SSIM-INSPIRED DIVISIVE NORMALIZATION FOR PERCEPTUAL VIDEO CODING
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ABSTRACT

We propose a perceptual video coding framework based on an

SSIM-inspired divisive normalization scheme as an attempt

to transform the DCT domain frame prediction residuals to

a perceptually uniform space before coding. Based on the

residual divisive normalization process, we deﬁne a distortion model for mode selection and show that such a divisive

normalization strategy largely simpliﬁes the subsequent perceptual rate-distortion optimization procedure. Experiments

demonstrate that the proposed scheme can achieve signiﬁcant

gain in terms of rate-SSIM performance in comparison with

H.264/AVC.

Index Terms— SSIM index, rate distortion optimization,

residual divisive normalization, H.264/AVC coding

1. INTRODUCTION

The main objective of video coding is to optimize the perceptual quality of the reconstructed video within available bit

rate. Ideally, the distortion model used in the video coding

framework should correlate perfectly with perceived distortion of the Human Visual System (HVS), which is the ultimate consumer of the video content. However, almost all

existing video coding techniques use the Sum of Absolute

Difference (SAD) or Sum of Square Difference (SSD) as the

distortion model. It has been widely criticized in the literature that SAD and SSD measures correlate poorly with the

HVS [1]. Fortunately, a lot of research has been done recently towards perceptual image quality assessment (IQA)

models that perform signiﬁcantly better than SSD or SAD in

predicting perceptual image quality. Among them, the structural similarity (SSIM) index [1] is widely used in quantifying compression artifacts because of its accuracy, simplicity

and efﬁciency. Recently, there have been a number of efforts

to design video coding techniques based on the SSIM index,

e.g., mode selection [2] and rate control [3].

Since the HVS has varying sensitivity to different frequencies, frequency weighting [4] has been incorporated in

the quantization process in many picture coding standards,

from JPEG to H.264/AVC high proﬁle [5], [6]. However,

in these standards, the quantization matrix is usually predetermined and is ﬁxed once the coding process starts. More

advanced perceptual models that take into account suprathreshold distortion criteria and masking effect are not considered.

In this paper, inspired by the SSIM index [1] and its

derivation in DCT domain [7], we propose a joint residual divisive normalization and rate distortion optimization (RDO)

scheme for video coding. The normalization factor is obtained from the prediction MB. As a result, the quantization

matrix is determined adaptively and no side information is

required to be transmitted from the encoder to the decoder.

Furthermore, motivated by the SSIM index, we deﬁne a new

distortion model and propose a perceptual RDO scheme for

mode selection.

2. SSIM INSPIRED RESIDUAL DIVISIVE

NORMALIZATION

Our work follows the predictive video coding framework,

where previously coded frames are used to predict the current

frame, and only the residuals after prediction is coded. Let

C(k) be the k

th

DCT transform coefﬁcient for residuals, then

the normalized coefﬁcient is computed as C

0

(k) = C(k)/f

where f is a positive normalization factor. The quantization

of the normalized coefﬁcients, for a given predeﬁned Qs, is

performed as follows

Y (k) = signfC

0

(k)groundf

jC

0

(k)j

Qs

+ pg

= signfC(k)groundf

jC(k)j

Qs 
 f

+ pg

(1)

where p is the rounding offset in the quantization.

This divisive normalization scheme can be interpreted in

two ways. One can apply an adaptive normalization factor,

followed by quantization with a predeﬁned ﬁxed step Qs. Alternatively, one can deﬁne an adaptive quantization matrix for

each MB and thus each coefﬁcient is quantized with a different quantization step Qs 
 f. By (1), we see that these two

interpretations are equivalent.

In the context of still image processing and coding, several

approaches have been used to derive the normalization factor,

which can be deﬁned as the sum of the squared neighboring

coefﬁcients plus a constant [8], or derived from a local statistical image model [9]. Since our objective here is to optimize
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Fig. 1. Energy compensation factor s vs quantization step Qs

for different video sequences.

the SSIM index, we employ a convenient approach based on

the DCT domain SSIM index.

The DCT domain SSIM index was ﬁrst presented by

Channappayya et al. [7].
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where X(k) and Y (k) represent the DCT coefﬁcients for the

input signals x and y, respectively. C1 and C2 are constants

used to avoid instability when the means and variances are

close to zero and N denotes the block size. This equation

shows that the SSIM index is composed of the product of two

terms, which are the normalized squared errors of DC and

AC coefﬁcients, respectively. Moreover, the normalization is

conceptually consistent with the light adaptation (luminance

masking) and contrast masking effects of the HVS [10].

We divide each MB into l sub-MBs for DCT transform.

Normalization factors for DC and AC coefﬁcients in each MB

are desired to be

fdc =

1
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where Xi(k) denotes the k

th

DCT coefﬁcient in the i

th

subMB and E represents the mathematical expectation operator.

These normalization factors would need to be computed at

both the encoder and the decoder. The difﬁculties are that the
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Fig. 2. Diagram of the proposed scheme.

distorted MB is not available at the encoder before it is coded,

and the original MB is completely inaccessible at the decoder.

Fortunately, for each mode, the prediction MB is available at

both encoder and decoder sides. Assuming that the properties

of the prediction MB are similar to those of the original and

distorted MBs, we can approximate the normalization factor

as

f
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where Zi(k) is the k

th

DCT coefﬁcient of the i

th

prediction

sub-MB for each mode. For intra mode, we use the MB at the

same position in the previous coded frame.

Since the energy of AC coefﬁcients may be lost due to

quantization, we use a compensation factor s to bridge the

difference between the energy of AC coefﬁcients in the prediction MB and the original MB,

s =

E(

PN1

k=1 X(k)

2

)

E(

PN1

k=1 Z(k)

2

)

(7)

As depicted in Fig. 1, s exhibits an approximately linear relationship with Qs, which can be modeled empirically as

s = 1 + 0:005 
 Qs (8)

Finally, analogous to [11], we deﬁne the quantization matrix for 4x4 DCT transform coefﬁcients as
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3. PERCEPTUAL RATE DISTORTION

OPTIMIZATION

The RDO process in video coding can be expressed by minimizing the perceived distortion D with the number of used

bits R subjected to a constraint Rc. This can be converted to

an unconstrained optimization problem as

minfJg where J = D + 
 
 R (10)
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