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ABSTRACT

Motivation: RNA secondary structures with pseudoknots are often
predicted by minimizing free energy, which is proved to be NP-hard.
Due to kinetic reasons the real RNA secondary structure often has
local instead of global minimum free energy. This implies that we may
improve the performance of RNA secondary structure prediction by
taking kinetics into account and minimize free energy in a local area.
Result: we propose a novel algorithm named FlexStem to predict
RNA secondary structures with pseudoknots. Still based on MFE
criterion, FlexStem adopts comprehensive energy models that allow
complex pseudoknots. Unlike classical thermodynamic methods, our
approach aims to simulate the RNA folding process by successive
addition of maximal stems, reducing the search space while
maintaining or even improving the prediction accuracy. This reduced
space is constructed by our maximal stem strategy and stem-adding
rule induced from elaborate statistical experiments on real RNA
secondary structures. The strategy and the rule also reflect the
folding characteristic of RNA from a new angle and help compensate
for the deficiency of merely relying on MFE in RNA structure
prediction. We validate FlexStem by applying it to tRNAs, 5SrRNAs
and a large number of pseudoknotted structures and compare
it with the well-known algorithms such as RNAfold, PKNOTS,
PknotsRG, HotKnots and ILM according to their overall sensitivities
and specificities, as well as positive and negative controls on
pseudoknots. The results show that FlexStem significantly increases
the prediction accuracy through its local search strategy.
Availability: Software is available at http://pfind.ict.ac.cn/FlexStem/
Contact: xchen@jdl.ac.cn; wgao@pku.edu.cn
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
RNA has important functions. Understanding and controlling the
functions requires knowledge of RNA structures (Walter et al.,
1994). The experimental approach to determining RNA structures
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is expensive and time consuming. Therefore, computational
approaches have been developed to predict RNA structures.
However, this problem is challenging due to the incomplete
knowledge of RNA folding and the computational complexity.

Currently, there are several computational approaches to
predicting RNA secondary structures. Among them, the most
accurate ones are comparative methods based on multiple sequence
alignment (Eddy and Durbin, 1994; Knudsen and Hein, 1999).
However, these methods require a collection of homologous
sequences to build their model and hence they are not applicable
to the prediction of many novel sequence structures (Huang and Ali,
2007).

Minimal free energy (MFE) is a commonly used ab initio method
for predicting RNA structure when only a single sequence is
available. Dynamic programming is the most widely used method
to compute the optimal (MFE) secondary structure (Hofacker, 2003;
Zuker and Stiegler, 1981). However, it is still hard to find the
MFE structures of pseudoknotted sequences because pseudoknots
violate the recursive definition of the optimal score and bring the
MFE problem to an NP-hard problem (Akutsu, 2000; Lyngso and
Pedersen, 2000). There are also several dynamic programming
algorithms proposed to find the MFE structures of pseudoknotted
RNA sequences. They usually use simplistic energy models or
restrict the types of pseudoknots. Otherwise they will be too
inefficient for most practical uses. Another problem for the MFE
method is that current incomplete thermodynamic rules and RNA
folding kinetics make the MFE solutions that are often not the true
ones in reality.

Heuristic methods have also been explored to predicting RNA
secondary structures, especially structures with pseudoknots. Those
methods are usually based on the local search technique that
‘explores’ the space of feasible solutions in a sequential fashion,
moving in one step from the current solution to a ‘nearby’ one
(Kleinberg and Tardos, 2005). Although such algorithms commonly
provide no guarantee on optimality of a solution, it is still
suitable for predicting RNA secondary structures because current
optimal solution (MFE) can also not guarantee ‘true’ solution,
and pseudoknots render the MFE problem intractable or NP-hard.
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In addition, local search techniques can use energy models as
accurately as possible for they usually have no restrictions on
energy models. Furthermore, the local search technique provides
a convenient way to model the sequential nature of RNA folding
in some way which may compensate for the deficiency of merely
relying on MFE to a certain extent.

There are several types of local search or heuristic approaches
to predict RNA secondary structures with pseudoknots (Abrahams
et al., 1990; Gultyaev et al., 1995; Ren et al., 2005; Ruan et al.,
2004). Many of them take stems (not base pairs) as the elements of
RNA secondary structures and regard the secondary structures as the
combination of stems. In addition, the formation of the secondary
structure can be regarded as a stepwise process, where intermediate
structures evolve into the native one by subsequent addition of stems.
This is allowed because the initiation is the rate limiting step of
stem formation: once a few bases of a stem pair with each other,
the rest quickly follows (Abrahams et al., 1990; Saenger, 1984).
Therefore, for a RNA sequence, its final secondary structure can be
constructed by sequentially adding candidate stems to the potential
structure. The criterion to select candidate stems is usually the
free energy, since it quantitatively describes the structure’s stability
gaining from forming a new stem and losing from forming a new
loop. However, in the process of adding stems, there are often a
large number of candidate stems that can decrease the free energy
of the current potential structure at the each step. Choosing candidate
stems is a challenging problem for the scarce knowledge about RNA
folding kinetics. If we always choose the stem that can mostly
decrease the energy of current potential structure, it becomes a
greedy process (Abrahams et al., 1990). Such method does not
always seem to be feasible because it is entrapped in local minima
very easily. If we consider all the suboptimal candidate stems in each
step, the combinations of suboptimal candidate stems will be too
large to handle. Other heuristic strategies such as genetic algorithm
(Gultyaev et al., 1995) may be used to skip the local minima but the
designing of the range and style of mutation and crossover is also
an intricate problem (Higgs, 2000).

In this article, we observe that in most cases the real structure
(maybe not the global MFE structure) of a RNA sequence
exists in a local search space, which is constructed using our
maximal stem strategy and stem-adding rule induced from validation
experiments on some reference RNA structures obtained by
experimental or comparative methods. Such strategy and rule reflect
the property of RNA folding to some extent. In practice, they
can be easily utilized for predicting RNA secondary structure
and can greatly reduce the stem’s searching space. Consequently,
we develop a local search algorithm named FlexStem to predict
RNA secondary structures with pseudoknots by searching the
local MFE structure. Although the local MFE structures are not
always the correct ones, experiments show that they are very
close to them.

Moreover, to describe the free energy exactly, FlexStem uses an
energy model that combines standard pseudoknot-free energy model
including full coaxial stacking energy and the pseudoknot energy
model which is also used by other well-known algorithms (Dirks
and Pierce, 2003; Ren et al., 2005). This model is quite general in
describing pseudoknots (Condon et al., 2004).

FlexStem is tested on a large number of sequences taken
from Sprinzl, 5SrRNAs, Pseudobase and other reliable resources.
Compared with other well-known algorithms, it has good running

AAUCGG UCGUUUAAAG UCCGAUGGUCCAUCGUGGAACAAAAUAUGC   
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M2 

Fig. 1. Illustration of maximal stem. The left maximal stem (M1) includes
10 possible stems (four 2-bp stems, three 3-bp stems, two 4-bp stems and one
5-bp stem) and the right maximal stem (M2) includes three possible stems.

efficiency and shows better performance in terms of prediction
sensitivity, specificity and positive control on pseudoknotted
sequences. Moreover, it also offers biological insight into the
characteristic of RNA folding to some extent.

2 METHODS
For a given RNA secondary structure, a helical region or stem can be defined
as an anti-parallel complementary strand whose length must be �2 bp.

Since RNA secondary structure can be regarded as the combination of
stems, predicting RNA secondary structure can be considered by the process
of selecting appropriate stems from candidate stem pool. Therefore FlexStem
can be divided into three elements, (1) the way to construct candidate stems
pool (find candidate stems), (2) the rule and algorithm (stem-adding rule and
local search algorithm) to search the appropriate candidate stems and (3) the
criteria (free energy model) to evaluate candidate stems during the process
of local search.

2.1 Finding candidate stems
The common method to find candidate stems is finding all possible stems
(Abrahams et al., 1990; Ren et al., 2005). One of the weaknesses of such
method is the large number of all possible stems and their combinations
(e.g. TMV, a 189 bases sequence, has 4241 possible stems. Therefore the
total number of stem combinations will be very large). Furthermore, some
small stems in fact cannot appear in the real structures. In this article, we
propose a maximal stem strategy to handle this problem.

First, we take all the maximal stems as candidate stems. A maximal stem
is defined as the stem with a maximal length (Fig. 1). We can easily find that
a maximal stem with N (N > 1) bp contains N× (N − 1)/2 possible stems
(Fig. 1). In our statistic, the number of maximal stems is almost 1/3 that of all
possible stems. Therefore, adopting maximal stems can significantly reduce
the amount of stem combination.

Second, we use a flexible merging method similar to the previous work
(Isambert and Siggia, 2000) to handle the overlapping (i.e. share bases)
candidate maximal stems in the process of building potential RNA secondary
structures (Fig. 2).

The flexible merging method finds the proper (minimal or subminimal free
energy) merging points in several possible situations when a new maximal
candidate stem overlaps with those stems in the potential structure (c.f.
Fig. 2). In this way, our flexible merging method can dynamically produce
new stems in the process of building the potential structure if required.
Therefore, the finally predicted structure is not restricted to the maximal
candidate stems. At the same time, noise structures caused by small stems
can be significantly filtered out, thus greatly reducing the search space.

More importantly, based on maximal stem strategy, we deduce the rule of
stem adding from the reference secondary structures that can further reduce
the search space and therefore design our local search method.

2.2 The rule of adding stem
In the stepwise process of adding stems to the potential RNA secondary
structure, there are a large number of candidate stems that can decrease
the free energy of the current structure at each step. Therefore, choosing
candidate stems is a challenging problem.
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(a) (b)

(c) (d)

Fig. 2. Illustration of merging strategy. Continuous line denotes the
candidate stems in the potential structure and dashed line denotes the
candidate stem in the candidate pool that will be added to the potential
structure. (a) Indicates the situation before adding a new candidate stem
to the potential structure. (b–d) indicate the three possible situations after
merging.

We may think that at each step we can rank the candidate stems in
descending order according to their abilities to reduce the energy of current
structure and only consider top-ranking candidate stems. Deciding the
number (or range) of candidate stems at each step is the key to this problem:
If it is too small, the search space may miss the true structure. If it is too
large, the search space will become too large to handle in a reasonable time.

We find a new clue (stem-adding rule) from the reference RNA secondary
structures to overcome this problem. To illustrate this clearly we first define
four terms to be used in the rest of the article.
• Order:
The order of a candidate stem is defined as the rank of the ability of

this candidate stem in all the candidate stems capable of decreasing the free
energy of the current structure. For example, if the order of a candidate stem
is 0, this means that this candidate stem is the optimal candidate stem to the
current structure, i.e. this stem can decrease the free energy of the current
structure the most. If the order is 1, this means this candidate stem is the
first-suboptimal candidate stem to the current structure. Therefore we can
see that at each step, every candidate stem in the candidate stems pool one-
to-one maps to an order. However, the order of the same candidate stem may
be different in different steps because the current structure is changing step
by step.
• Order Set:
A given structure can be considered to be predicted if all the stems of the

structure were predicted and a stem in the structure was considered to be
predicted if the computed folding contained all base pairs of the stem with
the exception of at most 2 bp. This definition can help us to understand the
following term: order set.

The order set of a structure is an ordered integer set, consisting of all
the orders of the candidate stems stepwise, added to the potential structure
in the process of constructing the final structure. For example, if a RNA
secondary structure has the order set = {1, 0, 6}, it denotes that this structure
is constructed by three stems that are sequentially selected and added to the
structure through three steps: first we choose the first-suboptimal candidate
stem, second we choose the optimal candidate stem and in the last step we
choose the sixth-suboptimal candidate stem. It should also be noted that the
same structure may have several different order sets.
• Perturbation range:
The perturbation range (PR) of an order set is defined as the maximal

element (order) in this order set. For example, the PR of the order set {1, 0,
6} will be 6.
•Minimal perturbation range:
Minimal perturbation range (MPR) is defined as the minimal PR in all

possible order sets of a structure. For example, if a structure has a total of
three possible order sets: {1,0,6}, {2,4,3}, {1,8,2}, the MPR of this structure
is 4.

If the MPR of a structure is m (m � 0), it means that to search such structure
we need only to consider at most top m+ 1 candidate stems at each step
(including one optimal candidate stem and m suboptimal candidate stems).
It is easy to understand if the MPR of a structure, which has four stems,
is 0; the order set must be {0, 0, 0, 0}. This means that to search for this

Table 1. Perturbation ranges and order sets of the test set

tRNA Number
of stems

MPR Order set 5SrRNA Number
of stems

MPR Order set

DA0260 4 1 1, 0, 0, 1 X12624 8 4 1,4,1,0,0,3,1,4
DL0220 5 1 0, 0, 0, 1, 0 X00931 7 1 0,0,0,0,1,1,0
DT5090 5 1 1, 0, 0, 0, 0 U32122 8 3 2,2,0,1,3,0,0,1
DG7740 4 4 4, 3, 4, 1 NC0065121 7 0 0,0,0,0,0,0,0
DK9350 4 1 0, 1, 0, 0 M35569 7 2 0,0,2,0,0,1,0
DD8511 4 1 1, 1, 0, 0 NC0040881 7 1 0,1,1,0,1,1,0
DS3651 4 2 2, 1, 0, 1 X02242 7 5 0,0,5,0,2,1,1
DX1660 4 0 0, 0, 0, 0 X02044 7 1 0,1,0,0,0,0,0
DV7521 4 0 0, 0, 0, 0 M58385 8 2 1,2,2,0,0,2,2,2
DS1141 5 4 0, 0, 0, 0, 4 U32122 8 3 2,2,0,1,3,0,0,1

Table 2. The statistics of MPR on 300 tRNAs and 300 5SrRNAs

Average
length

MPR≤ 5 (%) MPR≤ 6 (%) Percentage
of ‘0’ in
order sets

tRNAs 70 94 95 65
5SrRNAs 120 90 94 61

structure we need only select the optimal candidate stem at each step. MPR
will help us decide the number of candidate stems that should be considered
at each step. If we can get the MPR of sequences with known structures, we
suppose that those MPRs can be also used to decide the number of candidate
stems that should be considered at each step in the process of searching the
possible structure of the sequence with unknown structure.

The algorithm to find the MPR of a reference RNA structure and the
experimental results using this algorithm are briefly introduced below.

To find the MPR of a sequence with known structure, we begin with a
small integer m (e.g. zero) as an initial guess at the MPR. If we can find an
order set of PR m for this structure, then it can be determined that the MPR
of this structure is m. Otherwise we literately increase m by one each time
and search the order set of this structure within the PR (PR = m) until we
find an order set for the structure. In this way, we will obtain the MPR and
the order set of this structure. The formal description about this algorithm is
not described here due to the limitation of the article size.

We used the complete standard free energy model (Mathews et al., 1999;
Serra and Turner, 1995) as our criterion to evaluate the candidate stems
and randomly selected 10 tRNA sequences and 10 5SrRNA sequences with
known secondary structures from tRNA and 5SrRNA database (Sprinzl et al.,
1998; Szymanski et al., 2002) as our test set. The MPR and order sets of
those sequences are listed in Table 1.

According to Table 1, MPR of all the test sequences do not exceed five with
an average of 1.85. This means that to find the true structure we need only to
consider the top six candidate stems at each step, while those structures with
MPR above five can be filtered out even though they may have lower free
energies (such structures can be regarded as ‘noise’). This indicates the space
of searching candidate stems can be greatly reduced. On the other hand, it
can also be observed that ‘0’ is in the majority (>55 %) in the add orders
of those structures. This means that we need only choose optimal candidate
stems in most circumstances. We also perform this experiment on a larger
test set (including randomly selected 300 reference tRNA structures and 300
reference 5SrRNA structures) and get the similar result (Table 2).

In addition, though the current standard free energy model we used is
more applicable to relatively short sequences (eg. sequences <130 nt), we
investigate the MPR on longer sequences. Using standard free energy model,
we randomly selected 10 pseudoknot-free sequences with known secondary

1996



FlexStem

Table 3. Perturbation ranges and order sets of the longer sequences

RNase length Number of
possible
maximal
stems

Number
of stems

MPR Order set

Pichia guilliermondii 189 1635 7 2 2,0,1,0,2,2,0
Crematogaster opuntiae 196 1813 8 7 7,5,0,2,0,0,2
Pichia mississippiensis 232 2390 9 7 1,0,0,2,3,0,0,7,7,0
Wickerhamia fluorescens 232 2601 8 7 1,2,7,0,4,0,4,0
Saccharomyces servazzii 234 2538 9 8 0,2,0,0,8,6,8,0,5
Bordetella bronchisepticaa 243 2359 10 8 7,8,8,4,0,0,7,0,0,1
Saccharomycopsis fibuligera 243 2712 7 8 8,7,5,3,0,0,0
Saccharomyces unisporus 244 2797 8 3 0,0,0,0,1,3,3,0
Kluyveromyces polysporus 256 3278 9 8 0,3,2,8,6,7,5,0,8,0
Pichia canadensis 333 5014 12 9 3,3,0,3,6,7,0,0,6,7,8,9

aDenotes that we cannot find the MPR of this structure. But we find the relaxed MPR.

structures from RNase database (Brown, 1999) as our test set. The MPR and
order sets of those sequences are listed in Table 3.

As shown in Table 3, the MPR of the longer sequences has a trend of
increasing with the length of sequences. There exists an exceptional structure
(denoted by ‘a’ in Table 3) whose MPR cannot be found in limited time. The
reason, we think, lies in two aspects: first, the number of candidate stems will
dramatically increase with the length of sequences; second, current energy
models are in fact not very accurate on long sequences.

However, according to Table 3, we find that MPR is still very small
compared to the rapidly increased number of possible candidate stems.
In addition, a relaxed MPR for this exceptional structure can be used by
requiring that a structure that matches at least 90 % of the real structure is
found. Considering the relatively low prediction accuracy on long sequences
of current algorithms, this relaxation should make sense. Moreover, the MPR
will be expected to be further decreased with the more accurate energy model
and parameters to be used in the future. Taking into account all these reasons
it can be expected that the MPR strategy can also help greatly reduce the
search space on larger sequences.

From Tables 1–3, we approximate the MPR of a RNA sequence as:

MPR = 5+ length/80

Those observations form the stem-adding rule.
Based on this stem-adding rule, the procedure of adding stems can be

regarded as a greedy process with limited perturbations at several steps. This
rule can be properly utilized to predict RNA secondary structure and can
greatly reduce the solution space of the candidate stems. Consequently we
design our local search algorithm (FlexStem) based on this heuristic rule.

2.3 Local search algorithm
To some extent, our local search algorithm is similar to the kinetic pathway
of RNA folding. It progressively builds the RNA secondary structure by
successive addition of maximal stems.

The basic operation of FlexStem is selecting maximal stems from
candidate stem pool and adding them to the potential structure step by step
until no maximal stem can be added to the potential structure to decrease its
free energy. Therefore, we first define a procedure—AddStem(S, T, m, find)
to depict such operation.

AddStem has four parameters: S,T ,m and find. Let S be the candidate
stem pool, T be the potential structure and m be the order of the candidate
stem in S that is considered being added to T . If candidate stem with order
m can decrease the free energy of T , then we move it from S to T and let
find be 1. Else we keep S and T unchanged and let find be 0.

Specifically, FlexStem includes two phases:
The first phase produces the greedy solution. In each step of this phase,

we always select the optimal candidate stem until no next stem can be found
that can decrease the free energy of the current structure.

AddStem (S, T, m, find)

1: for each stem si in S do
2: merge si to T : Ti← T∪{si}
3: compute the free energy Ei← E (Ti)
4: end for
5: get the order of each stem si in S according to the rank of Ei

and suppose the stem sk is the stem whose order is m
6: if ( Ek < E(T ) ) then
7: S←S– {sk}
8: T←T∪{sk}
9: find ← 1
10: else find ← 0

The second phase is a procedure of iterative local search in the neighbors of
each stem in the greedy structure. In this phase, we add some ‘perturbation’
to each stem in the greedy structure in order to find more stable possible
structures. For example, suppose the greedy structure consists of N stems
and we want to perturb the n-th (1 �n � N) stem (the n-th stem that is added
to the greedy structure) in the greedy structure. Then in the n-th step of
this local search phase we will select the suboptimal candidate stem, while
in the other steps we still select the optimal candidate stem. The range of
suboptimal candidate stem that we should consider is decided by the MPR,
which is defined in Section 2.2. The secondary structure with minimal free
energy among all the perturbations is the final predicted RNA secondary
structure. The FlexStem algorithm is described subsequently:

FlexStem Algorithm:

[1] Initialize Step
1: find all maximal stems and put them into the candidate

stem pool S0←{s1, s2, …, sn}
2: initialize the structure T0←φ(there is no stem in I initially)
3: initialize the P← MPR

[2] Greedy Step
(Constructing the greedy structure)
1: S←S0, T←T0, find ←1
2: while find = 1 do
3: AddStem(S,T,0,find);
4: end while
5: Tgreedy←T
6: N← |Tgreedy|, (|Tgreedy| denotes the number of stems in

Tgreedy)
[3] LocalSearch Step

(Iterative local search)
1: for n from 0 to N do (perturbation on each stem in the Tgreedy)
2: for m from 1 to P do
3: S←S0, T←T0, find ←1
4: while (find = 1) do
5: if (|T|= n) then
6: AddStem(S,T,m,find)
7: else
8: AddStem(S,T,0,find)
9: end while
10: Tm,n←T
11: end for
12: end for
13: output the structure Tfinalwith minimal free energy among all

the ultimate structures. ( Tfinal ∈{Tm,n, Tgreedy} and
E(Tfinal) = min{E(Tgreedy), E(Tm,n)}, m∈[1, P], n∈[0,N])
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2.4 Free energy model
In the process of adding stems, FlexStem uses MFE as its criterion to select
stems, because it quantitatively describes the structure’s stability gaining
from forming a new stem and losing from forming a new loop. Therefore,
constructing an appropriate energy model is one of the key factors that
determine the quality of a prediction.

FlexStem does not depend on a specific free energy model. It supports
all types of pseudoknots and may use non-linear free energy functions.
Therefore, in order to obtain high quality, we have adopted the following
energy models.

First, the energy model in FlexStem integrates the complete standard free
energy models and parameters used for pseudoknot-free structures, including
stem and loops as described in Mfold and RNAfold (Mathews et al., 1999;
Serra and Turner, 1995).

Enest=Ehairpin+Estem+Einterloop+Ebulge+Emultiloop (1)

Second, FlexStem’s energy model incorporates some complex but more
accurate energy functions that have not been employed or have been
simplified in many dynamic programming algorithms, such as the multiloop
energy function (Emultiloop′) derived from Jacobson–Stockmeyer theory and
the complete coaxial stacking energies (Mathews et al., 1999).

Enest′ =Ehairpin+Estem+Einterloop+Ebulge+Emultiloop′ +Ecoaxial (2)

Furthermore, to enhance the ability to predict pseudoknots, our energy model
is extended to employ a pseudoknot model (D&P model) that is used by other
well-known algorithms (Dirks and Pierce, 2003; Ren et al., 2005). This model
has a non-ambiguous grammar and is quite general in describing the different
pseudoknots (Condon et al., 2004). In addition, our model is also extended
to include the overlapping pseudoknots which are excluded by D&P model
but are included by R&E model (Rivas and Eddy, 1999) (Fig. 3).

The energy associated with a pseudoknot is given by Dirks and Pierce
(2003):

Epseudo=Pw+PpBp+PnUp (3)

Where Pw is the penalty for introducing a pseudoknot, Bp is the number of
base pairs that border the interior of pseudoknot and Up is the number of
unpaired bases inside the pseudoknot. Pw can be replaced by Pwi or Pwp

according to the type of the pseudoknot described in Figure 3.
Thus the energy of a RNA secondary structure with pseudoknot is:

E=Enest+Epseudo (4)

3 RESULTS
In this section, we present the prediction results of our algorithm in
comparison with the RNAfold (Hofacker, 2003), PKNOTS (Rivas
and Eddy, 1999), PknotsRG (Reeder and Giegerich, 2004), ILM
(Ruan et al., 2004) and HotKnots (Ren et al., 2005) algorithms. For
RNAfold, PknotsRG and HotKnots, the first folding scenario per
sequence of the lowest overall energy is selected.

The accuracy of an algorithm is measured by both sensitivity
and specificity. Let real pair (RP) be the number of base pairs
in the real RNA structure, true positive (TP) the number of
correctly predicted base pairs and false positive (FP) the number
of wrongly predicted base pairs, we define SE (sensitivity) as
TP/RP, and SP(specificity) as TP/(TP+FP). In addition, another two
competing criteria (positive control and negative control) are used
to quantitatively measure the algorithm’s ability to find corrected
pseudoknots in pseudoknotted sequences and to avoid finding
spurious pseudoknots in unpseudoknotted sequences separately
(Dirks and Pierce, 2003).

To illustrate the effect of our local search algorithm in different
energy models, tests are divided into two parts. First, we compare the
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Fig. 3. Illustration of the pseudoknots. (a) A Simple pseudoknot. (b) A
pseudoknot inside a multiloop. (c) A pseudoknot within a pseudoknot. (d)
Overlapping pseudoknots. Nm is the penalty of generating a multiloop, Np is
the penalty of the pair in a multiloop and Nn is the penalty of non-paired base
in a multiloop. The parameters describing features of these pseudoknots are
given in Table 4.

Table 4. parameters describing features of these pseudoknots

Symbol Scoring parameter for Value(kcal/mol)

Pw Generating a new external pseudoknot
(H-type pseudoknot)

7.2

Pwi Generating a pseudoknot in a multiloop 15
Pwh Overlapping pseudoknots 6
Pwp Pseudoknot in another pseudoknot 15
Pp Pair in a pseudoknot 0.1
Pn Non-paired base in a pseudoknot 0.2

results of FlexStem with exact algorithms under the same or similar
pseudoknot-free energy models. Second, using more sophisticated
energy model (integrating unpseudoknotted and pseudoknotted
models), we compare the results of FlexStem with other algorithms,
including exact algorithms and heuristic algorithms.

Finally the efficiency of FlexStem is measured experimentally.

3.1 Prediction results using the same or similar
pseudoknot-free energy model as optimal
algorithms

To evaluate the effect of our heuristic local search strategy, we
first compare the FlexStem (FlexStem1) with RNAfold (RNAfold1)
under the same energy model and parameters [see Equation
(1)]. Then we compare the FlexStem (FlexStem2) with RNAfold
(RNAfold2) and PKNOTS-1.05 under the similar energy model and
parameters [see Equation (2)].

It should be noted that the main difference between the Equation
(1) and (2) is that the latter allows coaxial stacking energy. PKNOTS
also introduces simplified coaxial energies [similar to Equation (2)]
in its dynamic programming program. And for a fair comparison,
the PKNOTS is run with pseudoknots prediction turned off.

The test set includes 500 tRNA sequences and 500 5SrRNA
sequences randomly selected from Sprinzl tRNA database and
5SrRNA database, separately, which are often used as standard
benchmark databases.

As shown in Table 5, FlexStem1 is comparable to RNAfold1

in both sensitivity and specificity with the same energy model
(FlexStem even performs better on tRNAs) and FlexStem2
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Table 5. Summary of the testing result on tRNAs and 5SrRNAs

tRNAs 5SrRNAs

SE SP SE SP

RNAfold1 63 59 62 61
FlexStem1 68 67 63 60
RNAfold2(a) 71 68 58 56
FlexStem2 77 73 62 58
PKNOTS 72 68 42 40

(a) RNAfold2 can allow coaxial stacking energy using –d3 option.

outperforms PKNOTS and RNAfold2 in both sensitivity and
specificity on tRNAs and 5SrRNAs. It can also be observed that
the coaxial energy seems to be more essential for tRNAs than for
5SrRNAs.

Considering the coaxial stacking energy and multiloop energy
FlexStem adopts [see Equation (2)], which are more accurate than
many other algorithms, we in addition test FlexStem on this test set
using the same simplified energy functions used by other algorithms.
From our tests we find that the prediction results of FlexStem,
no matter it adopts the more accurate coaxial stacking energy and
multiloop energy or the simplified ones, are almost the same. This
implies that the current simplification on those two kinds of energies
will not decrease the prediction accuracy in practice.

3.2 Prediction results using more sophisticated model
To evaluate the capability of FlexStem in predicting the
pseudoknotted sequences we extend the free energy model in
FlexStem to support the pseudoknot energy model [see Equations
(3) and (4)] and compare FlexStem with other four algorithms
(PKNOTS, PknotsRG, Hotknots and ILM) that can deal with
pseudoknots.

Experiments are made on pseudoknot-free sequences and
pseudoknotted sequences separately. For a fair comparison, the
PKNOTS and FlexStem are run with pseudoknots prediction turned
on (denoting by a suffix ‘−k’) and PknotsRG-mfe is used.

3.2.1 Prediction results on pseudoknot-free sequences According
to Table 6, FlexStem still shows the best performance in terms
of prediction sensitivity (76 %) and specificity (69 %) on tRNAs.
PKNOTS and PknotsRG perform better on overall negative control.

3.2.2 Prediction results on pseudoknotted sequences The
experiments are performed on three datasets. The first dataset
(Table 7) includes 25 pseudoknotted sequences in different types
from reliable resources.

According to Table 7, FlexStem shows the highest average
sensitivity (84 %), specificity (77 %), as well as the best positive
control ability (55 %), outperforming the other competitive
algorithms.

The second dataset (Table 8) includes the long pseudoknotted
sequences from RNases, tmRNAs and 16SrRNAs. According to
Table 8, the performances of all the tested algorithms are not so good
and are descended with the increase of sequence’s length (however,
FlexStem still performs better than other three algorithms on the
tested sequences). The main reason, we think, lies in that the current

Table 6. Summary of the testing result on tRNAs and 5SrRNAs

tRNAs 5SrRNAs

SE SP NC SE SP NC

PKNOTS-k 75 67 95 40 39 93
PknotsRG-mfe 63 61 92 62 61 90
ILM 68 61 76 64 64 80
Hotknots 66 58 65 61 60 95
FlexStem-k 76 69 90 61 58 89

The tRNA database includes 500 tRNA sequences and the 5SrRNA database includes
500 5SrRNA sequences. ‘NC’ denotes negative control.

energy model and parameters are mostly based on melting studies
on short oligonucleotides (Freier et al., 1986).

For a more fair and general comparison, we additionally test
five algorithms on third dataset (Table 9). This dataset comes from
the PseudoBase, a widely used reliable pseudoknot database (van
Batenburg et al., 2000). PseudoBase includes 16 categories of
pseudoknots, which include all the pseudoknots used as benchmarks
in recent papers (Dirks and Pierce, 2003; Ren et al., 2005; Rivas
and Eddy, 1999; Ruan et al., 2004). After excluding the redundant
pseudoknots (>85 % similarity) and unnatural SELEX pseudoknots
the test set includes 168 pseudoknots (denoted by pk168). This
dataset was also used by a recent algorithm (Huang and Ali, 2007)
as the benchmark dataset.

According to Table 9, FlexStem performs best among the
five algorithms in terms of the sensitivity (80 %) and positive
control (57 %). PKNOTS obtains the highest specificity (73 %). The
experimental results of HotKnots, ILM, PknotsRG and PKNOTS
are also consistent with previous results (Huang and Ali, 2007).

3.3 Running efficiency
The FlexStem algorithm is implemented using C++. The
experiments are performed on a 2 GHz processor with 2 MB cache
size, running Ubuntu Linux. The efficiency of algorithm is evaluated
by time and space cost.

According to Table 10, we can see that FlexStem has the minimal
memory cost among five algorithms. In terms of the time efficiency
FlexStem is comparable to HotKnots and significantly better than
PKNOTS. ILM is the fastest one among the five methods.

4 DISCUSSION AND CONCLUSIONS
In this article, we present a heuristic algorithm, called FlexStem, for
predicting RNA secondary structures with pseudoknots.

From the algorithmic point of view, FlexStem only searches the
local MFE structure in a very limited space. Its improvement on
the prediction performance lies in its greatly reduced local space
constructed by MPR and this space in most circumstances includes
the real structure.

With regard to the pseudoknot model, Hotknots adopts D&P
model that is converted from the R&E model used by PKNOTS.
PknotsRG uses the csr-PK model which is also simplified from the
R&E model, and ILM does not employ any pseudoknot. Based
on the previous work (Condon et al., 2004), the classes of the
pseudoknot models used by those algorithms can be properly ordered
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Table 7. Detail results on sequences with pseudoknots

Name Lens Pair HotKnots ILM PknotsRG PKNOTS-k FlexStem-k

SE SP K SE SP P SE SP K SE SP K SE SP K

alphamRNA 112 24 46 30 0/1 50 33 0/1 46 29 0/1 46 33 0/1 62 43 0/1
APLV 83 22 68 60 1/1 27 26 1/1 86 79 1/1 73 70 1/1 73 67 1/1
BBMV1 116 38 68 68 0/1 79 81 0/1 53 57 1/1 74 72 0/1 100 93 1/1
BBMV2 114 39 79 82 0/1 82 82 0/1 77 83 1/1 77 77 0/1 97 90 1/1
BBMV34 114 39 79 82 0/1 82 82 0/1 77 83 1/1 74 74 0/1 97 93 1/1
Biotin 61 12 83 50 1/1 83 53 1/1 92 58 1/1 58 33 0/1 92 58 1/1
BMV1 134 44 84 86 0/1 86 84 0/1 84 86 0/1 84 80 0/1 86 84 0/1
BMV2 134 44 80 85 0/1 86 84 0/1 80 85 0/1 84 80 0/1 86 84 0/1
BMV34 134 44 84 86 0/1 86 84 0/1 84 86 0/1 84 80 0/1 86 84 0/1
Bt-PrP 45 12 42 38 0/1 42 33 0/1 33 27 0/1 50 46 0/1 100 80 1/1
CCMV1 134 46 80 84 0/1 80 84 0/1 80 84 0/1 80 80 0/1 82 79 1/1
CCMV2 134 46 80 84 0/1 80 84 0/1 80 84 0/1 80 80 0/1 82 86 0/1
CCMV34 134 46 82 86 0/1 82 86 0/1 69 70 0/1 67 67 0/1 84 85 1/1
CYVV 85 24 83 77 1/1 62 65 0/1 83 80 1/1 96 92 1/1 83 77 1/1
EMV 80 22 73 59 0/1 50 50 0/1 73 67 0/1 73 62 0/1 73 64 0/1
Ec_S15 67 17 100 74 1/1 59 62 0/1 76 68 1/1 100 74 1/1 100 74 1/1
HDV_anti 91 25 20 18 0/1 20 17 0/1 20 18 0/1 44 34 0/1 44 34 0/1
HDV 87 28 43 44 0/1 46 43 0/1 96 87 1/1 86 75 0/1 89 74 0/1
MMTV 34 11 100 92 1/1 0 0 0/1 100 92 1/1 100 92 1/1 100 92 1/1
T2_gene32 33 12 100 100 1/1 58 100 0/1 100 100 1/1 100 100 1/1 100 100 1/1
TMV 189 59 54 64 0/4 53 54 0/4 54 62 0/4 53 61 0/4 46 54 0/4
TMVup 84 25 52 62 0/3 52 65 0/3 80 83 2/3 52 68 0/3 84 78 2/3
TMVdown 105 34 68 74 0/2 65 69 0/2 68 74 0/2 94 94 2/2 74 71 1/2
TYMV 86 23 70 70 0/1 83 70 1/1 78 75 1/1 100 92 1/1 83 76 1/1
Tt-LSU-P3 65 20 95 100 1/1 80 80 0/1 85 100 0/1 55 61 0/1 95 100 1/1

Average SE and SP 72 70 7/31 63 63 3/31 74 73 13/31 75 71 8/31 84 77 17/31

Positive Control 23 10 42 26 55

‘K’= (number of correctly predicted pseudoknots)/(expected number of pseudoknots). (Ruan et al., 2004)

Table 8. Detail results on long sequences with pseudoknots

Name Lens Pair HotKnots ILM PknotsRG PKNOTS-k FlexStem-k

SE SP K SE SP K SE SP K SE SP K SE SP K

Methanococcus jannaschii 252 75 73 72 0/1 71 68 0/1 69 68 0/1 * * * 75 71 0/1
Acidianus ambivalens 262 75 61 58 0/1 73 69 0/1 61 58 0/1 * * * 80 73 0/1
Acidianus brierleyi 267 73 62 62 0/1 64 63 0/1 49 47 0/1 * * * 67 67 0/1
Metallosphaera sedula 304 90 43 41 0/2 49 46 0/2 56 53 0/2 * * * 62 62 0/2
Aeropyrum pernix 330 106 25 24 0/1 45 49 0/1 25 24 0/1 * * * 57 54 0/1
tmRNA.E.coli 362 106 49 48 0/4 49 48 0/4 49 48 0/4 * * * 41 41 1/4
16S.E.coli 1542 478 37 36 0/4 37 36 0/4 48 48 0/4 * * * 42 46 0/4

Average SE and SP 50 49 0/14 55 54 0/14 51 50 0/14 * * * 61 60 1/14

‘*’ indicates we were unable to run the algorithm to completion.

as: PknotsRG⊂HotKnots⊂FlexStem⊂PKNOTS. According to
our experiment on pseudoknots, we find that ILM has relatively low
prediction accuracy compared to other ones that employ pseudoknot
models, which may imply that adopting a general pseudoknot
energy model is still important for predicting pseudoknots though
thermodynamic information for pseudoknots is scarce at present.

To further probe the effect of perturbation strategies of FlexStem,
we also compare the prediction results of FlexStem with greedy
structures (structures with no perturbation). We find that though
current FlexStem only allows perturbations on one stem, it can
significantly increase the prediction accuracy compared to greedy
structures (results are described in the Supplementary Material A).

2000



FlexStem

Table 9. Summary of testing results on pk168 set (including 168 sequences
with pseudoknots)

SE SP Positive control

PKNOTS-k 73 73 48
PknotsRG-mfe 76 71 51
ILM 65 60 22
Hotknots 70 69 33
FlexStem-k 80 72 57

Table 10. Performance results for random RNA sequences

Time (h:m:s) and space (MB) cost

Length ILM HotKnots PKNOTS PknotsRG FlexStem
Time Mem Time Mem Time Mem Time Mem Time Mem

40 0.03 0.6 0.06 1.7 14 15 0.03 3.1 0.05 0.5
80 0.03 0.8 9.2 2.0 19:10 48 0.04 6.5 3.23 0.6
100 0.09 0.9 12.3 2.1 1:05:24 95 0.11 7.4 6.3 0.7
200 0.4 1.4 55 35 * * 1.1 9.1 41 1.1
400 3.1 3.4 1:45 98.4 * * 24 14.5 1:31 1.6
800 16.3 12.5 24:24 112 * * 18:23 23.4 25:32 3.1

‘*’ indicates we were unable to run the algorithm to completion for the time or memory
limitation on our reference machine.

It is obvious that enlarging the range of MPR and the number
of perturbation stems in the local search process will help further
decrease the free energy of the solution structure. However, it does
not mean that the prediction accuracy will simply increase in this
way, and what is worse, the prediction accuracy may even decrease
on a larger search space. In fact, we have analyzed the prediction
results of FlexStem on the pseudoknot-free sets and compared
them with the reference structures as well as the optimal (MFE)
structures according to their standard free energies. We find that
the average free energy of the structures predicted by FlexStem is
already smaller than that of the reference structures. The solutions
of FlexStem are closer to the reference structures than the optimal
solution (MFE) structures from the energy point of view in most of
the tests (examples are described in the Supplementary Material B).

The performance of FlexStem may be improved by considering
the following factors in the future. The first factor is still the energy
models. Second, FlexStem has the potential to further improve the
prediction accuracy by allowing simultaneous perturbations on two
or more stems in each structure, though designing the efficient search
algorithm dealing with such cases is also a challenging problem.
In addition, further investigations on current MPR space may help
further reduce the local search space, which may not only increase
the prediction accuracy but also help provide more insights into the
details of RNA folding processes.
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