves into Operation Array}
        Else{

Parent Withdraw}}}
Delete this first element}

Output: Refined vocabulary tree after adaption. 

2.2 System-Level Implementation   
In system-level implementation, we should figure out a 
preliminary question about the genesis of new data.      
    Generally speaking, our system collects incremental 
scene images as well as their GPS locations from three 
following sources: 

 1). Scene images uploaded by system administrators, 
which are carefully selected and treated as Fully Trusted.   

 2). Query images sent by users to the server-end 
computer, which are considered as Under Evaluated. 

 3). Images periodically crawled from Flick®. We use both 
scene name and city name as crawling criterion. Such data 
source is also viewed as Under Evaluated. 
    For those Under Evaluated scene images, pre-processing 
is conducted to further filter irrelevance: Treating each 
newly coming image as query example, scene recognition 
process is simulated in server, in which the Cosine distance 
between this query and the best matched image is compared 
with a maximum diversity threshold Tmax. If it is larger than 
Tmax, we discard this image; otherwise we add this image 
into the Fully Trusted image set, which is treated as the new 
data batch to update the database. 

     

Figure 2: Recognition model updating
    To provide consistent service along with the process of 
incremental indexing, our system maintains two central 
computers in server-end. Each maintains a location 
recognition system that is settled to be identical once 
finishing one-round adaption. Initially, the status of one 
system is set as Active while the other as Inactive. Active
means this server program is now utilized to provide service; 
Inactive means this server program is now utilized for 
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incremental indexing. Once the Inactive program receives a 
new batch of scene images, we firstly investigate whether it 
is necessary for activate incremental indexing process 
(Detail in Section 3). If so, we conduct incremental indexing 
and switch its Inactive status to Active, and vice versa; 
otherwise, these images are temporally stored and added 
into consequent new image batches.  

3. UPDATING CRITERION BASED ON  RELATIVE 
ENTROPY ESTIMATION 

Facing a new image batch, it is not always necessary to 
activate the incremental indexing process in Inactive server. 
Recalling that the vocabulary tree can be regard as a data 
driven model, if the distribution of new data is almost 
identical to that of original dataset, adaption could be 
postponed with the consequent coming images. 

Hence, to reduce the computational cost in gigantic data 
corpora, we conduct model adaption once either of 
following cases follows: 1). the volume of new images is 
large enough; 2).the distribution of new images is extremely 
diverse from that of original dataset. We present in this 
section an adaption trigger criterion using Kullback–Leibler 
diversity based relative entropy estimation. 

On its first step, data distribution is measured by its 
sample density, which is further discretely approximated by 
point density. Initially, a Density Field of current dataset in 
SIFT space is estimated and approximated by the density of 
each SIFT point, in which the density of a SIFT point in 
128-dimentional SIFT space is defined as: 
                                                  (1) 
where D(i) is the point-density of ith SIFT point; n is the 
total number of SIFT points in this dataset;  is jth SIFT 
point. We adopt L2 distance to evaluate the distance 
between two SIFT points.  
    To reduce computational cost, we estimate the density of 
each SIFT point by its local neighbors as an approximation: 
                                           (2) 
where  is the point-density of ith SIFT feature in its 
m neighborhood. By neighborhood approximation, point
based density is estimated. Their m nearest neighbors are 
stored for Density Field updating of new data batch.  
    Consequently, we evaluate the data dissimilarity between 
original dataset and new data batch by their density-based 
KL-like relative entropy estimation as: 
           (3) 

in which  is the density of new data at ith data 
point in mth neighborhood; is the 
density of old data at the nearest old point of ith new data in 
mth neighborhood. It can be observed from the above 
equation that data diversity increases as: (1). The volume of 
new data batch increase; (2). The distribution of original 
dataset and new data batch are more diverse.  
    Based on data diversity evaluation, we control the 
incremental indexing process by trigger criterion as follows: 

Table 2: Trigger criterion test
Input: SIFT feature set of new data batches. 
For each point i in the new dataset{

Estimate the density of i by m neighborhood approximation 
Search the nearest original point Nearest(i) 
Calculate ith part of Eq.3, add to }

If {
Carry out Vocabulary Tree Incremental Indexing  
Go to Output }

Else  
{ Add current data to next batch images }
Output: Updated Vocabulary Tree
    When fusing new data batch into original dataset, the 
point density in original dataset need not be updated. Indeed, 
their former density estimations can be partially preserved, 
only need to be modified by new data as: 
                         (4) 
k is the number of remaining original points in m nearest 
neighbors, which is achieved by comparing the new data 
with the former-stored m nearest neighbors of each point. 

4. EXPERIMENTS 
Dataset and Experimental Setup: In our scene retrieval 

experiments, we use Scity urban scene dataset taken from 
Seattle city, which contains over 24,000 street-side photos 
captured along Seattle streets by a car automatically. Every 
six successive photos are grouped as a scene (totally 3, 000 
scenes). We resized these photos to 400×300 pixels and 
extracted 306 features from each photo on average. 

We divide Scity dataset into two parts: (1). The base set
contains 9,000 images for the construction of original 
vocabulary tree. There are 3,000 scenes, in each of which 
we initially pick 3 images of of 6 to represent the scene; (2). 
The Incremental Set contains 15,000 images, which is 
randomly divided into 15 image batches. These image 
batches are incrementally sent to our system for model 
adaption, each of which contains 1,000 images. We initially 
cover all scenes in Scity dataset, based on which new images 
are sequentially added to these scenes for incremental 
indexing. To evaluate indexing performance, we sample the 
images from the remaining Incremental Set after each 
round’s incremental indexing as the query set, which is 
utilized to test algorithm performance.  

We build a 2-branch, 12-level vocabulary tree for Scity. In 
tree construction, if a node has less than 2,000 features, we 
stop its k-mean division, no matter whether it achieves the 
deepest level or not. The Density Field is initially calculated 
using the overall dataset and consequently updated with new 
data batch as in Section 3. In tree adaption, the maximum 
threshold Lmax is set as 20,000; the minimum threshold Lmin
is set as 2,000. On a computer with Intel PIV Xeon 3.06GHz 
CPU and 2.0G RAM, a typical time and memory cost for a 
database with 5K images is: tree constructing time 8 hours, 
retrieval time 3 seconds per image (including feature 
extraction), and memory cost 100M. 

We use Success Rate at N (SR@N) to evaluate system 
performance. This evaluation measure is commonly used in 
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evaluating Question Answering (QA) systems. SR@N 
represents the probability of finding a correct answer within 
the top N results. Given n queries, SR@N is:  

                                           (5) 
of  query, ( ) is its position, () is 

Heaviside function:  =1, if x 0, and ( =0, otherwise. 
Results and Discussion: We compare our proposed 
incremental indexing with methods of (1). Re-clustering of 
entire renewed dataset. It has the best performance as the 
performance upper limit; (2). Original VT that only re-
generates BoW vectors for new images. It has no adaption in 
tree structure and is the performance baseline. We not only 
compare their recognition performance using SR@1 (Fig.3) 
but also compare their adaption computation cost using their 
computational costs (Fig.4) as follows: 

Figure 3: Sequential incremental indexing without trigger criterion 
    Fig.3 presents the performance comparison between our 
proposed method and (1) & (2) methods. With the increase 
of dataset volume, the SR@1 performance is by nature 
decreased. Although re-clustering performs better than our 
proposed method, its time cost is unbearable comparing to 
both incremental indexing and simply using original VT to 
generate new BoW vectors (Fig.4). Our method can maintain 
comparable performance (less than 10% degradation than 
re-clustering) while requiring fairly limited computational 
cost (24% times cost comparing to re-clustering). 

    
Figure 4: Computational comparison with/without trigger criterion, 

each node represents the time cost of an occurred VT adaption.  
    We also compare our proposed adaption trigger criterion 
(Section 3) with simply sequential adaption in this 
subsection (Fig.4-5). Fig.5 presents the SR@1 performance 
comparison of three above methods, in which the startup of 
each of above three methods are triggered by the relative-
entropy-based criterion. Comparing with the sequential 
incremental indexing method in Fig.5, criterion-constrained 

method performs equally well. Furthermore, our method 
reduces large amount of computational cost. As presented in 
Fig.4, only 6 adaption operations are conducted comparing 
to former 15. It saves over 70% computational cost while 
performing better than sequential incremental indexing at 4, 
6, 7, 14 batches (Fig.3 vs. Fig.5), which is the case that the 
trigger criterion is satisfied and the criterion-based 
incremental indexing is finished. 

Figure 5:  Incremental indexing with trigger criterion, each node 
indicates a test performance, a dash lines indicate a VT adaption  

5. CONCLUSION 
    Our work in this paper enables vision-based recognition 
system to be adaptive to scalable dataset in an incremental 
scenario. Two key issues in proposed method is How and 
When to make such adaption, which are addressed by 
vocabulary tree incremental indexing as well as relative 
entropy based distribution diversity evaluation. In system 
architecture implementation, we propose a server switch 
mechanism to maintain durative workability during 
incremental indexing. Experimental results over 30K city 
scene images demonstrate that: Incremental indexing o 
profitable and essential for maintaining vision-based 
location recognition system adaptive to dataset variance. 
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