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Abstract

In previous works of face recognition, similarity between

faces is measured by comparing corresponding face regions. That is to say, matching eyes with eyes and mouths with

mouths etc.. In this paper, we propose that face can be also

recognized by matching non-corresponding facial regions.

In another word face can be recognized by matching eyes with mouths, for example. Speciﬁcally, the problem we

study in this paper can be formulated as how to measure

the possibility whether two non-corresponding face regions belong to the same face. We propose that the possibility

can be measured via canonical correlation analysis. Experimental results show that it is feasible to recognize face via

non-corresponding region matching. The proposed method

provides an alternative and more ﬂexible way to recognize

faces.

1. Introduction

Automatic face recognition is a hot research topic in

computer vision and pattern recognition. In the past

decades, many methods have been proposed to study this

problem. Now the performance of automatic face recognition systems has been greatly improved. In some evaluation

tests, computer based face recognition systems even outperform humans [15]. However, advance in recognition performance doesn’t mean that thorough understanding of human

face is achieved. Many mysteries of human face remain

unsolved. In this paper we study the relationship between

different parts of face by matching non-corresponding face

regions in a statistical way. Although seems incredible, in

this paper we will show that it is a feasible way to recognize

faces.

Statistical learning based methods are proved successful

in face recognition. Among these methods, the “eigenfaces”

proposed by Turk and Pentland [23] and “ﬁsherfaces” proposed by Belhumeur et al.[2] are the most important in the

literature. Besides them and their variants, many other statistical models are also successfully applied in face recognition. For example, recently Wright et al.[26] applied sparse

representation to face recognition. Besides the statistical

learning methods, visual feature descriptors are also very

successful in improving the performance of face recognition. Gabor wavelet[24] and the histogram sequences of

local binary patterns [1] are very effective to represent face

appearance.

In the methods described above, similarity between faces

is measured by comparing vectors or histograms. No matter

comparing vectors or histograms, they are all based on one

criterion: Matching Corresponding Regions on face. That is

to say, similarity is measured by comparing eyes with eyes

and nose with nose etc.. Although some approaches of face

recognition applied elastic matching [29, 25, 8], the range

of elastic is limited to local neighbor regions.

Figure 1. Half faces of Bill Clinton and George W. Bush.

Matching corresponding regions is effective, but it is not

the only way to recognize faces. Psychology researches

show that the relationship between different facial parts also plays an important role in the process of human face

recognition. This phenomenon can be illustrated by the

experiment of naming the famous people depicted in half

faces[18, 28]. As shown in Figure 1, compared with recognizing single half faces (right image), it is much more

difﬁcult to recognize faces when two half faces are aligned
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1060together (left image). The process of integrating different parts of face confuses the recognition. This phenomenon

gives a proof by contradiction that the relationship between

different parts of face is important to human in recognizing

faces. Thus, it also implies that the relationship between different face region may have similar inﬂuence in computer

based face recognition systems.

Figure 2. Corresponding (a) and non-corresponding (b) face region

matching.

In this paper we study the relationship between different

parts of face in computer-based face recognition systems.

Speciﬁcally, the problem we focus on can be formulated as

the following questions. Given two different facial parts,

how to measure the possibility that they belong to the same

face? And is this possibility useful in face recognition? In

another word, as shown in Figure 2, what we study is not

how to match eyes with eyes but how to match eyes with

mouths, for example. In this paper, we propose that the

possibility mentioned above can be measured via Canonical

Correlation Analysis (CCA). We ﬁnd it surprising that it is

feasible to recognize face by Matching Non-corresponding

Regions.

Besides CCA, other methods, such as the approach proposed by Kumar et al.[10], also have capacity to perform

non-corresponding region matching. To our knowledge, the

work proposed in this paper is the ﬁrst one explicitly studies

non-corresponding region matching in face recognition.

The remaining parts of this paper are organized as follows: Section 2 describes the method of matching noncorresponding regions; In Section 3, we illustrate the experimental results. And lastly, we draw the conclusions in

Section 4.

2. Matching Non-Corresponding Face Regions

via Canonical Correlation Analysis

In this section, we ﬁrst describe the feature extraction

method utilized in the proposed approach. Then we describe the canonical correlation analysis and its application

to matching non-corresponding face regions.

2.1. Face Feature Extraction and Corresponding

Region Matching

Low-level visual feature extraction is the ﬁrst and very

important step in face recognition. Since local Gabor feature is successful and widely used in face recognition, we

applied it for visual feature extraction. Similar to the approach in [13], we extract Gabor magnitude features of 5

scales and 8 orientations from the face images.

Figure 3. The patch division and process of feature extraction.

As shown in Figure 3, we divide face images into several non-overlapping regions for illustrating the relationship

between different parts of face. Gabor features are sampled

from each region. To enhance the representation power and

reduce the dimension of feature vector principle component

analysis(PCA)[23] is performed on each patch. After that

we perform Fishers linear discriminant analysis (FLD)[2]

for further enhancement.

After visual and statistical feature extraction, a face

can be represented as a set of feature vectors according

to the patch division. Denote two faces and their corresponding patch vectors as x = {x1; x2; : : : ; xm} and y =

{y1; y2; : : : ; ym}. Here m is the number of non-overlapping

patches. For matching corresponding face regions, the similarity between two faces (x; y) can be simply computed by

summing the similarities of each corresponding patch pair.

Using correlation as the metric, the total similarity Stotal

is

given by

Stotal =

1

m

∑m

i=1

⟨xi

; yi⟩

∥xi∥ · ∥yi∥

; (1)

where the ⟨a; b⟩ denotes the dot product of a and b.

2.2.Matching Non-Corresponding Face Regions via

Canonical Correlation Analysis

In this paper we propose a novel method in which faces

are recognized by matching non-corresponding regions. As

shown in Figure 4 the method include two steps, i.e., the

training step and the testing step respectively. First, we construct a series of coupled training sets, each for one pair of

non-corresponding regions, by sampling one pair of patches

on each face image. Then, CCA is performed on each training set for learning two sets of basis vectors. Each set of

vectors correspond to one face region. In the testing phase,

patch vectors are projected onto corresponding basis vectors. Similarity between two non-corresponding patches is

measured by comparing their projections. In other words,

the basis vectors obtained by CCA can transform vectors

of two non-corresponding regions into a uniﬁed latent subspace. Non-corresponding region matching is performed in

this latent subspace.

1061Figure 4. The process of non-corresponding region matching.

As can be seen, the key step in the proposed method is

the canonical correlation analysis. Canonical correlation

analysis is proposed by H. Hotelling in 1936 [7]. It is a

classical technique in statistical learning [6]. CCA has been

widely used in computer vision, and in recent years it also

has been applied to face analysis. Sun and Chen [20, 21]

modiﬁed the CCA model with soft label and local preserving projection. Ma et al. [14] improved the CCA model by

maximizing the differences between the within class correlations and between class correlations. Their methods are

all applied to image based face recognition. Kim et al. [9]

also embedded discriminant analysis into the CCA model,

but they applied their model to face video analysis. Zheng

et al. [30] used kernel CCA for recognizing facial expression. Reiter et al. [17] and Lei et al. [11] used CCA to

reconstruct 3D facial shape. Yang et al. [27] applied CCA to 2D-3D face matching. Different from all the method

mentioned above, we apply CCA to non-corresponding face

region matching in this paper.

“Canonical correlation analysis can be seen as the problem of ﬁnding basis vectors for two sets of variables such

that the correlation between the projections of the variables

onto these basis vectors are mutually maximized.” [5]. The

reason why we use CCA is that it can maximize the correlations between non-corresponding regions. And more important thing is that only the patches from the same face are

coupled in the training set. That is to say, only the intrapersonal correlations are maximized. The correlation values given by CCA are positively correlated to the possibility that two patches belong to the same face. Therefore, it

can be used as a metric for matching two non-corresponding

face regions.

In Figure 5, we give the correlation distributions of the

same and different identity in the original feature space

and the latent subspace obtained by CCA. As can be seen,

the correlations between two non-corresponding regions are

confused in the original feature space while in the latent

subspaces the distributions are well-separated.
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Figure 5. Distribution of correlation value between two noncorresponding face regions. In the original feature space (a), the

correlation distribution of same and different identities are confused. In the latent subspace given by CCA (b) they are wellseparated.

Let (X1; X2) be a set of patch pairs for two noncorresponding regions, where X1 = {x11; x21 : : : ; xn1},

X2 = {x12; x22 : : : ; xn2}. Here n is the number of faces.

Both X1 and X2 are normalized to zero mean. The optimization goal of CCA is to ﬁnd two sets of basis vectors,

each for one region, such that the correlations between the

projections of variables onto them are mutually maximized.

Denote the basis vectors as W12 = {w

12

1

; w

12

2

; : : : ; w

12

k

}

and W21 = {w

21

1

; w

21

2

; : : : ; w

21

k

}. Here k corresponds to

the dimension of the latent subspace. For a pair of basis

vectors (w

12

; w

21

), the correlation 
 between the projections w

12T

X1 and w

21T

X2 is


 =

E[w

12T

X1XT

2 w

21

]

√

E[w12T

X1XT

1 w12

]E[w21T

X2XT

2 w21

]

: (2)

Here, E[f(x; y)] is the empirical expectation of function

f(x; y).

Considering the means of X1 and X2 are zero, the total

covariance matrix of (X1; X2) can be written as:

Ctotal =

(

C11 C12

C21 C22

)

= E

[(

X1

X2

) (

X1

X2

)T

]

(3)

where C11 and C22 are the within-patch covariance matrices of X1 and X2 respectively and C12 = C

T

21

is

the within-individual covariance matrix between two noncorresponding regions. Therefore, the object function can

be described as:

W12; W21 = arg max

W12;W21

WT

√ 12C12W21

WT

12C11W12WT

21C22W21

(4)

1062The solution of W12 and W21 can be found by solving

the following eigenvalue equations [3]:

C

1

11 C12C

1

22 C21W12 = 


2W12

C

1

22 C21C

1

11 C12W21 = 


2W21:

(5)

Only one of the equations needs to be solved, because

the solutions are related by

C12W21 = 

12C11W12

C21W12 = 

21C22W21;

(6)

where


12 = 


1

21 =

√

WT

21C22W21

WT

12C11W12

: (7)

Assuming that each face is divided into m patches. Then

there are total m(m − 1) non-corresponding patch pairs.

For each pair we learn two sets of basis vectors (Wij ; Wji),

where i ≠ j and i; j ∈ 1; : : : ; m. Denote a pair of

gallery and probe faces as x = {x1; x2; : : : ; xm} and y =

{y1; y2; : : : ; ym} respectively. For a non-corresponding

patch pair (xi

; yj ), their projection onto corresponding basis vectors are:

x^i = WT

ij

(xi − x

mean

i

)

y^j = WT

ji

(yj − x

mean

j

):

(8)

Here x

mean

i

and x

mean

j

are the mean vector of i-th and jth patch respectively. The similarity between xi and yj is

measured by the correlation between the projections x^i and

y^j . Consequently, the total similarity S




total

between face x

and y can be computed by summing the similarity of all the

non-corresponding patch pairs.

S




total =

1

m × (m − 1)

∑m

i=1

∑m

j=1

x^i

· y^j

∥x^i∥∥y^j∥

s:t: i ≠ j:

(9)

In the recognition, we simply used the nearest neighbor

classiﬁer. A probe face is identiﬁed to the gallery face with

highest S




total

value.

Similar to the Fisher’s linear discriminant analysis, singularity problem also exists in CCA. The covariance matrix

C11 and C22 in equation (4) may be not invertible. There

are two methods to solve this problem. In the ﬁrst, covariance matrix can be regularized by adding a small value to

the diagonal elements. Denote the small value as 
. By replacing C11 and C22 with the regularized covariance matrix

C11 + 
I and C22 + 
I respectively in equation (4), the

singularity problem could be avoid. The second method is

to perform PCA before CCA, which is similar to the ﬁsherfaces method[2]. In this paper, we perform PCA and FLD

on the original Gabor features. Thus, the singularity problem is solved. However, we also perform CCA directly on

the original Gabor features in the following experiments. In

this case, the ﬁrst method is used.

3. Experiments

In order to validate the proposed method, we performe

experiments on the FRGC version 2.0 data set under the

protocol of Experiment 4. The FRGC provides 6 experimental protocols [16]. Among these experiments, Experiment 4 is considered the most challenging for still image

based face recognition. In Experiment 4, face images are

divided into three data sets, i.e., the training set, the target

set and the query set respectively. The training set consists

of 12,776 images of 222 individuals. In the target set, there

are 16,028 face images taken under controlled illumination.

And in the query set there are 8,014 images taken under

uncontrolled illumination.

Figure 6. The patch division (a) and example face images taken

under controlled illumination (b) and uncontrolled illumination (c)

in the FRGC version 2.

In the experiments original images are converted to gray

scale. The face images is normalized to 128 × 160 according to the positions of eyes. Each image is divided into 20 non-overlapping patches for corresponding and noncorresponding region matching. Independent PCA and FLD

models are trained on each patch using the images in the

training set. Then patches are represented as low dimension

feature vectors obtained by PCA and FLD. Figure 6 illustrates the patch division and some examples of normalized

face images used in our experiments.

In Experiment 4 face veriﬁcation is performed by comparing 8,014 uncontrolled query images with 16,028 controlled target images. The performance is measured by three

Receiving Operator Characteristic (ROC) curves generated

by BEE system. ROC 1 is corresponding to the images collected within semesters, ROC 2 within a year, and ROC 3

between semesters. Algorithms are typically compared in

terms of the veriﬁcation rate at 0.1% false acceptance rate,

which is considered the security requirement for real-world

applications.

3.1. Experiment A: Face Veriﬁcation Based on NonCorresponding Region Matching

We ﬁrst conducted experiments of face veriﬁcation based

on Non-Corresponding Region Matching (NCRM) under the

protocol of FRGC experiment 4. For comparison, we also
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