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Abstract: Using Godunov-type scheme with water level-bottom topography formulation, the    
2-D shallow-water equations with bottom topography can be solved. The Riemann solution of 
dry bed problem is applied to solve moving boundary. Based on verification of the typical 
shallow transcritical flows(Pan et al., 2003), the mathematical model is applied to simulate the 
formation, evolution and dissipation of the tidal bore on the Qiantang River. A good agreement is 
made between the computed and field measurements, and it also numerically replicates the 
phenomena of the intersecting, reflection of the tidal bores, line-type tidal bore, which leads to 
more understanding about the tidal bores on the Qiantang River. 
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1. INTRODUCTION 
Hangzhou Bay, which is the bay of Qiantang Estuary, is a unique funnel shape bay. The 

Bay mouth is about 100km wide, narrowing upstream to 22 km wide at the head of the Bay, 
Ganpu, which is 89km away from the Bay mouth. With rapid narrowing, the tidal range is 
increased by up to 75% at Ganpu, and the maximum observed record is 9.0m. From Ganpu 
goes upstream, there is a prodigious sand bar along the river, and it leads water depth decrease, 
and the shallow-water effect increase, as a result, it makes tidal wave severely deform, and 
finally develop Qiantang Bore, which is the most spectacular one in the world. 

The tidal bore is a local phenomenon and a part of tidal wave. There is complex structure 
within the tidal bore at the range of several times of water depth before/after the bore during a 
few minutes when tidal level rises suddenly (Pan et al., 1994; Wan, 1996; Lin et al., 1998). 
On the other hand, tidal wave period is more than 12hours, and tidal wave length is hundreds 
of kilometers, compared with the local scale of the tidal bore, there is several orders 
difference of magnitude. The tidal bore is usually simplified to be a strong discontinuity 
without thickness when we study the macro-scale problem. So the discontinuity-capturing 
method should be taken firstly when numerically simulating the tidal bore, which is required 
to choose high stability and resolution for the computational scheme, as well as the other 
requirements such as conservation of physical variables, accuracy, etc. 

If the bottom topography and friction effect are negligible, the system of shallow-water 
equations is homogeneous, which is similar to Euler equation in aerodynamics, so a lot of 
standard shock-capturing methods that are well developed in aerodynamics can be applied to 
solve shallow water equations. Since 1980s, Zhao(1985), Xin(1991), Tan et al.(1995), 
Wang(1998), Su et al.(2001) have studied the numerical simulation of the tidal bore by using 
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these shock-capturing methods, and made a lot of progresses. All the work helps us 
understand more characteristic of this kind of flow phenomenon, the tidal bore. 

However, bottom topography always exists, especially in the Qiantang Estuary, there is a 
large sand bar along the river, so the bed elevation varies greatly. Moreover, if bottom 
topography is negligible, it leads to “unbalanced solutions” that the stationary flow solution 
cannot be gotten even if the stationary initial condition and boundary condition are given (Xu, 
et al., 2002). Therefore the source term must be taken into account, especially the treatment of 
bottom topography, to keep the solutions balance. 

When the shallow water equations with source term are solved with Godunov-type scheme, 
some new techniques are needed to keep the local Riemann problem hold, because the 
corresponding Riemann solution with source term is not available yet. Zhou, et al. (2001), Hui 
and Pan (2003) developed “Surface Gradient Method” and “Water Level-bottom topography 
Formulation (WLF)”, respectively, which are all verified by the typical cases. In this paper, 
WLF Method is applied to numerically simulate Qiantang Bore, and further testing is 
performed compared with the observed tidal bore data in September 2000 (Lin, et al., 2002). 

2. THE GOVERNING EQUATIONS AND THEIR SOLUTION 

2.1 THE GOVERNING EQUATIONS 
In order to simulate flows in complex plane-shaped domain, a transformation of coordinates 

is introduced from ( )yxt ,,  to ( )ηξ ,,t  
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With the transformation (1), the arbitrary quadrilateral cells on ( )yxt ,,  can be 
transformed to rectangular cells on ( )ηξ ,,t . Here, A, B, L, M are calculated with 
geometric method. The unsteady 2-D shallow water equations can be transformed into the 
following conservative form: 
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in which, u and v are x- and y-directions velocity components, respectively; h is water 
depth; g is acceleration due to gravity; b is bottom elevation; xfS 、 yfS  are x- and y-
directions friction forces, respectively; and  

BLAM −=∆                 vLuMI −=               uBvAJ −=  
It can be proven that the governing equation (2) is still hyperbolic (Hui et al., 2002). 
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2.2 OPERATOR SPLITTING AND GODUNOVE-TYPE SCHEME 
In ( )ηξ , -plane, the equation (2) can be discretized using finite volume method to 
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where the subscripts i and j represent the cell numbers in ξ - and η - directions, respectively; 
superscript n is the number of time step; ξ∆ and η∆ are ξ - andη -directions space step, 
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jjj ηηη ; λ∆ is time step; F and G are the numerical flux at ξ - and η - 

directions cell interfaces, respectively. In Godunov-type scheme, F and G may be constructed 
from the corresponding solutions of Riemann problem. 

Using Strang splitting method, the 2-D problem is splitting into 2 1-D problems in ξ - and 
η - directions, then 
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where, ξ
λ∆R  and η

λ∆R are operators of 1-D equations in ξλ − plane and ηλ − plane, respectively. 
If ξ

λ∆R  and η
λ∆R  have second order accuracy in space, then equation (4) will have the same 

order in space. 
If nonhomogeneous terms are removed, Riemann problem in ξλ − plain is simplified to 
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LE  and RE  are constant, ω  is normal fluid velocity. Riemann problem in ηλ −  plane is 
similar to that in ξλ −  plane. The solution consists of at most four uniform flow regions, 
separated by three elementary waves: a shock (or expansion), a contact line, and expansion 
(or shock). 

2.3 RIEMANN SOLUTIONS OF DRY BED 
Riemann solutions of wet/dry bed can be given as following. 
If dry bed is on right side, 
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in which, Ed denotes dry bed, then the solution of Riemann problem is 
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If dry bed is on left side, then 
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The dry bed in the middle is not considered here, because this case will not happen in the 

natural river channel generally. 

2.4 WATER LEVEL-BOTTOM TOPOGRAPHY FORMULATION 
Because bed elevation is a function of x, and there are nonhomogeneous terms in its 

corresponding Riemann problem, it is difficult to get solution. Bed elevation is approximated 
by the average value of its adjacent cells, that is 

, 1 1
1 ( )
2

i i i ib b b+ += +                                                       （6） 

Then an approximate Riemann problem is formed, it also can be solved with the traditional 
method.  

In order to guarantee the well-balanced computational results, bed slope term in equation (3) 
must be discretized in central difference method, and water depth of Riemnn solution is used, 
then the pressure term and bed slope term can be well balanced in both ξ  and η  directions. 

3. NUMERICAL SIMULATION OF DAM BREAK WAVE 

3.1 DAM BREAK WAVE ON NON-FLAT BED 
The first example is about dam break problem on non-flat bed. Bed elevation is 

( ) 1.398 0.347 tanh(8 4)b x x= − −  
And the initial conditions are: 
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The results at t=0.08s are shown in Fig.1. It is clearly shown that the model in this paper 

has strong ability of shock-capturing.  
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Fig. 1a  Water level of dam break wave on non-flat bed 
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Fig. 1b  Fluid velocity of dam break wave on non-flat bed 

3.2 DAM BREAK WAVE ON DRY BED 
The second example is dam break problem on dry bed. The computing domain is 0-100m, 

and the initial condition is 
( )

50
0.0,10
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≥

==
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There are 200 computational cells, and time step is 0.01s. The comparison between the 
numerical solution and analytical solution at time t=2.5s is shown in Fig.2. A good agreement 
is made in water level between the numerical solution and the analytical solution. But there is 
much difference between computational velocity and the analytical one in the front of dam 
break wave. The reason is that the water depth is very small, but the fluid velocity is very 
large, so Fr number is more than 10,000. It is difficult to simulate this case, but the result is 
better than Vincent’s(2001). 
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Fig. 2a  Water level of dam break wave on dry bed 

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

Distance(m)

W
at

er
 le

ve
l(m

)

Numerical solution

Exact solution

 
Fig. 2b  Fluid velocity of dam break wave on dry bed 

 

4. NUMERICAL SIMULATION OF QIANTANG BORE 
The large-scale observation of tidal bore on the Qiantang River was organized in 

September 2000, from Hydraulic Power Station of Fuchun River to the cross-section of 
Jinshan in Hangzhou Bay, which includes runoff reach, estuary reach and part of current 
reach. Many tidal gauges were set up along the Qiantang River. The tidal level was observed 
continuously during half a month and was recorded at every 1–2 minutes when the tidal bore 
passes by the station. During the period of observation, typhoon “Sangmei” attacked the 
region, and it led autumn spring tide higher.The observed maximum tidal range is 7.72m at 
Ganpu.Based on the observation, more cognition about the propagation rule of Qiantang Bore 
can be gained, and it can provide the detail data for the study of numerical simulation. The 
verification of computational model is based on the data (Lin, et al., 2002). 

4.1 COMPUTATIONAL CONDITIONS 
A grid of 960×27 cells is laid over a region from Ganpu with 22km width to Changqian 

with 2km width over a distance of 72km, as shown in Fig. 3. The minimum distance of cell is 
60m. Digital topography is generated using the map of July 2000. And the flow is computed 
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for three spring tides on 16-17 September 2000. The Manning coefficient is 0.004–0.005 for 
flood tide and 0.006–0.013 for ebb tide. Time step is 2s.  

 

 
Fig. 3  Qiantang Estuary 

4.2 BOUNDARY CONDITION TREATMENT 
The normal velocity is set to zero on the solid-wall boundary. Using the theory of image 

reflection, a Riemann problem on solid-wall boundary can be solved, which may be done by 
employing a “ghost” cell outside the domain that is symmetric to the cell inside domain to 
construct a Riemann problem on solid-wall boundary. 

The observed tidal level of the upstream and downstream water boundary is chosen as the 
boundary condition. The velocity of the corresponding point on the water boundary can be 
solved using 1-D characteristic difference method. There are much shoals in the Qiantang 
Estuary, so the moving boundary technique has much effect on the computational results. So 
Riemann problem in dry bed is constructed to do it. 

4.3 COMPUTATIONAL RESULTS 
There are seven tide gauges in the computational field. The hydrograph of computational 

result and observed data in Yanguan gauge can be seen in Fig.4, and the computational results 
show good agreements with the observed data. 

The velocity is more than 3m/s in open boundary, Ganpu, where the observed velocity is 
available. The maximum computational velocity of flood tide and ebb tide as well as velocity 
process show excellent agreement with the observed data. 
 

 
Fig. 4  Tidal level at Yanguan gauge 
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The computational results replicate the formation and development of the tidal bore. Table 
1 shows water level changes at each tide gauge within a few minutes when the tidal bore 
passes by. Fig.5 is water surface profile along the channel at different moments. At the 
location downstream where the Cao’e River flows into the Qiantang River, water level jump 
of several centimeters height can be seen when flood tide front arrives. Here may be 
considered as the formation site of the tidal bore, then the height of the tidal bore increases 
gradually towards upstream. When the tidal bore gets to the Yan’guan station, the height of 
the bore reaches the highest one, of 1.83 meters increasing within one minute, then the bore 
height decreases gradually afterwards because of dissipation. It is shown that the tidal bore 
reaches the highest one at Daquekou station from the observed data. This is different from the 
computational result, and it may be caused by local topography approximation. During the 
observation, there is a mid shoal along Daquekou and a deep channel is near to the bank, so it 
is difficult to approximate the local topography in the model. 

 

 
Fig. 5  Water surface profile along the channel at different moments 

 
Table1  Tidal level and its changes in representative locations within five minutes 

after tidal bore arrival                                                            unit: m   

Cangqian Sigongduan Yan’guan Daquekou 
At the mouth 

of Cao’e 
River Time (minute) 

Tidal 
level 

Chan
ge 

Rise 
range

Chan
ge 

Tidal 
level

Chan
ge 

Tidal 
level 

Chan
ge 

Tidal 
level 

Chan
ge 

0 4.79  4.1  2.78  1.13  -0.41  
1 5.5 0.71 4.93 0.83 4.61 1.83 1.16 0.03 -0.37 0.04
2 6.34 1.55 5.36 1.26 4.78 2 1.83 0.7 -0.19 0.22
3 7.02 2.23 6.58 2.48 4.94 2.16 2.7 1.57 0.27 0.68
4 6.76 1.97 6.49 2.39 5.21 2.43 2.84 1.71 0.72 1.13
5 6.65 1.86 6.4 2.3 5.35 2.57 2.83 1.7 0.94 1.35

Observed change in 4–6  1.7  2.2  2.6  2.9   
 
Because the technical difficulties make it difficult to survey the data about the velocity 

around the tidal bore, the lack of the observed data leads us to know little about the 
characteristic of velocity round the tidal bore. We analyse the velocity along the river from 
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the computational result only. The velocity in time at the middle of Yan’guan’s section is 
shown in Fig. 6. 
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Fig. 6  Velocity in time at the middle of Yan’guan’s section 

 
According to the computational results, the contour of maximum velocity is plotted in Fig. 

7. The maximum velocity in each place appears in the process of flood tide. Totally, the 
maximum velocity reaches 3–4m/s in the open boundary at Ganpu, then the velocity increases 
gradually upstream and gets the extreme one around Daquekou, where the velocity is more 
than 6m/s, then afterwards the velocity decreases a little. This process is in accordance with 
the height change of tidal bore. 

As shown in Fig. 7, there is an area of high velocity, where the velocity is more than 7m/s, 
and the channel bends severely, for example, in Ershigongdaun and in the bank opposite to 
Laoyancang. The velocity reaches the highest one of 9.68m/s near Ershigongduan. This 
phenomenon is different from the others that high velocity happens in the concave bank of 
river channel. This phenomenon that the velocity in the convex side is much higher than in 
concave bank when the tidal bore passes has been verified in physical model. 

From our numerical experiences, one of the great advantages of using Godunov-type 
scheme in the model is to simulate the high velocity flow successfully around the tidal bore. 
The maximum velocity reaches 9.68m/s in our computation. In history, the highest observed 
recorded of velocity is 12m/s, which provides more and less supports to our numerical results. 
And we think, that the vertical average velocity reaches 9–10m/s happens possibly in the 
strong tidal bore reach in the Qiantang river. 

 

 
Fig. 7  The computational maximum velocity contour in Qiantang Estuary 
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According to our experiences, the flood velocity increases quickly and reaches the highest 
one after10-20 minutes. This is called as “high-velocity water” practically. This phenomenon 
is also seen in the computational results. Table 2 shows the sustaining time of the high 
velocity at different locations. From the table,  “high-velocity water” appears in 9–40 minutes 
after tidal bore arrivals and it is not same at different locations. The tide somewhat possesses 
the characteristic of standing wave in the downstream Ganpu, the maximum flood velocity 
will appear in about 2 hours after the low tide. And it goes upstream, the maximum velocity 
appears earlier and earlier, for example, it only takes 9 minutes after the low tide around 
Sigongduan. 

 
Table 2  High velocity and its sustaining time at representative locations 

Place high flood 
velocity(m/s) Appearing time Sustaining time of high velocity of 

more than 5.5m/s (minute) 
At the mouth of 

Cao’e river About 5 40 minutes after 
flood tide appears 0 

Daquekou >6 19 minutes after 
flood tide appears 8 

Yanguan >6 15 minutes after 
flood tide appear 33 

Sigongduan >6 9 minutes after  
flood tide appears 16 

 
Sustaining time of high velocity has to relate to the maximum velocity. The sustaining time 

is more than half an hour at Yanguan location when velocity is more than 6m/s (Fig. 8). 
During the propagation of tidal bore, some special horizontal patterns of the tidal bore 

appear, which are so called as “tidal bore sceneries”. The model replicates some of “tidal 
sceneries”. The tidal bore covers the cross-section around Yanguan, moving forward orderly, 
it is called as “a line-shaped tidal bore” (Fig.9). Then the tidal front curves gradually after 
passing by Yanguan. Bore reflections appear in many places when the tidal bore propagates 
and this phenomenon is called as “returning tidal bore”. “Returning tidal bore” is well known 
at the location of Laoyancang, where the bore reflects obviously and the difference of water 
levels between two banks may reach more than 3m, as seen in Fig.10. Fig.11 shows the 
intersections of tidal bores from Jianshan to Ershigongduan, which is called as “intersecting 
tidal bore”. So it is shown clearly that the model in this paper can simulate the macro-scale 
property of the tidal bore successfully.  

 

 
Fig. 8  The tidal level and velocity in one hour after tidal bore arrivals 



 109

5m/s

Yanguan

 
Fig. 9  Velocity at the moment when tidal bore appears in Yanguan reach 

 

5. CONCLUSION 
In this paper, the mathematical model is applied to simulate the formation, development, 

propagation, and dissipation of Qiantang Bore successfully by using Godunov-type scheme 
with WLF method. It can replicate the typical horizontal patterns of the intersecting, reflection 
of tidal bores and a line-shaped tidal bore in the processes of its propagation. Totally the 
model can simulate macro-scale properties of the tidal bore very well. From the experience, 
the progress in numerical simulation can lead more cognition of the tidal bore. 

Because of the technical difficulties for survey, we know little about the characteristic of 
velocity near the tidal bore. Now combined with practical experience, the model provides 
detailed information for the study of tidal bore. In fact by this model, we have learnt more 
characteristic about the tidal bore. 

 

 
Fig. 10  Tidal level contour at the moment when tidal bore appears in Laoyancang reach 
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Fig. 11  Tidal level contour at the moment when tidal bore appears in Daquekou reach 
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