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Abstract —Recently, multiview video coding has attracted 

great attention from industries and research institutes. 
However, the heavy computational complexity limits its 
practical applications. In this paper, a fast disparity and 
motion estimation for multiview video coding is presented, 
based on the correlations between the neighboring cameras 
and between the motion and the disparity. In the proposed 
approach, first, a search region estimation is proposed to 
reduce the disparity estimation complexity according to that 
the camera set is usually fixed and therefore the disparity 
between the two neighboring views can be limited to an 
estimable range. Second, a motion vector derivation is given 
based on the geometric relationship between the motion and 
the disparity. In addition, an early termination scheme is 
provided to further reduce the number of reference frames. 
The experimental results show that roughly 50% time saving 
for disparity and motion computing can be reached when 
compared to the anchor in multiview video coding test model 
JSVM only with negligible coding efficiency loss1. 
 

Index Terms —Multiview video coding, disparity estimation, 
fast motion estimation, geometric relationship. 

I. INTRODUCTION 
Multiview video is a group of video sequences captured by 

a set of cameras on different positions at the same time 
instance and from the same scene. It is much favored in the 
services such as free-viewpoint video (FVV), free-viewpoint 
television (FTV), and 3DTV [1], which expand the user’s 
sensation far beyond what is offered by the traditional video. 
Multiview video coding (MVC) has attracted great attention 
from industries and research institutes. Recently, MPEG 3-D 
audio and video (3DAV) ad hoc group has been investigating 
the needs for standardization in 3DTV and FTV. The Joint 
Video Team (JVT) is also working on a MVC extension of 
H.264/AVC to meet the industry demand. 

To improve the compression efficiency of multiview video 
coding, many algorithms for motion estimation have been 
proposed. A pixel-based hierarchical dynamic programming 
algorithm is used for disparity estimation [3]. A reference 
block-based depth estimation approaches for the view 
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synthesis is presented in [4]. In [5], a temporal/inter-view 
prediction structure is proposed to reduce the view 
redundancy. HHI proposes a H.264/AVC based multiview 
video coding scheme which has achieved much better 
performance compared to the simulcast coding [6]. 

The basic coding scheme in [6], as shown in Fig. 1, uses the 
hierarchical B prediction structure for each view. The inter-
view prediction is applied to every other view. All views can 
be classified into two categories: main view (such as S0, S2, 
S4, and S6), which needs motion-compensated prediction only 
and auxiliary view (such as S1, S3, S5, and S7), which can 
refer the main view as described in [7]. For the frames in the 
auxiliary view with inter-view prediction, the number of 
reference frames can be up to 4. 

 

 
Fig. 1. HHI’s multiview video coding scheme. 
 

As we know that the computational complexity of motion 
estimation for traditional video coding is already very high, 
HHI’s multiview video coding scheme further increases the 
computational complexity due to its disparity estimation. To 
reduce the computational complexity of disparity and motion 
estimation for multiview video coding, fast algorithms should 
be explored. In addition, reducing the number of reference 
frames can also speedup the prediction in MVC. 

Usually, fast motion estimation algorithms, such as three-step 
search (N3SS) [8], four-step search (FSS) [9], diamond search 
(DS) [10], and hexagon-based search (HS) [11], aim at reducing 
the number of the searching points since the calculation of SAD 



 

for different points consumes the most time of the estimation, 
and these traditional approaches can also be used to reduce the 
computational complexity of disparity and motion estimation 
directly. However, these algorithms are investigated for the 
traditional video coding which only considers single view and 
do not explore the correlations between the neighboring views. 

Recently, some fast motion estimation algorithms for MVC 
have been proposed. In [12], multiview camera geometry or the 
relationship between the disparity and motion vectors is utilized 
to estimate the reliability of the predicted vectors to reduce the 
search region. This reliability is decided by the difference 
between the motion vector predicted using median filtering, and 
the disparity vector obtained from the distance information 
between the cameras or the motion vector predicted by the joint 
disparity and motion estimation. When the reliability gets 
smaller, the search range will become larger. Considering that 
disparity estimation is different from motion estimation in MVC, 
an epipolar geometry-based fast disparity estimation algorithm 
is proposed in [13], which can reduce the computational 
complexity for inter-view prediction. It first transforms the 
commonly adopted median predicted search center to obtain its 
orthogonal projection epipolar search center on the 
corresponding epipolar line. Then, the disparity search is 
performed in an epipolar line-aligned search space. Furthermore, 
the set of camera positions can also be utilized to reduce the 
complexity of both disparity and motion estimation, but little 
work has been done to study this point. 

A preliminary exploration of fast inter frame prediction for 
MVC has been done in our previous work [14], which is based 
on the relationship generated by the camera set. In [14], the 
computational complexity can be reduced greatly without 
noticeable loss of coding performance. However, the 
relationship between the motion and the disparity is not fully 
studied. Additionally, the theoretical analysis is not described. 

The rest of the paper is organized as follows. Section II 
presents the fast disparity and motion estimation for MVC based 
on the correlations between the neighboring cameras and 
between the motion and the disparity. In the proposed approach, 
which assumes the aligned cameras are used, first, a search 
region estimation is proposed to reduce the disparity estimation 
complexity according to that the camera set is usually fixed and 
therefore the disparity between two neighboring views can be 
limited to an estimable range. Second, a motion vector 
derivation is given based on the geometric relationship between 
the motion and the disparity. In addition, an early termination 
scheme is provided to further reduce the number of reference 
frames. Section III provides the experimental results. The 
conclusions are given in the last section. 

II. FAST DISPARITY AND MOTION ESTIMATION FOR 
MULTIVIEW VIDEO CODING 

A. Search Region Estimation of Disparity for Multiview 
Video Coding 
For multiview video captured by the aligned camera set in 

which the camera positions are fixed and parallel, as shown in 
Fig. 2, there exists strong relationship between the 
neighboring view videos. Therefore, the disparity between 
two frames in the neighboring views captured at the same time 
instance can be limited to an estimable region. 

 

 
Fig. 2. Parallel multiview camera setup. 
 

Considering one point O projected to the two frames in the 
neighboring views captured at the same time, as shown in Fig. 
3, the positions of pixels a and c at the screen plane can be 
denoted as |ab| and |cd| respectively, where c and a are the 
projection points of O captured by the two neighboring 
cameras. c1 and c2 represent the positions of the two 
neighboring cameras. |OH1| is the distance between O and the 
screen plane, and |OH2| is the distance between O and the 
camera plane. Then the disparity value of O equals to |cd|-|ab|.  

 

 
Fig. 3. The relationship between depth and disparity for parallel 
multiview video. 
 

Since the two cameras in Fig. 3 are parallel, we can get that 
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In (3), |H1H2| is the intrinsic parameter of the camera, and 

|c1c2| is determined by the positions of the two neighboring 
cameras. So the disparity of the object between two frames in 
the two neighboring views captured at the same time instance 
is inversely proportional to |OH2|, or generally the object’s 
depth. From (3), it can be seen that the disparity is near zero 
when |OH2|, or the depth, is big enough. Considering the 
reference frame is two dimensions, the angle of the disparity 
vector can be derived by 
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where |c1c2Hor| and |c1c2Ver| represent the horizontal and the 
vertical distance of the two neighboring cameras respectively. 
It can be seen that the angle of the disparity vector is only 
determined by the relative positions of the two neighboring 
cameras. 

Based on the above analysis, it can be concluded that the 
disparity vector is concentrated in a region which is decided 
by the positions of the two neighboring cameras and the depth 
of the object. Fig. 4 shows the disparity vector distribution 
histogram for the sequence Ballroom (640x480). From Fig.4 
we can see that nearly all of the vectors concentrate in one line. 
Since the relative positions of cameras are fixed, from (4) it 
can be concluded that the distributions of disparity vectors at 
different times are nearly the same.  

 

 
Fig. 4. Disparity vector distribution histogram for Ballroom. 

 

 
Fig. 5. The search region for the fast disparity estimation. 

 
In the proposed method, the set of disparity vectors at times: 

T0 and T8 in Fig. 1 is utilized to generate the search region of 
disparity vectors at time Ti ( i {1, 2, 3...7}∈ ). The proposed 
method can be described as follows. Firstly, an angle for 
disparity estimation is obtained based on the statistical 
information at times: T0 and T8. And then, a basis line is 
constructed by the angle and the disparity vector (0, 0). 
Finally, to increase the robustness of our approach [15], the 
search region for Ti ( i {1, 2, 3...7}∈ ) is along the basis line 
within a certain Gaussian distance as shown in Fig. 5. That 
means the points whose distances to the basis line are smaller 
than the Gaussian distance compose of the search region, 
whereas the points whose distances are bigger than the 
Gaussian distance are not searched. 

Fig. 6 gives the statistical result for the relationship between 
the Gaussian distance and the searching accuracy. The 
searching accuracy is defined as 

 
( / ) 100%Accuracy n N= × ,                                               (5) 

 
where n represents the number of 4x4 sub-blocks which have 
the same values of disparity vectors searched by the proposed 
approach and by the anchor in MVC test model JSVM, and N 
represents the total number of 4x4 sub-blocks for disparity 
prediction.  

It can be seen from Fig.6 that with the Gaussian distance of 
32 pixels, a high searching accuracy can be achieved (about 
99.6%), so 32 pixels Gaussian distance is employed in our 
proposed method. To represent the searching complexity, the 
number of search points can be used. The search points are 
normalized considering the different complexity for different 
modes. For example, a search point for 16x8 mode is 1/2 point 
in statistics when assuming a search point for 16x16 mode is 1 
point in statistics and so on. When the Gaussian distance 
equals to 32 pixels, the number of search points for the 
proposed approach is roughly 30% of that used in the anchor. 
So the complexity for the disparity estimation can be reduced 
greatly. 
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Fig. 6. Statistical result for the relationship between the Gaussian distance 
and the searching accuracy. 

 

B. Motion Vector Derivation Based on the Geometric 
Relationship between the Motion and the Disparity 
In this subsection, the motion vector is derived from the 

disparity and the corresponding motion vector in the reference 
view. The motion vector is usually determined by the 
displacement of an object at different times, whereas the 
disparity indicates the displacement of the object in two views 
at the same time. However, when the motion vector and the 
disparity correspond to the same content, all pixels with 
respect to this content can be found in both temporal and view 
neighboring frames which is described in [7]. Therefore, the 
motion vector can be derived. Fig. 7 provides the geometric 
relationship of the motion and the disparity in two views. In 
Fig. 7, v

tf  denotes the frame in view v at time t, where 

{ , }v l r∈ . There are four corresponding pixels with respect to 
the same object in two views at two times. Let v

tP  represent 

the corresponding pixel that belongs to v
tf . ( )v

tM P  and 

( )v
tD P  represent the motion vector and the disparity of pixel 

v
tP  respectively. 
 

 
Fig. 7. Geometric relationship of the motion and the disparity in two 
views. 

 
From Fig. 7, it can be seen that there exists a close 

relationship among ( )r
tM P , 1( )r

tD P −
, ( )l

tM P , and ( )r
tD P , 

which is named as the stereo-motion consistency constraint or 
the loop constraint in [16]: 

 

1( ) ( ) ( ) ( ) 0r r l r
t t t tM P D P M P D P−+ − − ≈ .                             (6) 

 
From (6) we can conclude that ( )r

tM P  can be derived if 

1( )r
tD P −

, ( )l
tM P  and ( )r

tD P  are known. Moreover, ( )l
tM P  

is much correlated with ( )r
tD P  as shown in Fig. 7. Based on 

this derivation, the fast motion estimation is described as 
follows. In (4), it is shown that the angle of disparity is 
determined by the positions of the two neighboring cameras, 
so it can be assumed that 1( )r

tD P −
 parallels to ( )r

tD P . In the 

proposed approach, as shown in Fig. 8, '( )l
tM P , which is 

derived by ( )r
tD P  and equals to ( )l

tM P , is set as the 

predicted motion vector for ( )r
tM P , and a basic line is 

obtained with the predicted motion vector and the angle of 
( )r

tD P . Considering the Gaussian noise, the search region for 

( )r
tM P  is along the basis line with a Gaussian distance of 

one pixel.  
 

 
Fig. 8. Fast motion estimation based on the motion vector derivation. 
 

TABLE I 
 STATISTICAL RESULT FOR FAST MOTION ESTIMATION BASE ON MOTION 

VECTOR DERIVATION 

Sequence Ballroom 
(640x480) 

Exit 
(640x480) 

Searching points 
(x103pixels/frame)

anchor 7718.76 4749.65 
proposed 388.27  389.28  

Accuracy (sub-blocks/frame) 98.86% 99.01% 

 
The statistical result is shown in Table I, where the 

definition of the searching complexity and the searching 
accuracy can be found in Subsection II-A. It can be seen from 
Table I that the accuracy can achieve more than 98% while 
roughly 8% search points are used. 
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C. Framework of the Proposed Fast Disparity and Motion 
Estimation 
The proposed fast disparity and motion estimation contains 

three parts. The first part is the disparity estimation in the 
estimated search region. The second is the motion vector 
derivation based on the geometric relationship between the 
motion and the disparity. Additionally, in the third part an 
early termination scheme is provided to further reduce the 
number of reference frames. As the first two parts have been 
presented in Subsections II-A and II-B, in the following we 
mainly describe the third part. 

It is well known that the motion vector comes from the 
motion of the object. Better performance can be achieved with 
intra-view prediction for homogeneous and stationary regions. 
However, for the regions with complex motions, intra-view 
prediction may not perform better than inter-view prediction. 
This is shown in Fig. 9. In Fig. 9, (a) and (c) are original 
frames. (b) and (d) show the blocks predicted with inter-view 
prediction in (a) and (c) respectively. From Fig. 9, it can be 
seen that most of the blocks belong to motion regions and that 
the distribution of those blocks has a spatial continuity. 

 

     
(a)                                           (b) 

  
(c)                                         (d) 

Fig. 9. The distribution of the blocks that refer frames in the neighboring 
view at the same time instance. (a) and (c) are original frames. (b) and (d) 
show the blocks predicted with inter-view prediction in (a) and (c) 
respectively. 
 

Considering this continuity, in the proposed approach, an 
initial reference frame is selected by neighboring blocks. That 
is if most of the encoded neighboring blocks employ frame F 
as the reference frame, then F is as the initial reference frame 
of the current block. If the minimum cost in the searching 
region of the initial frame is good enough, other frames are 
not referred, and thus the number of reference frames can be 
reduced. To implement this early termination strategy, the 
minimum cost and the threshold for a block of size mxn 
should be defined. In H.264, the Lagrangian cost is defined as, 
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where mxn is the size of the block which is decided by the 
block mode M, d represents the motion vector or the disparity, 

cf  and 
rf are current and reference frames, respectively, λ  

is the lagrange multiplier, and R(d) stands for the number of 
bits for coding. In the proposed approach, the minimum cost 
(Cmin) is defined as the minimum Lagrangian cost in a special 
searching region Re for the current block mode M, 

 
min ( , )

Re
Cmin J M

∈
=

d
d .                                                           (9) 

 
In H.264, each mode such as 16x16, 16x8, 8x16, 8x8, and 

8x4, 4x8, 4x4 should be implemented for prediction, so there 
is one best motion vector or disparity for each mode to a 
coded block, d , and the threshold in the proposed approach is 
set as, 
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where i represents the macroblock number, a parameter alpha 
is multiplied as a tradeoff between the performance and the 
efficiency of the approach.  
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Fig. 10. Statistical result for the relationship between the parameter alpha 
and the performance of the proposed approach. 
 

In (10), the threshold proposed is determined on the 
performance of coded blocks, and can be adjusted by the 
statistics. As Fig. 10. shows, as the parameter alpha becomes 
larger, both searching complexity and searching accuracy 
decline, where the definition of the searching complexity and 
the searching accuracy can be found in Subsection II-A, and 
1.5 is selected as the value of this parameter to keep the 
accuracy while reducing the complexity greatly. 



 

 

 
Fig. 11. Flowchart of the proposed fast disparity and motion estimation 
for MVC. 
 

The framework of the proposed fast disparity and motion 
estimation is illustrated in Fig. 11. The initial reference frame 
is selected from the frames referred by neighboring blocks and 
the minimum cost is computed. If the initial reference frame is 
in the neighboring view, search the disparity with the fast 
disparity estimation, and the searching result for the disparity 
is stored in a buffer for fast motion estimation. If the minimum 
cost is higher than the threshold, fast motion estimation is 
implemented based on the derivation. However, if the initial 
reference frame is in the same view as the current frame, 
normal motion estimation for traditional video coding is 
employed, whereas the fast disparity estimation will be used if 
the minimum cost for motion estimation is worse than the 
threshold. 

III. EXPERIMENTAL RESULTS 
The proposed algorithm has been implemented into MVC 

test model JSVM (Version 5_8) for verification. The proposed 
algorithm is compared with the anchor in JSVM, whose inter 
prediction is a trade-off between the complexity and the 
performance of the coding combining diamond search [10] 

and adaptive full search. The testing configuration is shown in 
Table II. 

TABLE II 
Configuration for the Experiments 

Entropy Coding CABAC 
Transform 8x8 transform 
FME on 
Hadamard Transform on 
Search Range 96 
QP 27,29,30,32 

 
In the experiments, three test sequences are used for 

performance comparison in terms of PSNR, bits difference 
and time saving. Among these three sequences, Ballroom 
(640x480) is for complex sequence and Exit (640x480) is for 
smooth sequence and Race1 (640x480) is for sequence from 
moving set but fixed relative positions of cameras. The view 
S1 as shown in Fig.1, are used for the implementation of the 
approach, and the views S0 and S2 are as reference views. 
Corresponding to the three parts of the proposed approach, the 
experiments contain three parts and a complete simulation 
result. Table III-V give the comparisons between the anchor 
and the fast disparity estimation, between the anchor and the 
fast motion estimation, and between the anchor and the early 
termination scheme. The comparison between the anchor and 
the proposed fast disparity and motion estimation with early 
termination method is finally provided in Table VI. For the 
fast disparity estimation, it can be seen from Table III that the 
average time saving compared to the anchor for Ballroom , 
Exit and Race1 is about 27.97% , 31.24% and 35.65% 
respectively. For the fast motion estimation, Table IV show 
that for Ballroom and Race1, 11.39% and 24.11% average 
time saving can be achieved whereas the average time saving 
for Exit is 6.82%, which is much smaller than the other two 
sequence. This is because that in the anchor the computational 
complexity of disparity prediction is greatly larger than that of 
motion prediction, especially for the smooth sequence. For the 
proposed fast disparity and motion estimation, we can get 
from Table VI that roughly 50% of the average time saving 
for three sequences can be reached compared to the anchor in 
MVC test model JSVM only with negligible coding efficiency 
loss. 

TABLE III 
 Performance Comparison of Fast Disparity Estimation 

QP Performance Ballroom Exit Race1 

27 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

+0.00336 
-0.14 
-30.01 

-0.00221 
-0.10 
-31.38 

+0.00077 
+0.10 
-37.10 

29 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

+0.00036 
+0.05 
-23.11 

-0.00110 
-0.09 
-31.38 

-0.01533 
+0.58 
-35.86 

30 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

-0.00071 
-0.54 
-29.52 

+0.00656 
0.00 
-31.06 

+0.01492 
+0.12 
-35.79 

32 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

+0.00006 
-0.09 
-29.26 

-0.00121 
-0.26 
-31.14 

+0.00743 
-0.09 
-33.85 

Average 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

+0.00077 
-0.18 
-27.97 

+0.00051 
-0.11 
-31.24 

+0.001948 
+0.18 
-35.65 



 

 
TABLE IV 

 Performance Comparison of Fast Motion Estimation 
QP Performance Ballroom Exit Race1 

27 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

-0.00444 
+1.56 
-10.56 

-0.00221 
-0.10 
-6.66 

-0.07041 
-0.58 
-25.61 

29 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

-0.00689 
+1.11 
-13.53 

-0.00793 
+1.63 
-6.51 

-0.06018 
+1.85 
-24.52 

30 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

-0.01350 
-0.13 
-10.65 

-0.02140 
+1.84 
-6.59 

-0.03653 
+0.08 
-23.35 

32 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

-0.01390 
+0.34 
-10.82 

-0.02383 
0.51 
-7.5 

-0.04727 
+1.51 
-22.95 

Average 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

-0.00968 
+0.72 
-11.39 

-0.01384 
0.97 
-6.82 

-0.0536 
+0.72 
-24.11 

 
TABLE V 

 Performance Comparison of Early Termination 
QP Performance Ballroom Exit Race1 

27 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

+0.0016
4 
-0.26 
-31.09 

-0.00415 
-0.50 
-28.01 

-0.00966 
+0.40 
-27.71 

29 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

+0.0002
9 
-0.36 
-31.34 

-0.01592 
-1.18 
-28.42 

-0.03598 
+1.40 
-27.48 

30 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

-0.00131
-0.28 
-31.27 

+0.00222 
-0.35 
-28.58 

-0.02336 
-0.157 
-26.87 

32 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

-0.00675
+0.76 
-31.87 

-0.00270 
+0.09 
-29.12 

-0.03864 
+1.59 
-27.95 

Average 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

-0.00153
-0.04 
-31.39 

-0.00514 
-0.49 
-23.53 

-0.02691 
+0.81 
-27.50 

 
TABLE VI 

Performance Comparison of Fast Disparity and Motion Estimation with 
Early Termination  

QP Performance Ballroom Exit Race1 

27 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

-0.01832 
-0.47 
-53.71 

-0.00536 
-0.88 
-48.85 

-0.02513
-1.22 
-57.20 

29 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

+0.01408 
-0.26 
-53.98 

-0.00979 
-0.75 
-49.20 

-0.02397
0.62 
-54.69 

30 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

-0.02804 
-0.84 
-53.47 

-0.03176 
-0.90 
-49.37 

0.00774 
1.18 
-51.87 

32 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

-0.02742 
-0.91 
-53.93 

-0.00288 
-0.90 
-49.19 

-0.02884
+0.28 
-53.43 

Average 
ΔPSNR (dB) 
ΔBits (%) 
ΔTime (%) 

-0.01493 
-0.62 
-53.77 

-0.01245 
-0.86 
-49.15 

-0.01755
+0.22 
-54.30 

 

IV. CONCLUSIONS 
This paper presents a fast disparity and motion estimation 

for MVC. Firstly, the disparity prediction complexity is 

reduced according to that the disparity between two 
neighboring views can be limited to an estimable range. 
Secondly, the motion vector is derived based on the 
relationship between the motion and the disparity. 
Additionally, an early termination scheme is provided to 
reduce the number of reference frames. The experimental 
results show that roughly 50% time saving for disparity and 
motion computing can be reached when compared to the 
anchor in MVC test model JSVM only with negligible coding 
efficiency loss. 
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