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In order to promote face recognition in the unconstrained environment, a large scale 

database, Labeled Faces in the Wild (LFW) [17] is released recently. LFW is collected 

with “natural” variability that may be encountered in our daily life including pose, lighting, 

expression, age, gender, race and so on which makes this database suitable for evaluating 

the face recognition technologies in unconstrained environment. LFW has two different 

training modes: image-restricted mode and image-unrestricted mode. In the former mode, 

only  side-information,  i.e., whether a pair of images belongs to the same class (also 

referred as image pairs hereafter), is available, while in the latter mode, the full class label 

information is provided. Compared with the latter case, the former case is more common in 

real world and also more challenging since only partial information is provided. 

After the release of LFW database, a few methods [18, 19, 20, 21, 22, 23, 24, 25, 26, 

27, 28, 29, 30] have been specifically designed for it, and evident progress can be observed 

from the reported results in [21, 22, 23, 29, 30]. These methods can be generally 

categorized into two categories: feature-oriented approaches and similarity-oriented 

approaches. The former category aims to extract effective features for face representation, 

while the latter focuses more on the face similarity computation.  

Among the feature-oriented methods, local descriptor based methods are more popular. 

For instance, Wolf et al. [19] proposed three-patch Local Binary Pattern (LBP) and fourpatch LBP to encode the similarities between neighbouring patches of pixels in order to 

capture the information complementary to the original LBP features. In [20], each face was 

described in terms of multi-region probabilistic histograms of visual words. In [21], Cao et 

al. encoded the micro-structures of face by using an unsupervised learning-based encoding 

method. In [25], a discriminative and robust feature descriptor called Patterns of Oriented 

Edge Magnitudes (POEM) was built by applying a self-similarity based structures on the 

oriented magnitudes. In [30], N. Pinto  et al. used the biologically-inspired visual 

representations selected by feature search. Moreover, the similarities among face images 

were also exploited as features. In [22], Kumar et al. proposed a simile classifier using the 

similarity of faces to some specific reference people as features. In [23], Wolf et al. used 

the ranking of the images most similar to a query image as the descriptor of this query 

image. Additionally, Pinto et al. [24] investigated the capability of face recognition system 

with a modern face recognition test set using only simple features. 

Similarity-oriented methods aim at novel metric computation between two face images. 

Typically, in [19, 31], one-shot similarity was employed to measure the likelihood of each 

sample belonging to the same class as the other. It was further extended to two-shot 

similarity [23] and multiple one-shot similarity by utilizing class label information [28] 

respectively. In [26], Nowak et al. obtained the similarity using characteristic difference of 

local descriptors sampled from images that are quantized with an ensemble of extremely 

randomized binary trees. In [27], two distance measures were proposed, including a 

logistic discriminant based approach and a nearest neighbour based approach which 

computed the probability of two images belonging to the same class. In [29], an metric 

learning method designed for cosine similarity was proposed and it achieved promising 

performance. 

Many of the above methods deal with the side-information scenario by employing the 

typical two-class SVM classifier. However the multi-class methods including Fisherface 

[6] and its numerous extensions cannot be used in this scenario because the crucial class 

label information are not provided in the image-restricted evaluation mode. 

In this work we propose a Side-Information based Linear Discriminant Analysis 

(SILD) method that can work well only with side-information, in which the within-class KAN: SIDE-INFORMATION BASED LDA FOR FACE RECOGNITION  3 

and between-class scatter matrices are computed by directly using the side-information. It 

is worth mentioning that our method is different from the two-class FLDA, specifically 

only one projection direction can be obtained by using two-class FLDA while much more 

projection directions can be obtained by using our method. Moreover, we theoretically 

prove that, our SILD method is equivalent to multi-class FLDA when class labels are 

provided. 

The remainder of this paper is organized as follows. Section 2 describes the sideinformation based linear discriminant analysis. Section 3 details the experimental 

evaluations of SILD on LFW database. Finally, conclusions are given in section 4. 

2 Side-Information based  Linear Discriminant 

Analysis 

In this section, we first give a brief description of FLDA, and then present the definition of 

our SILD method that is applicable in scenario of side-information. Finally we prove that 

the new definition is equivalent to the traditional definition when class label is provided. 

2.1 Fisher Linear Discriminant Analysis (FLDA) 

Fisher Linear Discriminant Analysis aims to find a set of most discriminative linear 

projections by maximizing the ratio of the determinant of the between-class scatter matrix 

to that of the within-class scatter matrix: 

arg max

T

B

opt T

W

W

W S W

W

W S W

  

The within-class scatter matrix SW and between-class scatter matrix SB are defined as: 
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where c is the number of classes in the training set, xij

 is the j

th

 sample from i

th

 class, ni

is the number of samples from the i

th

 class, mi

 is the mean of the i

th

 class, and m is the 

mean of all samples in the training set. The problem in (1) can be solved by a two-step 

method [32]. 

Fisrtly,  W

S is diagonalized as follows: 
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Secondly,  B

S is also diagonalized: 
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Finally, the projection matrix can be computed as: 

1 2

W H U opt



   
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where H and U are orthogonal matrices and  and  are diagonal matrices. As shown 

in [1, 6, 9], FLDA is a simple but effective method for face recognition. 

2.2 Side-Information based Linear Discriminant Analysis (SILD) 

However (see (2) and (3)), the class label of each sample need to be known in FLDA, so it 

cannot work in case that only side-information is available. The same as in [33], sideinformation, one type of weak label information, depicts whether a pair of images belong 

to the same class. In this case, FLDA fails to work because the  SW and  SB cannot be 

computed without the full class label information. 

To address this problem, we propose a new definition for  SW and  SB that directly 

exploits the side-information. Specifically, the same-class image pairs are directly used to 

calculate the within-class scatter matrix and the different-class image pairs are employed to 

calculate the between-class scatter matrix. 

Let us denote  {( , ) : ( ) ( )}

i j i j

S x x l x l x   as the set of same-class image pairs and 

{( , ) : ( ) ( )} D x x l x l x  m n m n

 as the set of different-class image pairs, with  l x( )

representing the class label of image  x . Then, the within-class and between-class scatter 

matrices can be respectively defined as follows: 
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Compared with (2) and (3) in FLDA, the new definition do not need know the identity 

of each sample and only use the weakly-supervised side-information to directly calculate 

the total within-class and between-class scatter matrices. 

Similarly to FLDA, the projection matrix in SILD can be obtained by solving the 

following optimization problem: 

arg max

T sild

sild B

opt T sild

W

W

W S W

W

W S W

 

Similarly as FLDA, SILD in (10) can also be solved by (4)-(7). Obviously, the size of 

set S and D can influence the stability of the new definition for SW and SB. Generally only a 

small fraction of image pairs in SILD can be generated from the class label information. In 

this case, the new within-class scatter matrix may have a large number of very small 

eigenvalues. In order to suppress the instability caused by the small eigenvalues, in our 

implementation, we only use the eigenvectors corresponding to the largest eigenvalues 

when diagonalizing the within-class scatter matrix. As the first step, 

sild

W

S is diagonalized as 

follows: 

sild T

W

S H H    

Let us define   as a small fraction of the columns of   with the eigenvalues 

corresponding to the top part of overall energy. In this work   is used for the consequent 

computations in (5)-(7) instead of   to cope with the instability. As observed in our 

experiment, the less the side information, the larger the number of very small eigenvalues. 

So the   corresponding to a smaller fraction can achieve a better performance given the 

less side-information. Usually   corresponding to the top 80%~90% of overall energy 

can performs well which is about 30% of the columns of   . KAN: SIDE-INFORMATION BASED LDA FOR FACE RECOGNITION  5 

2.3 Equivalence of FLDA and SILD in case of knowing class label 

In this section, we prove that, the proposed SILD is equivalent to FLDA when the class 

label information is provided. Specifically, if all the classes have the same number of 

samples, SILD is identical to FLDA. Otherwise our SILD can be seen as an interesting 

variant of FLDA. 

Here we assume that there are r samples in c classes and ni

 samples in the i

th

 class. In 

case that the class label is provided, the set of the same-class image pairs S should consist 

of all the possible image pairs belonging to the same class, while the set of different-class 

image pairs D should be formed by all the image pairs whose class labels are different. 

Then the within-class scatter matrix of SILD can be rewritten as follows (more details can 

be found in appendix A): 

       

1 1 1 1 1
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i i i c c n n n
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If all classes have the same number of samples, denoted as n, the within-class scatter 

matrix in SILD can be further formed as: 

   

1 1

2 2

i c n

sild T

W ik i ik i W

i k

S n x m x m nS

 

       

It means the newly defined within-class scatter matrix is equal to that of FLDA only up 

to a scale parameter.  

Similarly, the between-class scatter matrix can be reformulated as (see appendix A for 

more details): 

2 2

sild sild

B B W W

S rS S rS     

Given the new definition of within-class and between-class scatter matrices, the 

projection matrix of SILD can be solved as follows (see appendix A for more details): 

arg max arg max

T sild

T

sild B

T

opt T sild T sild

W W
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If all classes have the same number of samples, we further have: 

arg max arg max

2

T

T

sild B

T

opt T T opt

W W

W W

W S W W S W

W trace W

nW S W W S W

 
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From the above equations, it is obvious that the projection matrix of SILD is identical 

to that of FLDA if the class label information is provided and all classes have the same 

number of samples. If each class has different number of samples, SILD is a variant of 

FLDA by focusing more on the classes with more samples (see the weight ni

 in (12)). This 

leads to more robust calculation of the within-class scatter matrix by suppressing the 

unreliable classes with fewer samples. When the class label information is unavailable, 

SILD can be considered as an approximation of FLDA by exploiting a small fraction of 

full class label information only. 

2.4 Boundary weighted SILD 

Inspired by [34], a more discriminative model can be learnt if the samples near the 

boundary are emphasized. However, the method in [34] cannot be directly used without the 

class label information. As in (8), if a pair of samples  ,

i j

x x from the same person are far 
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away from each other, then   x

i j

 x  will have large values and so it plays more 

contribution for 

sild

W

S , otherwise it plays less contribution for 

sild

W

S . So the samples that are 

hard to be classified are emphasized in the definition of 

sild

W

S . On the other hand, for 

sild

B

S , 

 x

i j

 x  will be small in this case which means less attention is paid on if the pair of 

samples x

i j

, x  from different persons are very similar, i.e., a difficult pair that we should 

pay more attention to. So, we reweight the pairs in 

sild

B

S to emphasize the samples that are 

hard for classification as follows: 

   

( , )

( , )

( , ) ( , )

m n

sild T

B m n m n m n

x x D

m n m n

S w x x x x x x

w x x cosine x x


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


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When the 

sild

B

S is calculated with (17), we refer to our method as ‘Weighted SILD’. 

3 Experiments 

In this section, we first use LFW [17] and FRGC [35] databases to verify the equivalence 

of SILD and FLDA when the class label information is available. Then we compare SILD 

with the state-of-the-art methods on the unconstrained LFW database. The task on both 

databases is face verification. 

LFW database has 13,233 images from 5,749 individuals with the resolution of 250 by 

250. It is divided into two views. View 1 is employed for model selection, and view 2 is 

used for performance evaluation. In view 2, two training modes are designed including 

image-restricted training mode where only pair-wise samples are available and imageunrestricted training mode where the class label information for each sample is provided. 

In our experiments, all face images are simply cropped to 80x150 pixels by just cutting 

out the centre region of the images provided by Wolf et al. [23]. In order to reduce the high 

dimensionality and suppress noise, PCA is employed as a pre-processing method. The 

dimension after PCA is determined by preserving about 95% energy. The similarity of two 

feature vectors is measured by cosine similarity. 

SILD also is tested on the experiment 4 of FRGC database, which has 12766 training 

images from 222 persons, 16028 target images, and 8014 query images from 466 persons. 

For FRGC database, the images are cropped to a smaller resolution with 40x50 pixels. 

Histogram equalization is used as pre-processing and the grey intensity is exploited as 

features. The PCA is also applied for reducing dimensions with 95% energy preserved. 

3.1 Equivalence of FLDA and SILD under label information 

As proved in previous, SILD can obtain the exact model as FLDA if class label 

information is provided and all classes have the same number of samples. And SILD 

should obtain almost the same model as FLDA if have different number of samples. In this 

section, the class label information is provided to verify this equivalence. Given full class 

label information, FLDA can be directly computed according to (1)-(3). While for SILD, 

about millions of pairs for  S and  D are formed using the class label information. 

Considering the limited computing resources, only a small part of possible pairs are 

randomly sampled. 

We employ the LFW and FRGC databases for this evaluation. Specifically, 450, 900, 

2700, 4500, 9000 (resp. 100, 300, 500, 1000, 2000, 3000, 5000, 10000) same-class image KAN: SIDE-INFORMATION BASED LDA FOR FACE RECOGNITION  7 

pairs and the same number of different-class image pairs are randomly selected 

respectively for LFW (resp. FRGC). 

(a)  LFW                      (b)  FRGC 

Figure 1: Performance of SILD with different number of pairs. 

As displayed in Fig.1, the result of FLDA is displayed as solid red line, while the 

results of SILD with different number of image pairs are plotted as dashed blue line. From 

Fig. 1, we observe that SILD can achieve comparable performance compared with FLDA 

(only with a small gap less than 1%) when using about 10000x2 sampled image pairs (i.e., 

less than 1% of the total pairs). In indicates that SILD can obtain a model equivalent to 

FLDA if the full class label information is provided and SILD can achieve a comparable 

performance to FLDA if only a small fraction of side-information is provided. 

3.2 Comparison with the state-of-the-art methods 

In this section, the proposed SILD is compared to the state-of-the-art methods on LFW 

database according to the image-restricted protocol, including background samples based 

method [23], attribute and simile classifiers [22], multiple LE [21], cosine similarity metric 

learning [29], biologically-inspired feature based method [30] and other methods listed in 

[36]. 

The proposed SILD is tested using several well-known features. In the default setting, 

only the original intensity feature is used for SILD. To further improve the accuracy of 

SILD, Local Binary Patterns [28, 37] and Gabor wavelet feature [9] are also employed. 

Besides, similar to most of the above state-of-the-art methods on the LFW database, we 

also report the best result of SILD by combining different types of features. 

Feature Name Feature Type SILD Weighted SILD

Intensity 

Original feature 0.8070 ± 0.0219 0.8020 ± 0.0213 

Square root feature 0.8026 ± 0.0212 0.8010 ± 0.0176 

LBP 

Original feature 0.8007 ± 0.0135 0.8412 ± 0.0108 

Square root feature 0.7958 ± 0.0132 0.8485 ± 0.0112 

Gabor 

Original feature 0.7898 ± 0.0184 0.7902 ± 0.0186 

Square root feature 0.8043 ± 0.0208 0.8102 ± 0.0201 

Block Gabor 

Original feature 0.8221 ± 0.0133 0.8233 ± 0.0164 

Square root feature 0.8443 ± 0.0151 0.8452 ± 0.0139 

After Combination 8 similarities combined 0.8578 ± 0.0205 0.8768 ± 0.0159 

Table 1: Mean accuracy of SILD with different types of feature on the LFW database. 
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The intensity feature is directly extracted by vectoring each grey-scale image to a 

12,000-D feature vector. For LBP features, a histogram of 59 bins is extracted for each 

non-overlap block with the size of 10x10, and then all histograms are concatenated into 

one single 7,080-D vector. The Gabor features are extracted with 5 scales and 8 

orientations, which leads to a quite high dimension. Therefore we adopt a 10x10 scaling 

factor to down-sample them. However, much structure information is lost after such a large 

scale down-sampling process. So Gabor images are also divided into 12 non-overlapping 

blocks as an alternative complement, and in each block a 2x2 down-sampling is employed 

to obtain a lower dimensional feature. 

In this work, ‘Intensity-SILD’, ‘LBP-SILD’, ‘Gabor-SILD’, ‘Block Gabor-SILD’ 

means that SILD is combined with Intensity feature, LBP feature, 10x10 down-sampled 

Gabor feature and block based Gabor features respectively  

In addition, the square root of the original features are also used as suggested in [23, 

29]. Finally, the similarity scores of all the 8 types of features, including 4 types of original 

features and 4 square root features, are combined to further boost the accuracy by using 

SVM with RBF kernel which is denoted as ‘Combined SILD’. 

Figure 2: Performance of combined SILD and other state-of-the-art methods on the LFW 

database under image-restricted protocol. 

The mean accuracies of SILD with different features are listed in Table 1. From it we 

can observe that the best accuracy of SILD with Intensity, LBP, Gabor and Block-Gabor 

features are 80.7%, 84.85%, 81.02%, 84.52% respectively. Compared with the single 

feature based method ‘Single LE’, SILD works better when with LBP and Block-Gabor 

feature and performs almost comparable when with Intensity and Gabor feature. It is 

indicates that the proposed SILD can perform well just using single type of low-level 

features. We also observe that the weighted SILD is better than SILD in most cases. 

Table 2 compare SILD with multiple features with the state-of-the-art methods on the 

LFW database, and Fig. 2 shows the corresponding ROC curve. After fusing multiple 

features, SILD can achieve a higher result 87.68%. This result is also comparable to the 

state-of-the-art result 88% from Nguyen  et al. [29] and 88.13% from Pinto  et al.[30]. 

However, SILD only exploits four types of features without using the complex learning 

and searching process. It demonstrates that SILD achieves the state-of-the-art result by 

effectively exploiting the side-information. 
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Methods Feature Type and similarities combined Mean Accuracy 

1

Combined b/g samples 

based methods [23] 

10 feature types, 60 similarities 0.8683 ± 0.0034 

Attribute and Simile 

classifiers [22] 

65~3000 similarities as feature 0.8529 ± 0.0123 

Single LE  + holistic [21] 1 feature type, 1 similarity 0.8122 ± 0.0053 

Multiple LE + comp [21] 4 feature types, 9component, 36 similarities 0.8445 ± 0.0046 

CSML + SVM [29] 6 feature types, 6 similarities 0.8800 ± 0.0037 

High-Throughput BrainInspired Features [30] 

11 feature types by feature selection, 3 

rescaled crops, 33 similarities 

0.8813 ± 0.0058 

Weighted SILD after 

feature combination

8 feature types, 8 similarities 0.8768 ± 0.0159

Table 2: Mean accuracy of SILD with different types of feature on the LFW database. 

4 Conclusion 

By redefining the within-class and between-class scatter matrices based on the same-class 

and different-class sample pairs, Side-information based Linear Discriminant Analysis is 

proposed and applied in the scenario when only side-information is available. We have 

theoretically proved the equivalence of SILD to Fisher linear discriminant analysis. The 

comprehensive experiments demonstrate that SILD can achieve comparable results when 

compared with the state-of-the-art results which are obtained by using more type of 

features or learning process. 
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Appendix A 

1. Inference for within-class scatter matrix of SILD in (12) 
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1

 The mean accuracy is same as in [17] and results of other methods are from their papers shown in [36]. 
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2. Inference for between-class scatter matrix of SILD in (14) 

       
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3. Inference for model of SILD in (15)  

(refer to [38] for the equivalence of determinant ratio and ratio trace) 
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