
 742

 
 

APPLICATION OF A BOUSSINESQ WAVE MODEL 
 

Hanbin GU 1,2 Yanbao LI 1 Shaowu LI 1 & Luwen QIE 1 

1  School of Civil Engineering , Tianjin University, Tianjin 300072 China; 
2  Tianjin research Institute of Water Transport Engineering , Tianjin 300456 China 

Tel.: 25795508-271 E-mail Hanbin.gu@163.com 
 
 
Abstract: The numerical wave generating and wave breaking are introduced in simulation of 
wave transformation based on fully non-linear Boussinesq equations. Non-reflection wave 
generating is achieved by adding a source function term into a continuity equation in the wave 
making region. The value of δ  in source function with variation of relative water depth and 
wave height is found. Then the linear superposition method is used to simulate irregular wave, 
and is verified by the autocorrelation method of wave spectrum estimation. The relationship 
among the parameter t∆ , m and N is discussed in spectrum estimation. In the point of wave 
breaking transforming turbulence energy, wave breaking terms expressing this transform are 
added into momentum equations to simulate wave transformation in the surf zone and the 
improved wave breaking model is tested by experimental data. 
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1. INTRODUCTION 
In recent decades, much wave motion issue in coastal engineering is simulated by the 

Boussinesq type equations. After the standard Boussinesq equations derived by Peregrine
（1967）, which had two major limitations, many researchers such as Witting 1984, Madsen 
1992, Nwogu 1993, Ge Wei and Kirby 1995, Agnon 1999, Zou Zhili, Lin Jianguo, Zhang 
Yonggang have improved the Boussinesq type equations in dispersion and non-linearity to 
extend it to intermediate water depth and to simulate the wave deformation of diffraction, 
refraction, reflection, shoaling and breaking. A lot of works and applications of the 
Boussinesq type equations have been done in coastal engineering, for example, Li Shaowu, 
Gu hanbin, Zhu Liangsheng, Liu Shuxue et al. have done many works in this aspect. 

The numerical wave generating is important in a wave model. The often used source 
function wave generating method can avoid reflection by the wave generator region. In this 
paper, we studied the adoption of the coefficient in this method which is based on the fully 
nonlinear Boussinesq equations (Wei and Kirby 1995), and how to generate irregular waves 
using this method, then we analyzed the irregular wave spectra from autocorrelation function, 
and verified this method’s validity. It is useful ,in fact, that a wave breaking model is 
introduced into the Boussinesq equations, because wave breaking is a nature phenomena near 
sea shore. In this paper, an improved wave breaking model is proposed and is applied to the 
same condition as Sato’s flume tests. It is good agreement that the wave height and averaged 
water level in the surf zone by numerical tests are compared with experimental data. 

1.1 NUMERICAL WAVE GENERATOR 
There are two kinds of wave-making method, which are boundary wave-making method 

and inner wave-making method. In the former one, the boundary can be made absorbable for 
the weakly reflected outgoing waves in some degree (Li, 1998). In the present model, source 
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function wave-making method is adopted in order to let the reflected waves outgo through the 
wave generator freely. In order to obtain a desired oscillation signal in the wave generating 
area, a source function f(x,y,t) is added into the mass conservation equation (Wei et al., 1999), 
which is expressed as 

( ) ( ) ( )tysxgtyxf ,,, =                                                                  (1) 
in which, 
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where, L is the wave length, λ (=ky=ksinθ )the wave number in y direction. δ is factor. xs is 
the location of the center of wave-making area, D is the source function’s amplitude. For 
monochromatic wave, D is defined as 
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where, h is the still water depth at the wave generator region, a0 the wave amplitude, ω  the 

wave frequency, θ  the wave incident angle and l(=kx=kcos θ ) the wave number in x 
direction.,α=-0.390,α 1=α+1/3.  

The source function consists of two parts—the shape function g(x), defining the 
distribution of the wave generating strength, and the time function s(y,t), being related to 
wave frequency and amplitude. The selection of the value of δ  is important to implement the 
source function wavemaking method, so we determine the value of δ  through a set of 
numerical tests. To study how to extend this method to irregular wave, the linear 
superposition of component waves is tested. According to the irregular wave concept of 
Longuet-Higgins (1961), the water surface elevation can be described by  
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where, ai andω i represent the amplitude and frequency of the component wave respectively 
and ε i denotes the initial phase of the component wave, which is distributed randomly in the 
range of 0-2 π . This concept implies that each component wave has its deterministic 
amplitude and frequency. Supposing the nonlinear effect in the wave-generation region is 
negligible, we can calculate the time function s(y,t) by 
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where, the source function’s amplitude of each component wave is defined as  
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Similarly to the case of regular wave, the shape function and the span of wave-making area 

W are also related to the wave length in irregular wave case, in which the wave length is 
replaced by a characteristic wave length, corresponding to the average wave period.  
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1.2 WAVE BREAKING MODEL 
In recent two decades, many researchers made more effort to extend the Boussinesq 

equations into surf zone. There are two kinds of manner. In the former one, a dissipation term 
is introduced into the process of solving（Kobayashi et al 1989）, in the later, a modified 
momentum term or addition term is added into the momentum equations, in which there are 
many methods such as eddy viscosity mode, surface roller mode, modified momentum mode, 
vortex mode and spectrum method（Li Mengguo 2002）. In these methods, each one has its 
own characteristics and is used by some researchers. 

In terms of the forms of wave breaking mode, the surface roller mode is derived from the 
assumption of vertical distribution of horizontal velocity, in which the breaking wave velocity 
is calculated by iterative. If this mode is extended to 2D, the iterative process is very 
complicated. The vertex term is added into the momentum equations in vertex mode. And the 
vertex equation is determined by Reynolds equation, which is also complicated in solving. In 
spectrum method the wave breaking energy is expressed by semi-experience formula. In eddy 
viscosity and modified momentum mode, the wave breaking terms is expressed as two order 
derivation of velocity or flux to space length, only the viscosity coefficient is different from 
one mode to another. The form of wave breaking term ∂ ( ν t ∂ U/ ∂ x)/ ∂ x seams to be 
reasonable (Li Shaowu1999), as the wave breaking transformation to turbulence energy is 
concerned. Zelt and Qin Chen also use this formation, moreover, Qin Chen slightly improved 
this formation when he extended it to 2D model. In this paper, the similar formation is 
adopted  
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where ν  is the eddy viscosity coefficient，and is expressed as 
( ) 2

thghB η+η+η+=ν                                                        (13) 
In this mode, we not only considered the concept of mixing length, but also considered the 

effect of horizontal and vertical velocity to wave breaking. 
Rankine(1864) proposed that wave breaks as the water particle velocity excess the wave 

velocity in wave motion. Now it is a standard as wave breaking and many researchers use it. 
We also use it in calculation and once wave breaking occurs the breaking terms are added into 
momentum equations.  

2. EXPERIENCE COEFFICIENT δ NUMERICAL TESTS 
The shape coefficient δ  is expressed as δ =5/( δ L/4)2=80/( δ L)2, and the width of wave 

generator area is W= δ L /2, in which the value of δ  influences the width of wave generator 
area, the larger the value of δ , the wider the width of wave generator area. We perform the 
tests to verify the effect of δ  to the calculating wave height in condition with variance of 
relative water depth and input wave height. Fig1(a) shows the Configuration of calculating. It 
is found that if the value of δ  is in a certain range, the output wave height is consistent with 
input one, and if the value of δ  is beyond the certain range, the output wave height is larger 
than input one. So the variance value of δ  with relative water depth and input wave height is 
given as fig1(b) when the difference between output wave height and input one is less than 
5%. It is shown that when the water depth is shallow, the value of δ  should be large, but 
when the water depth is deep, the value of δ  should be small and the value of δ  has the same 
variance trend with relative wave height.  
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     (a)                                                                        (b) 

Fig. 1  (a) Configuration of numerical tests (b) the value of δ  
 

3. NON-REFLECTION WAVEMAKING CHARACTERISTICS  
Non-reflection wavemaking is the most important characteristic of the source function 

wavemaking method. To verify it, numerical tests are conducted under constant water depth, 
in which the wave making region is set to the center of the calculating region,  the left side 
boundary is set as absorbing layers and the right one as vertical wall. Fig2 shows the results of 
the case that the calculating region is 600m long and 20m wide, and the water depth 5.0m, the 
input wave height 1.0m and wave period 5.0s. In this case, the wave length is 30.27m, 
∆ x=∆ y= 2.0m, ∆ t=0.1s. Fig2 (a) shows the vertical sections of water surface, which are in 
the condition of fully developed waves, and begin at a wave crest, there are 8 section at the 
same time interval in a wave period. It is shown that the complete standing wave with clear 
wave node is formed at right side, and the fully absorbing is obtained at left side. Fig2(b) 
shows the water surface process with time marching at the location of 480m. This point is just 
at wave antinode. It is shown that if the wave front does not arrive at this point, the water 
surface is the still water level, if the wave front arrives at this point, the water surface 
fluctuate and the wave amplitude gradually reaches 1.0m, then after 30 second the reflection 
wave of the right side vertical wall return to this point, and the wave amplitude reaches the 
standing wave amplitude, at last the wave amplitude is almost a constant. So we say that the 
source function wavemking method is non-reflect wave maker. 

 

 
  (a)                                                                                 (b) 

Fig. 2  (a)Horizontal coordinate is distance, vertical coordinate is the variance of water surface (unit 
m), wavemaking region is set at 286--314m.(b) Horizontal coordinate is time, unit s, vertical 

coordinate is the variance of water surface (unit: m) 
 

3.1 IRREGULAR WAVE 
Numerical tests are performed with the above irregular wave model in condition of that 

wave period is 5.6s, 8.0s, 10.0s, the effective wave height is 2.0m  with three different water 
depth. The configuration of the numerical flume is also shown in Fig 1(a). In each of the test, 
the number of component frequencies is set to be 400, the space interval is evaluated by 
L /15，the time interval T1/3/50. An example of the water surface elevation of the random 
wave is shown in Fig.3(a). In analysis of numerical results of the wave height, the zero-cross-
up approach and the spectral evaluation method are used. The calculated results are shown in 
Fig.3(b). It can be seen from Fig.3(b) that the calculated results of wave height with small 
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relative water depth are closer to the input ones than that of larger relative water depth. The 
output result of spectrum of the water surface elevation series, sampled at the numerical wave 
gauge as shown in Fig.1(a), is compared with the input one ( as shown in Fig.2(c)). The 
output result agrees well with the input one. 

3.2 SPECTRUM ESTIMATION 
In this paper, we adopt autocorrelation function method(Yu Yixiu 2000) to estimate the 

irregular wave spectra. In order to improve the accuracy of the autocorrelation function, 
Hanning window is adopted. The basic parameters t∆ , m and N used in the above method of 
spectrum evaluation do affect interactively. Goda (1985) once suggested that the sampling 
interval t∆ is evaluated in the range of ( )

31
201101 HT− .While Yu (2000)recommended that m 

equals ( )20~15N  when t∆ 0.5s= and m equals ( )4020−N  when 1.0st∆ = . In this paper, a 
series of tests are performed with different values of m  and N with a fixed value of t∆ being 
equal to 5031T , for the t∆  often is small (0.1-0.2s). The improved JONSWAP spectrum is 
used to generate a wave train and then the spectrum is evaluated by the autocorrelation 
function method. The results indicate that the value of m  mainly affects the peak frequency 
and the spectral density near the peak frequency. Satisfied result of evaluated spectra can only 
be obtained when m ranges from 10/N to 25N , beyond that the errors between the evaluated 
spectrum and the target spectra will be larger than 5%.  

 

 
(a) 

 
     (b)                                                                       (c) 

Fig. 3  (a) Configuration of numerical tests, (b) Water surface elevation of random waves, (c) 
Numerical results of significant wave heightin different water depth,  

(d) Comparison between output spectrum and input spectrum 
 

3.3 SIMULATION OF BREAKING WAVE 
The improved wave breaking mode is tested by Sato’s experimental data. Table1 shows the 

Sato’s experimental conditions. Fig. 4 is the numerical calculation scheme. Temporal interval 
is 50T , and special interval 20L . Forward marching method is used in treating the moving 
boundary. Naturally before wave breaking, the wave front is steep. Then the spray occurs at 
the front top of wave profile or the water tongue is turning down. As above mentioned, we 
adopt Rankine’s wave breaking standard, It is that when wave breaks the water particle 
velocity is equal or greater than phase celerity. The water particle velocity is written as  
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where η=z . Fig 5 shows the comparison between the results of numerical simulation of 
the five case and that of Sato’s experiment. H/H0 is the ratio of local wave height to that at 
deep water, η  the averaged water level, d/Lo the relative water depth. It is found that the 
results of numerical calculation is good agreement to that of experiment.  

 
Table 1  Sato’s flume experimental condition  

Date case Wave height at deep water (cm) Wave period (s) The gradient of bottom
1989 Case-1 5.42 0.98 1/40 
1989 Case-2 2.86 0.98 1/40 
1988 Case-3 10.80 1.18 1/20 
1988 Case-4 8.76 1.18 1/20 
1988 Case-5 6.68 1.18 1/20 

 
Fig. 4  Numerical test scheme of wave breaking 

  
Fig. 5  Results comparison between numerical and experimental test 
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4. CONCLUSION 
In this paper, a wave model based on fully non-linear Boussinesq equations is studied in the 

aspects of wave-making and wave breaking. Numerical wave generating in regular and 
irregular wave is discussed. The reasonable parameter δ  value in the source function wave 
generator is found. The relation among t∆ , m  and N is indicated in autocorrelation function 
spectrum estimation. And a improve wave breaking method is validated by experimental test. 
In the future, we’ll use the wave model to research the issues such as wave-induced current 
and sediment transpotation. 
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