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Abstract

Image representation has been a key issue in vision research for many years. In order to represent various local image patterns or

objects effectively, it is important to study the spatial relationship among these objects, especially for the purpose of searching the specific

object among them. Psychological experiments have supported the hypothesis that humans cognize the world using visual context or

object spatial relationship. How to efficiently learn and memorize such knowledge is a key issue that should be studied. This paper

proposes a new type of neural network for learning and memorizing object spatial relationship by means of sparse coding. A group of

comparison experiments for visual object searching between several sparse features are carried out to examine the proposed approach.

The efficiency of sparse coding of the spatial relationship is analyzed and discussed. Theoretical and experimental results indicate that the

newly developed neural network can well learn and memorize object spatial relationship and simultaneously the visual context learning

and memorizing have certainly become a grand challenge in simulating the human vision system.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Quite a few psychological experiments [7,10,11,25,27]
have supported the hypothesis that humans cognize the
world using visual context or spatial relationship. Research
on improving efficiency in learning and memorizing visual
context has equally great significance for both theoretic
exploration and practical application. For example, one of
the main applications is object searching or detection,
which is also an important function of the human vision
system. However, in the study of object searching, most
work [9,14,23,29,39] has focused on object-centered detec-
tion, which means, given the task of locating an object in
images, the system is designed as a machine to compare
each image window with the object template. These
e front matter r 2008 Elsevier B.V. All rights reserved.
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methods have dominated the research of object detection.
For example, Osuna et al. [23] used face and non-face
samples to train a face template for face detection.
Schneiderman and Kanade [29] designed a statistical
histogram method for 3D object detection and applied it
to faces and cars. Viola and Jones [39] developed Boosting-
based template method for real-time face detection. Chen
and Yuille [9] implemented a system for text detecting in
natural scenes with AdaBoost. Garcia and Delakis [14]
proposed a face detector using convolutional neural
network. In Refs. [2,26], the authors proposed general
frameworks for face detection and object detection,
respectively. In the first framework of Ai et al., the system
first processed color images through skin color region
segmentation, then used an average face template for those
skin regions to choose face candidates; and finally reduced
false faces from the candidates by a face and non-face
classifier for true face verification. In the second framework
of Papageorgiou et al., the system learned a subset of
overcomplete wavelet base functions from a coarse scale to
a fine scale for object presentation, and search objects from
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Fig. 1. Face-like image patterns in the context of environment and in isolation, respectively.
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shifting windows on images by template matching with
SVM and wavelet features input. It can be learned that the
two general frameworks for face/object detection have a
common characteristic: using the top-down or coarse-to-
fine template matching method which does not utilize the
context between faces and bodies or the spatial relationship
between objects or between object and environmental
features. Isolating an object from its surrounding features
may risk false detection when the object itself cannot
supply enough information for template matching. For
example, humans may have different perceptions of a face-
like image patterns in the context of environment and in
isolation, respectively, which was discussed by Sung and
Poggio [31] in 1998. Fig. 1 illustrates such face-like image
patterns.

Most of the methods above, when used for visual object
search, seldom consider the context between visual
features, which are rather critical for the visual function
of human beings. Only a few researchers have utilized
context for the study of object searching and locating.
Among them, Kruppa et al. [18] made use of local context
to find faces. Paletta and Greindl [24] designed a method to
detect objects with context in video. Strat and Fischler [30]
implemented a context-based vision system, which recog-
nized objects using information from both 2D and 3D
imagery. Torralba et al. [36–38] introduced probability and
statistical framework to detect objects with context.
Besides, visual context is also used in visual perception
and recognition [28] as well as image indexing or retrieval
[6,8,12,16,20,32,33].

One possible reason for most work seldom using context
is that learning context usually requires large memory that
a practical system generally cannot afford. However, as we
mentioned, quite a few of psychological experiments
support the theory that context is the way that humans
cognize the world. Furthermore, when humans perceive an
image, e.g. a human face image, only a few neurons
respond in their visual cortex [40]. This is the strategy of
sparse coding for human visual neural system. Mathema-
tically, sparse coding means that an image can be
approximately represented by a group of sparse coefficients
corresponding to a number of bases or features. Many
approaches have been proposed to find such sparse bases.
For example, Olshausen and Field [22] suggested a strategy
of overcomplete basis set for visual cortex area V1.
Hyvarinen and Hoyer [17] proposed a two-layer neural
network to learn sparse coding for simple and complex cell
receptive fields. Lee and Seung [19] used the method of
non-negative matrix factorization for sparsely representing
parts of objects.
Seldom has research work been found to implement

learning and memorizing spatial relationship in the form of
neural network with sparse coding features. As the human
visual system is one kind of neuronal network, this paper
study this significant question in theory and through
experiments. Three aspects are discussed: (1) design of
sparse coding features, (2) structure of sparse coding neural
network, and (3) efficiency of learning and memorizing
spatial relationship between initial positions and object
positions.
The main contribution of this paper is: (1) a new type of

neural network proposed for sparse coding of visual
context or spatial relationship, (2) a significant simulation
for human visual object searching mechanism, and (3) a
group of experiment results which indicate that the sparse
coding of spatial relationship becomes a grand challenge in
simulating human visual information coding system.
In the following paragraphs, the designed sparse features

are introduced in Section 2; the entire structure of the
sparse coding neural network is given in Section 3; Section
4 discusses the detailed mechanism of spatial relationship
learning and memorizing; in Section 5, experiments on a
practical image database are analyzed; and discussion is
given in Section 6.
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Fig. 3. An example for feature neurons on scale ¼ 1, extracting features

from a receptive field ¼ 2� 2 pixels.

Fig. 2. Two sets of features that are extended from the widely used ones: (a) extended Haar-like features (receptive field ¼ 2� 2 pixels) and (b) extended

LBP features (receptive field ¼ 3� 3 pixels).
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2. Sparse coding features

The reason why most researchers or engineers would
rather not use visual context is perhaps that it requires
too much memory. Studies on how to use concise and
efficient features, such as sparse coding features, seem
quite important. Bell and Sejnowski proved that indepen-
dent components of natural scenes are edge filters [5],
which can be viewed as one kind of sparse bases for images.
Gabor functions are used for modeling the receptive field
of simple cells of the primary visual cortex V1, whose
sparse coding mechanism has been used in image repre-
sentation or early visual information coding [13,15,34].
A set of features called local binary patterns (LBP) used by
Ahonen et al. [1] can be also adapted for image sparse
representation.

We designed two groups of features that are extended
from the widely used features: Haar-like features and LBP
features (Fig. 2a and b), and we extend the former into
several single or integrated scale forms (Fig. 4a–c).

Fig. 2a shows a set of extended Haar-like features for
receptive field ¼ 2� 2 pixels. Two types of features are
given: brightness~f0 and contrasts~f1�~f14. Among them, the
14 contrast features are actually representing three kinds of
geometrical features, which are points, line segments and
arcs with different positions or orientations. A gray small
box in the feature patterns in Fig. 2 represents one
excitatory input with a positive weight and a black box
represents one inhibitive input with a negative weight.

A set of extended LBP features are illustrated in Fig. 2b.
Basic LBP [1] is a kind of binary code for representing
one of 256 patterns for image blocks of 3� 3 pixels.
Original LBP only output a discrete number from 0 to 255
to encode a local image pattern instead of producing a
continuous comparable value. We extend LBP features by
assigning continuous values to them with the following
definition:

f kð
~XiÞ ¼

1

8

X8
j¼1

jxij � xi9j,

where vector ~Xi ¼ ðxi1 xi2 . . . xi9Þ
T represents the ith

image block of 3� 3 pixels and k is a discrete number
among 0–255, which responds to a 8-bit binary code
LBPkð~XiÞ ¼ ðbi1 bi2 . . . bij . . . bi8Þ, where

bij ¼
1 if ðxij � xi9Þ40;

0 otherwise:

�

Fig. 3 shows an example of how a feature neuron on
scale 1 extracts features from a receptive field of 2� 2
pixels. Thus, a feature pattern could be represented by a
vector with a group of weights (here are four weights).
Generally, all weights in each feature vector are normalized
to length 1 for unified feature response or similarity
computation and comparison.
Fig. 4a–c shows three extended Haar-like feature forms

on scales 1–3, which extract average brightness or contrasts
from the output of 1� 1 ¼ 1 (in a receptive field of 2� 2
pixels), 3� 3 ¼ 9 (in a receptive field of 4� 4 pixels) and
7� 7 ¼ 49 (in a receptive field of 8� 8 pixels) feature
neurons on scale ¼ 1, respectively. For the purpose of
sparseness, the first m largest responses from these 15
features are reserved for the next step of information
processing. For the example, m could be set to 2, 10 and 10
for the scales 1–3, respectively. For the extended LBP
features above, m is 1 for its encoding properties.
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Fig. 4. Extended Haar-like features on different scales. (a) Feature neurons on scale ¼ 1, receptive field ¼ 2� 2 pixels, extracting brightness or contrast

features. (b) Feature neurons on scale ¼ 2, receptive field ¼ 4� 4 pixels, extracting average brightness or contrast features from 3� 3 ¼ 9 feature neurons

on scale ¼ 1. (c) Feature neurons on scale ¼ 3, receptive field ¼ 8� 8 pixels, extracting average brightness or contrast features from 7� 7 ¼ 49 feature

neurons on scale ¼ 1.
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The proposed sparse features on different scales (1–3)
compute mean brightness and contrasts from their various
receptive fields (2� 2, 4� 4, and 8� 8 pixels), which have
certain properties of shift invariance. In other words, the
features on scales 1–3 permit a certain degree of shift in the
ranges of 2� 2, 4� 4, and 8� 8 pixels.

3. Sparse coding neural network

As introduced in Section 1, in the field of object
detection, most work focuses on object-centered detection
and only a few researchers use context for object detection.
Here the context means the spatial relationship between
adjacent parts or local objects. For example, the head is
always above the shoulders and the eyes are always on the
face. Moreover, seldom has research work been found to
learn the spatial relationship in the form of neuronal
networks that the human visual system seems to use. We
propose a neural network for learning and memorizing
visual context, which is illustrated in Fig. 5. A related
object search algorithm is given in Fig. 6.
The proposed neural network consists of two parts. One

is a local image content coding structure, which inputs the
local images from a group of visual fields at corresponding
resolutions and memorizes the current local image pattern
with sparse features. The second part is a coding structure
which memorizes the spatial relationship in terms of
horizontal and vertical shift distances (Dx,Dy) from the
center (x, y) of the current visual field to the object position
(x+Dx, y+Dy). The two structures naturally incorporate
into an entire one and cooperate to code local image
patterns and memorize their spatial relationship in a
repeated mode from a global low resolution to a local
high resolution.
Fig. 6 describes the object locating procedure using the

visual context memory. Starting from any given initial
position (x, y), the two parts of the system work together to
perceive and move the local image center or gaze point in a
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Fig. 5. Sparse coding neural network for learning and memorizing spatial relationship (Dx,Dy) from any given initial position (x, y) to the object position

(x+Dx, y+Dy).
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Fig. 6. Object search using visual context memory in the current visual field.
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repeated mode from a global largest visual field to a local
smallest visual field until the system does not move its gaze
point anymore (Dx ¼ 0,Dy ¼ 0).

3.1. Local image content coding part

From the strict point of view, visual context actually
includes two components: local image patterns or objects
and the spatial relationship between them. Local image or
object coding is the indispensable part for visual context
learning. With reference to Fig. 5, this part consists of three
layers of neurons, the first layer—input neurons, the
second layer—feature neurons, and the third layer—coding
neurons. With reference to Fig. 7, the first layer inputs local
images centered with any given initial position (x, y) from
the current visual field. The second layer extracts features
such as brightness and edges. These features are involved in
competition and only sparse winners contribute to the
responses of the neurons in the next layer. The third layer is
composed of coding neurons which memorize different
local image patterns or objects.
For example, for the feature neurons on scale ¼ 1 (Fig.

4a), let vector ~Xi ¼ ðxi1 xi2 xi3 xi4Þ
T represent the ith

image window of 2� 2 pixels and vector ~f ij ¼

ðaj1 aj2 aj3 aj4Þ
T represent the jth feature extracting

pattern for ~Xi, then the feature response rij ¼ f ijð
~XiÞ can be

obtained by the inner product computation:

rij ¼ f ijð~xiÞ ¼o~f ij ;~xi4 ¼
X4
k¼1

ajkxik.

Generally, a neuron is firing only if its response is higher
than a threshold, for example, threshold ¼ 0. Thus, the
actual response of a neuron is

rij ¼
h~f ij ;~xii if ðh~f ij ;~xiiÞ40;

0 otherwise:

(
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Mathematically, these features constitute a set of
non-orthogonal bases in the local feature vector space
for describing image window patterns. For example,
with reference to Fig. 4a, ~f i0 ¼ ð1; 1; 1; 1Þ=

ffiffiffi
4
p

, ~f i1 ¼

ð�3; 1; 1; 1Þ=
ffiffiffiffiffi
12
p

, ~f i5 ¼ ð�1;�1; 1; 1Þ=
ffiffiffi
4
p

, ~f i11 ¼ ð3;�1;
�1;�1Þ=

ffiffiffiffiffi
12
p

, in which the brightness feature vector ~f i0 is
orthogonal to any one of the contrast feature vectors
~f i1�

~f i14. Generally, the brightness feature~f i0 has the largest
response to any image window input ~Xi except that in a few
of cases the contrast feature of ‘‘point’’ or ‘‘arc’’ has the
largest responses. If we select the first two largest respond-
ing features ~f i0 and ~f ik (k ¼ 1–14), then the image window
pattern ~Xi can be approximately reconstructed by a sum of
sparse weighted ~f i0 and weighted ~f ik (k ¼ 1–14), i.e.:

~Xi � bi0
~f i0 þ bik

~f ik,

where bi0 ¼ ri0 ¼ f i0ð
~XiÞ and bik ¼ rik ¼ f ikð

~XiÞ (k ¼ 1–14).

In other words, image window pattern ~Xi can be
represented by two reconstructed coefficients bi0 and bik

or two feature neurons’ responses f i0ð
~XiÞ and f ikð

~XiÞ

(k ¼ 1–14).
From the point of view of feature reduction in pattern

recognition, the first m sparse features ð~f
0

i1;
~f
0

i2; . . . ;
~f
0

imÞ that

have the largest responses ðr0i1 ¼ f 0i1ð
~XiÞ; r0i2 ¼ f 0i2ð

~XiÞ; . . . ;

r0im ¼ f 0imð
~XiÞÞ to the image window pattern ~Xi could

approximately describe or represent the ~Xi at the cost of
minimum reconstruction error. Generally, m is less than
the pixel number or dimension of the image window input
~Xi. As illustrated in Fig. 4a, the size of the input image
window or receptive field of feature neurons is 2� 2 ¼ 4

pixels. Thus, the dimension of image window pattern ~Xi is
4. For the purpose of producing sparse features, m is set as
2, which is less than the number of pixels of the image

window input ~Xi, i.e.:

~Xi �
Xm

j¼0

b0ij
~f
0

ij .

Fig. 7 shows the local image coding structure in which
the kth coding neuron receives inputs weighted with wk,ij
Fig. 7. Local image coding structure.
from the ijth feature neuron on scale 1 with response r0ij

for their ith image window input ~Xi. So the coding

neuron’s response Rk ¼ F ð~XÞ, for the local image ~X ¼

ð~X1; ~X2; . . . ; ~XN Þ which is composed of the image window

input ~Xi, is

Rk ¼ F ð~XÞ ¼ F ð~X1; ~X2; . . . ; ~XNÞ

¼
XN

i¼1

Xm

j¼1

wk;ij f
0
ijð
~XiÞ ¼

XN

i¼1

Xm

j¼1

wk;ijr
0
ij ,

where the weights wk,ij are acquired in the learning stage
according to Hebbian rule wk,ij ¼ aRkrij, in which Rk is set
to 1 to represent the response of the kth coding neuron who
is generated for memorizing a new local image pattern, and
a is also set to 1 for simplification. All the weights wk,ij are
normalized to length 1 for unified similarity computation
and comparison.
Similarly, replacing the feature on scale 1 in Fig. 7 with

other ones in Figs. 4b and 4c will produce the same results.

3.2. Spatial relationship coding part

As Fig. 8 shows, the spatial relationship coding structure
consists of two layers of neurons: coding neurons and
position neurons. The coding neurons, as discussed in
Section 3.1, memorize different local image patterns. The
position neurons, divided into Dx- and Dy-position
neurons, represent the object position (x+Dx, y+Dy)
away from the center of the current visual field at a
corresponding resolution.
For the local image input from the current visual field,

there must be a coding neuron with a maximum response,
which win the competition from all the coding neurons and
represent the current local image pattern. In the learning
stage, if the kth coding neuron has the maximum response
and the object position is (x+Dx, y+Dy) from the center
of the current local image, two connections will be
generated between the kth coding neuron and two position
neurons: Dx- and Dy-position neurons (see Fig. 8). The
weights wk,Dx and wk,Dy on the two connections could be
learned by the Hebbian rule.

4. Mechanism of perceiving, learning and memorizing

spatial relationship

The system perception of object positions includes a
series of procedures of local image pattern recognition and
object position prediction according to the learned visual
context, which begin with an initial center position (x, y)
and stop at a finally predicted end position (Dx ¼ 0,
Dy ¼ 0). The procedure for local image pattern recognition
is achieved by the coding neuron producing the largest
response among all the coding neurons and becoming a
winner through competitive interaction. The procedure for
object position prediction is achieved by a winner coding
neuron which activates Dx- and Dy-position neurons
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according to the learned context. The two procedures
cooperate to recognize and predict in a repeated mode
from a global low resolution to a local high resolution until
the system’s position prediction stays unchanged (Dx ¼ 0,
Dy ¼ 0).

The learned visual context is preserved in the connection
weights of the neural networks. Hebbian rule is the
fundamental learning rule, i.e., wij ¼ aRiRj, where wij is
connecting weight; a is the learning rate; Ri and Rj are
responses of two neurons that are connected mutually. The
learning algorithm is as shown in Fig. 9.

From the above-mentioned learning algorithm, it can be
learned that the neural network memorizes ‘‘support
weight vectors’’ that are distributed on the borders between
different local object classes. With reference to Fig. 10,
there are four local object classes learned with weight
vectors ~W1, ~W2, ~W3, and ~W4. For a local image ~X, it is first
classified to one object class according to its projections to
the four class vectors, and then is mapped to object
positions according to the connections from coding
neurons to position neurons. The number of such ‘‘support
weight vectors’’ is dependent on the local object categories
in images. Since this number may be rather large, sparse
Fig. 8. Spatial relationship coding structure.

LOOP1   Take next gaze point from all given init

     LOOP2 Take next visual field scale from Max

        1. Predict the object position (horizontal dist

        2. If prediction result is not correct, generate
else go to 4; 

        3. Compute connection weights between the
feature neurons and that between the new 
 neurons with Hebbian rule wij =�RiRj;

        4. Move the current gaze point (visual field c
current visual field 

     END LOOP2 

END LOOP1 

Fig. 9. The learning algorithm for m
coding should be considered. Quite a few physiological and
simulation experiments [17,19,22,40] also indicate that the
human visual system uses sparse coding for visual
perception and cognition.

5. Experiments

The neural network is applied to coding the spatial
relationship between human facial features and environ-
mental features, for example, between the given initial
positions and the eye center. It is carried out on the still
face image database of the University of Bern [35], which
includes totally 300 images (320� 214 pixels) with 30
people (10 images each person) in 10 poses. Fig. 11
illustrates the first ten 10 images.

5.1. Coding structures

We designed five coding systems using extended LBP
features, extended Haar-like features on three scales and a
multi-scale features which integrated three scales of
extended Haar-like features, respectively. A group of visual
fields on five different scales (16� 16, 32� 32, 64� 64,
ial gaze points  

imum to Minimum 

ance and vertical distance);  

 a new coding neuron (let response = 1);  

 new generated coding neuron and lower  
generated coding neuron and position 

enter) to the position of the object in the 

emorizing spatial relationship.

Fig. 10. Visual context learning in terms of support weight vectors

memorizing.



ARTICLE IN PRESS

Fig. 11. Examples from face database of the University of Bern (320� 214 pixels).

Fig. 12. Training for memorizing eye center positions from a group

ofinitial positions in even distribution.

Fig. 13. Testing for predicting eye center positions from a group of initial

positions in random distribution.
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128� 128 and 256� 256 pixels) are used to input local
images from the training and test images (320� 214 pixels).
For each scale or resolution, with reference to Fig. 7, there
is a corresponding 16� 16 input neuron array in common
but with different intervals of 1, 2, 4, 8 and 16 pixel(s). So
there are totally 5� 16� 16 ¼ 1280 input neurons in the
first layer.

With reference to Fig. 4, the sizes of the receptive fields
for extended LBP features are 3� 3 pixels. There are 256
types of such features for input neurons at five resolutions,
thus there are totally 256� 5� (16�2)2 ¼ 50,175 feature
neurons for the first system, in which only 50,175�
(1/256) ¼ 980 neurons (the first m largest responding
neurons, m ¼ 1, see Section 2) win the competition. The
sizes of the receptive fields for extended Haar-like features
are 2� 2, 4� 4 and 8� 8 pixels, respectively, each of which
has 1/2 overlap between neighboring receptive fields. There
are 15 types of such features for input neurons at five
resolutions, thus there are totally 15� 5� [((16/2)�
2�1)]2 ¼ 16,875, 15� 5� [((16/4)� 2�1)]2 ¼ 3675, 15� 5�
[((16/8)� 2�1)]2 ¼ 675, and 16,875+3675+675 ¼ 21,225
feature neurons, respectively, for the rest of four systems,
in which only 16,875� (2/15) ¼ 2250, 3675� (10/15) ¼
2450, 675� (10/15) ¼ 450 and 2250+2450+450 ¼ 5150
neurons (the first m largest responding neurons, m ¼ 2, 10
and 10, see Section 2) win the competition and contribute
to activate the coding neurons in the third layer.

The number of the coding neurons in the third layer is
dependent on natural categories of local image patterns
that the system learned. The number of position neurons in
the fourth layer is 2� 16 ¼ 32, which represents 16
positions in x- and y-directions, respectively, and corre-
sponds to 16� 16 input neuron arrays for all the five visual
fields in the first layer.

5.2. Training and testing

Two experiments for each system, totally 10 experiments
were done on the face database of the University of Bern.

As illustrated in Figs. 12 and 13, training was with a
group of initial positions in even distribution while testing
was with a group of initial positions in random distribu-
tion. Given an initial position, the system was trained or
tested to memorize or search the eye centers.
In the first experiment (#1) for each system, 30 images of
30 people (one frontal image each person) were trained
with 368 initial gaze point positions on each image, and the
rest of 270 images were tested at 48 random initial gaze
point positions on each image. In the second experiment
(#2) for each system, 90 images of nine people (10 images
each one) were trained with 368 initial gaze point positions
on each image, and the rest of 210 images were tested at 48
random initial gaze point positions on each image. The
average locating error, the number of local object
categories coded, and the number of connections between
feature neurons and coding neurons are listed in Table 1.
Table 1 shows that the performance of the system with

extended Haar-like features is better than that with the
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Table 1

Performances of the first two systems (M: million)

System (sparse feature

used)

No. of feature

neurons

No. of coding neurons No. of connections between

feature neurons and coding

neurons (M)

Average locating error (pixel)

#1 #2 #1 #2 #1 #2

Extended Haar-like on

scale 1

2250 6026 18,988 13.5585 42.723 5.47 8.25

Extended LBP 980 3397 10,511 3.32906 10.30078 8.23 10.46

Table 2

Performances of the last four systems using extended Haar-like features (M: million)

System

(extended

Haar-like

feature scale)

No. of feature

neurons

No. of coding neurons No. of connections between feature

neurons and coding neurons (M)

Average locating error (pixel)

#1 #2 #1 #2 #1 #2

1 2250 6026 18,988 13.5585 42.723 5.47 8.25

2 2450 5724 16,532 14.0238 40.503 5.19 8.84

3 450 6574 20,374 2.9583 9.1683 7.97 14.89

Multi 5150 5961 18,879 30.6992 97.227 5.52 8.30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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1

Scale 1
Scale 2
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Multiscale

10 19 28 37 46 55 64 73 82 91 100

Fig. 14. Test results of experiment 1 using extended Haar-like features.
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extended LBP features. The reason is that the latter
produces too few coding neurons for visual context. From
Table 2, it can be learned that the systems with extended
Haar-like features on scales 1, 2 and multi-scale have
almost the same average locating error. However, the
system with multi-scale features have generated 30.6992
million and 97.227 million connections between feature
neurons and coding neurons, respectively, in experiments 1
and 2, which are far more than that of the systems with the
features on scales 1 and 2. Although the system with the
feature on scale 3 produced much fewer connections, its
average locating error is about 2 and 6 pixels higher than
that of the other three systems, respectively. From the
comparison, it can be concluded the extended Haar-like
features whose receptive field is larger than 4� 4 pixels
contribute little for efficiently coding of visual context,
which indicates that the features with larger receptive fields
have poorer coding ability for the spatial relationship.

Figs. 14 and 15 show the statistical results for eyeball
center searching by the last four systems labeled respec-
tively with the feature scales they used, in which the
horizontal axis represents the percentage of the distance
between the searching results and the ground truth over the
distance between the actual left and right eye centers. The
vertical axis represents the accumulative correct locating
rate. From the two figures, besides the similar conclusion
from Table 1, it shows that experiment 1, where training
and testing faces are in different poses from same persons,
is better at generalization than experiment 2, in which
training and testing faces are from different persons.

To simulate human retina, five overlapped visual fields
(16� 16, 32� 32, 64� 64, 128� 128 and 256� 256 pixels)
with a common center are designed in the object searching
system. The system locates the object (eye center) in a
sequence of five steps that are from the largest visual field
to the smallest visual field. This dependence leads that the
location error in the last visual field could be transferred or
accumulated in the successive locations in next visual fields.
As a result of limited training images (30 and 90 images for
experiments 1and 2, respectively), the system’s search
performance sometimes cannot be avoid falling to local
minimum. This problem could be solved by increasing the
number of training images that has the similar distribution
with the test images. Another possible solving method
could be tried by integrating five visual fields into an entire
visual field and searching object on the basis of this
integrated visual field.
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6. Discussion

Visual context is relative to the spatial relationship
between local image patterns or objects. This paper
proposed a novel and feasible type of neural network for
coding and representing such context. Because learning
and memorizing visual context indirectly become the
representation for various local objects in images, the
coding quantity is positively proportional to the number of
these local objects. In the experiments in Section 5, the first
system generated 6026 and 18,988 local object categories
with about 13 and 42 million connections for memorizing
spatial relationship from the initial positions to the object
position, which seems rather large for the images with some
human heads in the blank background. Similar results can
be found in other systems. For the arbitrary object images
with unlimited backgrounds, it can be inferred there will be
larger number of local image coding neurons generated.
Dose the human visual system produce so many coding
units for visual perception and cognition? What sparse
features are used by the human visual system? Does the
human brain work as the sparse coding neural network we
described here? It indicates that visual context or spatial
relationship coding has certainly become a grand challenge
in simulating the human vision system.

To face this challenge, in the future studies, the selective
attention mechanism [3,4,21] can be introduced as a preceding
procedure for the spatial relationship coding. It is a data-
driven method for initial object or gaze point selection, which
is different with the task-driven method in this paper and
maybe helps to decrease the coding quantity by merging a
large number of initial evenly distributed object positions to
much less initial attentive object positions.
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