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ABSTRACT

Web-scale image understanding is a challenging but signiﬁ-

cant task to comprehend image contents on the internet. The

de-facto standard methods based on machine learning or computer vision still suffer from a phenomenon of visual polysemia and concept polymorphism (VPCP). To resolve the

VPCP, Vicept has been proposed to characterize the membership distribution between visual appearances and semantic

concepts. In this paper, we propose an online Vicept learning algorithm on the base of stochastic approximations, which

can scale up to large scale datasets with millions of training

samples. With the help of the Vicept, we develop an extension of the spatial pyramid matching (SPM) kernel method by

generalizing the Vicept as a basic semantic description. The

efﬁciency of our approach is validated in the experiments of

web-scale semantic image search and image classiﬁcation on

the ImageNet dataset and Caltech-256 dataset.

Index Terms— Online Vicept Learning, Spatial Pyramid

Matching, Image Understanding

1. INTRODUCTION

Web-scale image understanding becomes a hot research topic

recently due to its wide applications in image search and classiﬁcation. However the phenomenon of Visual Polysemia and

Concept Polymorphism (VPCP) is still a great challenge in

this area. Visual polysemia reveals the fact that a certain

visual appearance may have different semantic explanations

and concept polymorphism represents the fact that one concept may have many visual appearances under different circumstances. Particularly in web-scale environment, there exists a potential connection between any visual appearance and

any concept so that the VPCP problem becomes more severe.

Though many signiﬁcant works have been proposed to

address the problem of large-scale image understanding, the

problem of VPCP is still pendent. Recently, Wu et al.[1] proposed a Vicept description method to solve the problem diThis work was supported in part by National Natural Science Foundation

of China: 61025011, 60833006 and 61070108, in part by National Basic

Research Program of China (973 Program): 2009CB320906, and in part by

Beijing Natural Science Foundation: 4092042.

Fig. 1. Flowchart of our proposed approach.

rectly. In [2] a mixed-norm regularization is adopted to learn

a discriminative Vicept with structural sparsity. Incorporating

with the bag-of-visual-words (BoW) model [3], Vicept is introduced to characterize the membership distribution between

each visual word and concepts. In [1], the Fuzzy Concept

Distribution Updating algorithm is used to generate the Vicept, but the convergence speed of this method is too slow.

To overcome this drawback, in this paper, we propose an online Vicept learning algorithm based stochastic approximations, which can scale up to large scale datasets with millions

of training samples.

In [1, 2], images are represented incorporating with BoW

model. However, one obvious drawback in BoW model is the

neglect of spatial information. To overcome this, Lazebnik et

al.[4] extended the BoW model with Spatial Pyramid Matching kernel (SPM) by exploiting the spatial information of location regions. More speciﬁcally, each image is partitioned

into ﬁner sub-regions and Pyramid Match Kernel is exploited

to compare corresponding sub-regions. Many works [4, 5]
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including image classiﬁcation and image retrieval. In this paper, we develop an extension of the SPM kernel method by

generalizing the Vicept as a basic semantic description, called

VSPM. With VSPM image representation, we construct a system of web-scale image understanding, which is illustrated in

Fig. 1. Experiments on the ImageNet dataset and Caltech-

256 dataset show the effective performance of our approach

for the tasks of semantic image search and image classiﬁcation.

In summary, there are three contributions of our work: 1)

an online Vicept learning algorithm is proposed to solve the

problem of VPCP in web-scale dataset with millions of training samples. 2) an extension of the SPM kernel method based

Vicept is introduced for image understanding. 3) the validity

of VSPM are veriﬁed in the applications of web-scale semantic image search and image classiﬁcation.

The rest of this paper is organized as follows: Section 2

introduces the algorithm of online Vicept learning. Section

3 details the extension of the SPM kernel method based on

Vicept. Section 4 presents experimental results on web-scale

image database, showing the effective performance of our approach. Finally, Section 5 concludes the paper.

2. ONLINE VICEPT LEARNING

As mentioned above, Vicept builds the bridge between visual

appearances and semantic concepts. In other words, Vicept is

such a method which binds ”visual word-semantic concept”

together, taking the VPCP phenomenon into account. In this

section, we ﬁrst introduce the Vicept in general, and then reformulate the problem and propose our approach for the online Vicept learning.

2.1. Image Vicept Description

The VPCP phenomenon arouses a novel perspective that the

relationship between concept collections and visual appearance set can be formalized as a bipartite graph. To efﬁciently

make use of this structure, Vicept is designed with the following details:

Local Visual Appearance: We adopt local descriptor to represent image. In our approach, SIFT [6] is detected and quantized into visual words [3] by sparse coding.

Semantic Concept Collection: The concepts in real world

are not independent but closely related. Following the structure in [7], we simplify the concept modeling with a hierarchical concept tree.

Suppose having a dictionary D with k visual words and a

concept collection C with n concepts, a membership distribution can be learned between each visual word and concept

collection. In a word, each visual word has a corresponding

n-bin membership distribution histogram with concept collection C. Each Vicept word consists of two parts: one is the

Algorithm 1: Online Vicept Learning

Input: image sparse code xt(random variable and an

algorithm to draw i.i.d samples) and the

corresponding image label y∈


n

, V0∈Rn×k

(the initial Vicept), T(number of iterations)

Output: Vicept V

A0 ∈ 


k×k

←− 0,B0 ∈ 
 1

n×k

←− 0;

2 for t = 1 to T do

Draw xt from p(x) and the corresponding label y

t

3 ;

At ←− At−1 + xtx

T

t

4 ;

Bt ←− Bt−1 + y

t

x

T

t

5 ;

6 while Vt does not converge do

7 At = [a1, . . . , ak],Bt = [b1, . . . , bk], Vt−1 =

[v1, . . . , vk];

8 for j = 1 to k do

9 Update the j-th column to optimize for Eq.

2;

uj ←−

1

A[j,j]

10 (bj − vj aj ) + vj ;

v

t

j ←−

1

max(
uj 
2,1)

uj ; 11

12 end

13 end

14 end

15 return Vt (Update Vicept);

original visual word, and the other is the corresponding n-bin

membership distribution histogram. Finally, we can obtain a

Vicept Dictionary according to the dictionary D.

2.2. Online Vicept Learning

For image training set I = {i1, . . . , im}, we obtain its corresponding image sparse codes X = {x1, . . . , xm} by the

LARS-Lasso algorithm [8], which has experimentally proven

to be at least as fast as approaches based on soft thresholds while providing the solution with a higher accuracy.

Let Y = {y1

, . . . , ym} be the corresponding label, and

V = {v1, . . . , vk} denotes the Vicept Dictionary. The learning of Vicept can be formulated as the following optimization

problem,

V 
 arg min

1

m


m

i=1

(

1

2


 y

i − Vxi 


2

2

)

s.t.∀j = 1, . . . , k, vj ≥ 0, v

T

j

xj ≤ 1

(1)

Let A =


m

i=1

xix

T

i

, B =


m

i=1

y

i

x

T

i

, and ϕ be the term

which does not rely on V. The Eq. 1 can be reformulated as

follows,

V 
 arg min

1

m

(

1

2

(


m

i=1


 Vxi 


2

2

) −


m

i=1


 y

i

(Vxi

)

T


2 +φ)

= arg min

1

m

(

1

2

Tr(V

T

VA) − Tr(V

T

B)) (2)
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2538Fig. 2. Illustration of SPM kernel model based on Vicept.

The Eq. 2 can be solved using block-coordinate descent with

warm restarts. Concretely, Algorithm 1 sequentially presents

the learning procedure. One of its main advantages is parameter free and does not require any learning parameter tuning. Moreover, the procedure need not store all the vectors

y

i

and xi

, but only the matrices At =


m

i=1

xtx

T

t 
 and Bt =

m

i=1

y

t

x

T

t

. Since the convex optimization problem (Eq. 2) allows separable constraints in the updated blocks/columns, the

convergence to a global optimum is guaranteed [9]. In practice, the vector xi are sparse and the coefﬁcients of the matrix

At are often concentrated on the diagonal, which makes the

block-coordinate descent more efﬁcient. The value of Vt can

be computed with Vt−1 as a warm restart. Thus it is feasible

that our approach scales up gracefully to large-scale datasets

with millions of training samples.

3. SPATIAL PYRAMID MATCHING BASED VICEPT

After learning the Vicept, any image can be represented

by a set of Vicept under some image representation models,

such as part-based model, Bag-of-Visual-Words(BoW)model,

spatial pyramid matching(SPM)model, etc. As one extension

of the BoW model, SPM has made a remarkable success on

a range of image applications and is the major component

of the state-of-the-art systems. In this paper, we propose an

extension of SPM model based the Vicept, called VSPM.

Fig. 2 illustrates the SPM method based on Vicept. For an

given image I, ﬁrstly, we partition it into 2




× 2




segments

in different scales 
=0,1,2, and SIFT descriptors are extracted

from each segment. Secondly, we use the LARS-Lasso sparse

coding algorithm to the descriptor set and obtain the sparse

code x. Thirdly, recurring to the Vicept, we can get the Vicept

description y = Vx. Fourthly, similar to the construction of

histograms in SPM, we also represent the image by a max

pooling function. Suppose, one image region has n local

features, the concept size in Vicept is k, and its Vicept description is y = {y1

, . . . , yn

},yn

∈ 


k

. This image region

Fig. 3. Comparisons of different methods using MAP with

different scale of image dataset

can be represented by a k-dimensional vector z:

z = max{y1

, . . . , yn

} (3)

where the ith entry of z is the largest response to the ith basis

of all the components in y.

Finally, we concatenates all the 21 region representations

to form a vector representation of the image, both the spatial

layout and more basic pattern responses are retained.

4. EXPERIMENT

As a visual description closely integrated with semantic concepts, Vicept is recommended to be adopted in semantic related applications. In this section, we verify the validation

of our approach in two image understanding tasks: web-scale

semantic image search and image classiﬁcation.

4.1. Web-scale Semantic Image Search

We validate the efﬁciency of VSPM for image search on

a web-scale dataset, including ImageNet and 200K distracter Flickr images. For the ImageNet dataset, we select

a frequently-used collection with 217 concepts from ImageNet dataset [7] and there are 200K images in all. Vicept

is learned on one subset of ImageNet, which consists of

217×100 images.

Baseline: We use a traditional SPM approach [4] as the baseline and a dictionary of 1009 visual words is used.

Comparisons: we use two comparison approaches: an extension of SPM method based sparse coding (ScSPM [5]) and

our SPM approach based the Vicept (VSPM). Both methods

share a dictionary with 2034 visual words. We experimented

with different size of visual word dictionary, and ﬁnd 2034

dictionary to give the optimal performance.

In the evaluation, we select 217 representative images

from the ImageNet as queries. We use mean average precision (MAP) as evaluation metric. For each query image,

we compute its precision-recall curve and count the area below the curve. Finally, the mean is computed on over all
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2539queries. Fig. 3 compares the above three approaches with

MAP, leading to two observations. First, our Vicept signiﬁ-

cantly improves the MAP, as can be seen by comparing the

results with baseline. On the 400K image dataset, the VSPM

boosts the MAP from 0.28 to 0.39, a 11% improvement.

Second, our method reaches a higher MAP than the ScSPM.

One main reason is that Vicept representation captures salient

properties of relations between visual words and semantic

concepts.

4.2. Image Classiﬁcation

4.2.1. Results with the Caltech-256 dataset

Caltech-256 dataset is a widely used benchmark for image

classiﬁcation, which holds 29,780 images falling into 256 categories. Here, Vicept is learned on one subset of Caltech-256,

including 256×60 images. Considering the tradeoff between

precision and time complexity, we choose the dictionary with

1024 visual words and all the comparison methods share this

dictionary. SVM classiﬁers are trained using the LIBSVM

[10] package for SPM [4], ScSPM [5] and our VSPM respectively. A multi-class SVM with one-versus-all rule is trained

as the baseline. The parameters of SVM are chosen by crossvalidation on the training set. We tried these algorithms on 15,

30 and 60 training images per class respectively. The results

are shown in Table 1. For all the cases, our VSPM outperforms SVM by more than 12 percent, and outperforms our

SPM by more than 3 percent. Our approach is comparable

with the ScSPM [5].

Table 1. Classiﬁcation rate (%) comparison on Caltech-256

Method 15 Train 30 Train 60 Train

SVM 15.01 19.96 31.15

SPM[4] 23.34 29.51 -

ScSPM[5] 27.73 34.02 40.14

VSPM 26.87 34.62 41.09

4.2.2. Results with the ImageNet dataset

We also report the result of image classiﬁcation on the ImageNet dataset.

Comparisons:(1)Binary SVM, (2)KNN [11], (3)SPM [4],

(4)ScSPM [5], (5)VSPM.

SPM, ScSPM and VSPM use the identical dictionary with

2034 visual words, which is generated by a hierarchal k-mean

clustering method. For the KNN, we replicate the experiment

described in [11]. Firstly, the query image and the images in

ImageNet dataset are down sampled to 32 × 32 pixels. Then

100 nearest neighbors for the query are returned based on

SSD pixel distance. Finally, we predict the concept by aggregating the votes of its nearest neighbor images. Note that the

KNN method do not need the training phase. Table 2 shows

the comparison result of above methods. Because images in

ImageNet Dataset are very complicated, the accuracy of all

the methods is not high. But our VSPM method provides a

better image classiﬁcation result than others, which validates

the efﬁciency of our method.

Table 2. Classiﬁcation rate (%) on ImageNet dataset

#train SVM KNN SPM ScSPM VSPM

50 9.17 8.77 13.39 15.1 15.45

100 10.23 8.77 18.51 20.32 21.06

5. CONCLUSION

In this paper, we propose an online Vicept learning algorithm

to solve the problem of VPCP, and introduce an extension

of SPM kernel method based Vicept for image understanding.The efﬁciency of our approach is validated in the experiments of web-scale semantic image search and image classiﬁcation. In the future, we will enlarge the image training

dataset with more concepts to generate more powerful Vicept

descriptions.
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