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Abstract 

 
This paper proposes a novel nonlinear discriminant 
analysis method named by Kernerlized Maximum Average 
Margin Criterion (KMAMC), which has combined the 
idea of Support Vector Machine with the Kernel Fisher 
Discriminant Analysis (KFD). We also use a simple 
method to prove the relationship between both kernel 
methods. The difference of KMAMC from traditional KFD 
methods include (1) the within-class and between-class 
scatter matrices are computed based on the support 
vectors instead of all the samples; (2) multiple centers are 
exploited instead of the single center in computing the two 
scatter matrices; (3) the discriminant criteria is 
formulated as subtracting the trace of within-class scatter 
matrix from that of the between-class scatter matrix, 
therefore, the tedious singularity problem is avoided. 
These features have made KMAMC more practical for 
real-world applications. Our experiments on two face 
databases, the FERET and CAS-PEAL face database, 
have illustrated its excellent performance compared with 
some traditional methods such as Eigenface, Fisherface, 
and KFD.  
Key Words: Face Recognition, Kernel Fisher, Support 
Vector Machine 
 
1. Introduction 

Principle Component Analysis (PCA) and Fisher Linear 
Discriminant Analysis (FDA) are two classical techniques 
for linear feature extraction. In many applications, both 
methods have been proven to be very powerful. However, 
they are inadequate to describe the complex nonlinear 
variations in the training dataset. In recent years, the 
kernelized feature extraction methods have been paid 
much attention, such as Kernel Principal Component 
Analysis (KPCA)[1] and Kernel Fisher Discriminant 
analysis (KFD) [2, 3], which are well-known nonlinear 
extensions to PCA and FDA respectively. However, the 
KFD cannot be easily used in real applications. The 
reason is that the projection directions of KFD often lie in 
the span of all the samples [5], therefore, the dimension of 
the feature often becomes very large, when the input space 
is mapped to a feature space through a kernel function. As 
a result, the scatter matrices become singular, which is the 
so-called “Small Sample Size problem” (SSS). Similar to 
[4], KFD simply adds a perturbation to within-class 
scatter matrix. Of course, it has the same stability problem 
as that in [4], because eigenvectors are sensitive to the 
small perturbation, moreover, the influence of which is 
not yet understood.   

In recent years, many researchers have proposed many 
methods to overcome the computational difficulty with 
KFD. Jian Yang [5] used the KPCA + FDA method, a 
two-stage procedure is employed after the KPCA method 
has been used to reduce the dimensionality of the original 
input data. First, one transformation space is extracted 
from the within-class scatter matrix, which is used to 
modify the original between-class scatter matrix. Second, 
it tries to maximize the new between-class scatter matrix 
by using PCA method. The KPCA generally cannot 
achieve better performance than PCA [5, 20], and it 
seems that the proposed scheme is not as effective as the 
PCA+FDA linear discriminating analysis method. Wei 
Liu [6] proposed the Nullspace based KFD method 
(NKFDA), an extension to Nullspace FDA. It first 
calculates the Null space of within-class scatter matrix, 
and then modifies the between-class scatter matrix and 
gets the whole transformation matrix. NKFDA solves the 
SSS problem, however, the algorithm first calculates the 
Nullspace of within-class scatter matrix, which is a very 
difficult task. Moreover, the traditional KFD method is 
the single-center method, which means that each class 
during the training process is represented as a single class 
center, i.e. the sample mean of the class. 

In this paper, we propose a simple and effective 
method to make discriminant analysis, which tries to 
measure the Average Distance between different Margins 
of SVM by calculating the Euclidean distance between 
the mean support vectors. Our method is the multi-center 
approach, and it is based on the support vector set 
represented by a group of mean sample vectors. In the 
paper [18], Bernhard showed that using the support 
vectors can achieve full performance of the classifier 
trained by using all the samples, therefore, we can know 
that support vectors are strongly related to the 
classification task. Rik Fransens[19] combined the 
normal directions idea with SVM classifier, which only 
utilized the support vectors and achieved good result in 
its application of face detection. Moreover, the new 
criterion does not suffer from the SSS problem, which is 
known as the serious stability problem for Fisher 
Criterion. We apply the proposed method to the face 
recognition problem, which is one of hot points in the 
field of pattern recognition [7]. 

The rest of the paper is organized as following. In 
Section 2, KMAMC is proposed to make nonlinear 
discriminant analysis for the original input image. In 
Section 3, we will conduct some experiments on CAS-
PEAL and FERET databases to evaluate the performance 
of the proposed method. In the last Section, we will make 
some conclusions about the experiment results.  
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2. Kernelized Maximum Average Margin 
Criterion 

We first describe the Kernel Fisher analysis method, 
which is a well-known extension to FDA. Moreover, 
many definitions will be used in our paper later, such as 
the kernel within-class and between-class scatter matrices. 
It is also the baseline algorithm in our paper, and we will 
make some comparative experiments with the proposed 
method. 
 
2.1 Kernel Fisher Discriminant Analysis 

The idea of Kernel FDA is to yield a nonlinear 
discriminant analysis in a higher dimensional space. The 
input data is first projected into an implicit feature space 
F  by the nonlinear mapping FfRx N ∈>−∈Φ : , and 
then seek to find a nonlinear transformation, which can 
maximize the between-class scatter and minimize the 
within-class scatter in F [5]. In its implementation Φ  is 
implicit and we will just compute the inner product of two 
vectors in F  by using a kernel function:  

))()((),( yxyxk Φ⋅Φ= .                     (1) 

We define between-class scatter matrix bS  and within-

class scatter matrix wS  in the feature space F  as 
following:  
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)(1 φ  denotes the sample mean of class i , and u  

is the mean of all training images in F , )( ip ϖ is the 
prior probability. To perform FDA in a higher 
dimensional space F , it is equal to maximize Eq.4. 
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Because any solution F∈w  should lie in the span of all 
the samples in F [8], there exists:  
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Then we will get the following Maximizing Criterion: 
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where wK  and bK  are defined as following: 
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mean of all jη . 
Similar to FDA [4,10], this problem can be solved by 

finding the leading eigenvectors of bw KK 1− used by Liu [8] 
and Baudat (GDA)[3], which is the Generalized Kernel 
Fisher Discriminant (GKFD) criterion. In our paper, we 
use the technique of the pseudo inverse of the within-
class scatter matrix, and then perform PCA on bw KK 1−  to 
get the transformation matrixα . The projection of a data 
point x onto w  in F  is given by: 
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2.2 the Property of SVM 
Support Vector Machines (SVM) is a state-of-the-art 

pattern recognition technique, whose foundations stem 
from the statistical learning theory. However, the scope 
of SVM is beyond pattern recognition because they can 
also handle another two learning problems, i.e., 
regression estimation and density estimation. SVM is a 
general algorithm based on guaranteed risk bounds of 
statistical learning, the so-called structural risk 
minimization principle. And we can refer to the tutorials 
[9,12] about the SVM. The success of SVM in face 
recognition [13, 14] as a recognizer provides us with 
further motivation to utilize SVM to enhance the 
performance of our system. However, we did not 
construct SVM classifier, and just used it to find the 
support vectors shown in Fig.1. 

Here, we will use a simple way to prove the property 
of support vectors based within-class scatter matrix for 
two-class problem, which shows that SVM is strongly 
related to the Kernel Fisher analysis method.  

 
Fig.1 Support Vectors are circled such as 21 , xx  

In a higher dimensional space, 21 , xx  are represented 
as )(),( 21 xx ΦΦ . The SVM aims to optimize the following 
objective function [9,12]: 
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Here, if )( ixΦ  is the support vector, we can know that[9]:  
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Thus, for )(),( 21 xx ΦΦ  are the support vectors, we have: 
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The elements of 1S  and 2S  are support vectors, and it is 
easy for us to prove the following equations: 
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1n  is the size of the 1S , 2n  is the size of the 2S . For 
two-class problem, the within-class scatter matrix is 
defined as following: 
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Therefore, we can know that: 
0' =wSw w

T  ,                                (18) 
where '

wS  is the within-class scatter matrix calculated by 
using the support vectors. w  is related to the centers of 
two classes taken from the set of support vectors. For 
multi-class problem, we redefine the between-class scatter 
matrix '

bS  and within-class scatter matrix '
wS  based on the 

support vector set, calculated in the SVM by using the 
‘one to rest’ strategy. 
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'' , Bw KK  are calculated just like Eq.7 and Eq.8. The 

traditional Fisher discriminating analysis is a single-center 
method in the sense that each class during training process 
is represented by a single example (generally the mean 
sample vector), therefore, our method can be thought as a 
muti-center method, because we use several mean sample 
vectors to represent each support vector set. In the case 
that only samples of  iC  are included in the positive set, 
and other samples are included in the negative set for two-
class SVM algorithm, we will explain the parameters used 
in Eq.19 and Eq.20 as following. iS  includes all the 
support vectors, which is divided into two sub-sets, one of 
which is 1iS , whose elements are the support vectors 
belonging to the class i , and the other is 2iS including all 

other support vectors. '
iu  denotes the sample mean of the 

set 1iS , and )( ip ϖ  is the prior probability. '
0ju  denotes 

the sample mean of 2iS , whose samples come from 

different classes. The number of classes in 2iS  is in , and 
the center of the class is represented as ij nku ,..,1,'

k = (if 

only one sample for one class is contained in 2iS , then 

the sample is the class center). And now iS  can be 
represented by a multi-center vector ),...,,,( '

n
'
1

'
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calculate the within-class scatter sub-matrix for the class, 
if more than one samples of which are contained in iS  
( 1|| >mC ). In our paper, the kernel function is polynomial 
style used in SVM and the proposed method, 

r

yx
yxyxk )1

||||
(),( +

⋅
⋅=

, r  is a constant integer. 

 To be concluded, in this part, we get the new within-
class and between-class scatter matrices based on the 
support vector set, which is represented by a multi-center 
vector, ),...,,,( '

n
'
1
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'
i ijjj uuuu .  

 
2.3 Maximum Average Margin Criterion  

From the above discussion, we know that the support 
vectors have good properties. In this part, some distance 
metric is used to measure the dissimilarity between 
different classes based on the support vectors. We hope 
that the transformation matrix should maximize the 
distance between the Margins of the SVM, data points of 
which are strongly related to the classification task. 
Simply, considering the two-class problem, we use 

iC  
and '

jC   to represent the support vector sets, whose 
samples come from the different Margins. Now, we 
define the maximizing criterion as following: 
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We call it Maximum Average Margin Criterion (MAMC), 
actually we can use some distance measure between the 
mean support vectors as the distance between the 
Margins. 
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where '
iu  is the mean vector of support vectors in the 

data set 
iC , '

ju  is the mean vector of the remained 
support vectors in '

jC . By employing the Euclidean 
distance, we can also represent Eq.21 as following: 
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We know that '
jC   includes the samples coming from 

different classes, which is represented as a multi-center 
vector, and then the maximizing criterion is redefined 
as following: 
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Here, Eq.24 is equal to the Eq.19. According to the Fisher 
criterion, we also hope that the within-class scatter should 
be minimized. If our criterion maximizes the distance 
between mean support vectors, at same time, minimizes 
the scatter of classes, we can know that it will almost be 
consistent with the Fisher criterion. Therefore, we 
redefine the Criterion by considering the trace of the 
within-class scatter matrix as following: 

)()( '
wb trtrJ SS −= .                     (25) 

We also hope that the transformation matrix has the same 
property as in the SVM, and some constraint function can 
be used here. Because the distance between the Margins is 
used to measure the distance between different classes, so 
the function utilized to constraint Eq.25 should be related 
to the support vectors, for example, Eq.18 is very suitable 
in this situation. Now, we obtain the objective functions as 
following: 

Max:   )( '
wbtrJ SS −= ,                  (26) 

Subject to: 0' =wSw w
T ,                   (27) 

where wS  and '
wS  are defined in Eq.3 and Eq.20. Since 

the )( '
btr S  measures the average distance between 

margins of SVM, a large )( '
btr S  implies that the support 

vectors are far from each other if they are from different 
classes. On the other hand, a small )( wtr S based on all 
samples denotes for every class having a small variance. 
Thus a large J indicates that the nearest data points in the 
different classes are in a large space and the classes have 
small overall variance. Moreover, the constraint function 
has been used for MAMC, which are strongly related to 
the classic algorithm of SVM. In a higher dimensional 
space F , considering the so-called KMAMC, we have 
objective functions as following: 

Max: )( '
wbtrJ KK −= ,                   (28) 

Subject to: 0' =αKα w
T .                      (29) 

In the following part, we will use a simple method to 
optimize the above objective functions. 

 
2.4 The Algorithm of KMAMC 

The KMAMC improves the generalization capability 
by decomposing its procedure into a simultaneous 
diagonalization of two matrices. The simultaneous 

diagonalization is stepwisely equivalent to two operations, 
and we first whiten wb KK −'  as following:  

ΞΓΞKK =− )( '
wb  and  ΙΞΞ =T ,           (30) 

ΙΞΓKKΞΓ =− −− 2/1'2/1 )( wb
T ,             (31) 

where Ξ , Γ  are the eigenvector and the diagonal 
eigenvalue matrices of wb KK −' . We can get the 

eigenvectors matrix 'Ξ , whose eigenvalues are bigger 
than zero (Corresponding diagonal eigenvalue matrix is 

2/1'−Γ ), and )( '
btr K is always bigger than )( wtr K . The 

new within-class scatter matrix is computed by using the 
following method: 

ww
T ΞΓΞKΞΓ =−− 2/1''''2/1' .                  (32) 

Diagonalizing now the new within-class scatter 
matrix wΞ . 

θγθΞ =w  and Iθθ =T ,                   (33) 

where θ , γ  are the eigenvector and the diagonal 
eigenvalue matrices of wΞ  in an increasing order. We get 
rid of the Eigenvectors, whose eigenvalues are far from 
zero, and the remained Eigenvectors construct the 
transformation matrix 'θ . 

The overall transformation matrix is now defined as 
following. 

'2/1''' θΓΞα −= .                        (34) 
We use 'w  as the transform matrix, v is the extracted 
feature calculated by using Eq.35 
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2.5 Similarity Measure for KMAMC 
If 21 , vv are the feature vectors corresponding to two face 

images 21 , xx , which are calculated by using the Eq.35, 
then the similarity rule is based on the cross correlation 
between the corresponding extracted feature vectors as 
following: 
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Experiments are performed on two databases, CAS-
PEAL and FERET databases. Comparative performance 
is carried out against the Eigenface, Fisherface, NKFDA 
and GKFD. 
 

3. EXPERIMENT 
In our experiments, the face image is cropped to size of 

64X64 and overlapped with a mask to eliminate the 
background and hair. For all images concerned in the 
experiments, no preprocessing is exploited.  To speed up 
the system, we first make PCA on the face images, and 



the lower dimensional vector in the PCA space is used in 
our experiments to capture the most expressive features of 
the original data. 
 
3.1 CAS-PEAL Database 

The CAS-PEAL face database was constructed under 
the sponsors of National Hi-Tech Program and 
ISVISION[17]. The goals to create the CAS-PEAL face 
database include: providing the worldwide researchers of 
FR community a large-scale face database for training and 
evaluating their algorithms; facilitating the development 
of FR by providing large-scale face images with different 
sources of variations, especially Pose, Expression, 
Accessories, and Lighting (PEAL); advancing the state-
of-the-art face recognition technologies aiming at practical 
applications especially for the oriental. Currently, the 
CAS-PEAL face database contains 99,594 images of 1040 
individuals (595 males and 445 females) with varying 
Pose, Expression, Accessory, and Lighting (PEAL). 
Gallery set contains one image for each person. One 
sample person was shown in Fig.2, and the size of the face 
image is 360X480. In this experiment, only one face 
image for each person was used as Gallery database, 
whose identity is known to the system.  Details of the face 
database are shown at http://jdl.ac.cn/peal/index.html[17]. 

 

 
Fig.2. Sample of Face Images in CAS-PEAL database 

 
Table1. Experiment Result on CAS-PEAL database (Accurate rate) 

Fisherface method refers to EFM-2[11], r=2 

 

3.2 FERET Database 
The proposed algorithm is also tested on a subset of the 

FERET face image database. This subset includes 1400 
images of 200 individuals, and each individual has 7 
images.  

It is composed of images named with two-character 
strings, ”ba”,”bj”,”bk”,”be”,”bd”,”bf” and “bg”. This 
subset involves variations in facial expression, 
illumination, and pose. Two groups of experiments are 

conducted on this subset to evaluate the performance of 
the propose methods in terms of the mean recognition 
rate by using the cross-validation method. 100 subjects 
with 7 images per subject are randomly selected as the 
training set to calculate the weight vector. And the other 
100 subjects are used for the test set, where the images in 
the 'ba' part are used as gallery, and 6 images per subject 
from the other parts ('bj', 'bk', 'be', 'bf', 'bd', and 'bg') are 
used as the probe set. 

 
Fig.3. Sample of Face Images in FERET database 
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Chart1. Experiment Results on FERET database, r=2 

  
From the above experiments, we can know that the 

proposed method is better than all other methods. 
Fisherface is sometime better than GKFD, since the 
EFM-2[11] approach removes the noise by performing the 
PCA method on the original input image and the within-
class scatter matrix. NKFDA is better than the GKFD 
method, the reason for which may be that GKFD reserves 
the noise when adding the perturbation to the within-class 
scatter matrix. The KMAMC is the multi-center method, 
which can reserve more information than the tradition 
Fisher analysis approach, at same time, it is implemented 
by using the PCA method, which can help to reserve the 
useful information and remove the noise from the training 
data set. 

 
4. Conclusion and Future Work 

We have proposed a novel nonlinear discriminant 
analysis method named by Kernerlized Maximum 
Average Margin Criterion. The new method does not 
suffer from the ‘SSS’ problem and it is easily realized in 
its application. We also utilize a simple method to prove 
the property of the SVM, which is used as a constraint 
function for the KMAMC. Specially, the new within-
class and between-class scatter matrices are defined based 
on the support vector set by using the multi-center 
method, and the traditional Fisher is the single-center 
method in the sense that each class during training 
process is represented by a single mean sample vector. 
The feasibility of the new method has also been 
successfully tested on face recognition problem using 
data sets from the FERET database, which is a standard 
testbed for face recognition technologies, and CAS-PEAL 
database, which is a very large one. The effectiveness of 
the method is shown in terms of accurate rate against 

     
Eigenface Fisherface NKFDA GKFD KMAMC 

Accesso
ry 

37.1 61 61.5 58.7 64.3 
Backgro

und 
80.5 94.4 94 91.7 94.6 

Distance 74.2 93.5 93.8 94.9 96 
Expressi

on 
53.7 71.3 77.5 78.2 82.5 

Aging 50 72.7 83.3 77.3 86.4 



some popular face recognition schemes, such as Eigenface, 
Fisherface, GKFD, and so on.  

Gabor wavelet feature has been combined with some 
discriminant methods and successfully used in the face 
recognition field [15, 16]. Therefore, we try to make full 
use of Gabor wavelet representation of face images before 
using KMAMC to get the transformation matrix. Another 
possibility is to increase the generalization ability of the 
learning classification machine minimizing the empirical 
risk encountered during training and narrowing the 
confidence interval for reducing the guaranteed risk while 
testing on unseen data. 
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