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Abstract—Image authentication is usually approached by 

checking the preservation of some invariant features, which are 

expected to be both robust and discriminative so that contentpreserving operations are accepted while content-altering 

manipulations are rejected. However, most of existing features 

have not obtained convincing performance due to insufficiency of 

experiments and over biasing of robustness. Motivated by the 

sparse coding strategy discovered  in primary visual cortex, we 

explore the possibility of using sparse coding coefficients for 

image authentication. Through extensive experiments, we 

discover that the proposed feature bears great discrimination as 

well as robustness, which indicates the effectiveness of sparse 

coding as a new invariant feature for image authentication. 

Keywords-image authentication; sparse coding; robustness; 

discrimination; similarity 

I. INTRODUCTION

With increasing accessibility of Internet and proliferation of 

powerful multimedia processing  and manipulating tools, 

multimedia content protection is challenged by two facets of 

information security: confidentiality and authenticity [1]. Only 

when both facets are simultaneously resolved, can secure 

multimedia distribution be achieved [2][3]. While the first facet 

has been well tackled by encryption, the second remains a hot 

research topic. Image authentication is the technology 

employed in image communication to ensure the authenticity 

of an image, which is usually achieved by sender 

authentication and content integrity verification. For sender 

authentication, the actual identity of the sender and sometimes 

also its non-repudiability must  be ensured. Unlike traditional 

message integrity verification, content integrity verification 

seeks to verify the preservation of the meaning of an image 

instead of its specific binary representation. Therefore, a 

general principle of image authentication is to accept content- 

preserving operations while rejecting content-altering 

manipulations. 

Image authentication has been actively studied recently mainly 

in content-based approach [4]. Specifically, at sender side, a 

feature with certain kind of invariance is computed from an 

original image, and then embedded back into it as a watermark 

or appended to it as a signature; at receiver side, a new feature 

is calculated in the same way from the received image, which 

is then compared with the original feature based on certain 

distance metrics to decide whether the received image is 

authentic or tampered. In order to avoid impairing image 

quality by watermark embedding, we derive an authentication 

scheme (see Figure 1) from the traditional cryptographic digital 

signature by replacing the  cryptographic hashing function 

involved in digital signature schemes with a content-based 

feature extraction algorithm. Naturally, sender authenticity and 

its non-repudiability can be ensured. For content integrity, the 

distance-based similarity between the new feature and the 

original feature conveyed in the signature is compared against a 

predefined threshold instead of verifying bit-by-bit equivalence 

required by cryptographic digital signature. Note that, a secret 

One-Time Session Key can be used to randomize the extracted 

feature, which would make  signature forgery impossible. 

Obviously, it is the feature extraction that largely determines 

the performance of image authentication. Ideally, the feature 

should be robust to various content-preserving operations while 

strongly discriminative to content-altering manipulations. 

 Figure 1     The derived content-based authentication scheme.

The invariant features proposed in the literature can be 

roughly classified into three categories: statistical features, 

transform domain features and low-level visual features. 

Statistical features include intensity histogram [5] and 

moments [6]. There is a main drawback for this category: it is 

possible to modify images without changing their statistical 

features. Transform domain features are extracted by exploiting 

the invariance in transform domains, which include relative 

magnitude relationship between two transform coefficients [7] 

and dominant components which preserve coarse image 

content [8]. While robustness  to certain content-preserving 

operations is highlighted, discrimination ability of such 

transform domain features is not clear. The third category of 

low-level visual features includes edges [9] and feature points 
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sensitivity even to some content-preserving operations such as 

scaling, blurring and high quantization. In fact, most of 

proposed features have not convincing performance since 

usually only one or two operations are targeted and only 

several images are involved in the experiments. Furthermore, 

discrimination is often not sufficiently addressed due to over 

biasing of robustness.  

Motivated by the sparse coding strategy discovered in 

primary visual cortex [11], we  explore the implication of the 

sparseness in this paper. Since sparse coding coefficients can 

be viewed as the responses of corresponding neurons to the 

stimuli of image patches, it seems reasonable to expect some 

robustness and discrimination  from these coefficients. This 

speculation can be partially supported by a previous work 

which distinguishes imitation drawings from authentic 

artworks by applying sparse coding to the quantification of 

artistic style [12]. Through extensive experiments, we further 

confirm that sparse coding coefficients possess excellent 

properties of robustness and  discrimination. Therefore, we 

propose sparse coding as a  new invariant feature for image 

authentication. 

The rest of the paper is organized as follows. Section II 

presents the sparse coding based image authentication scheme 

by first reviewing the sparse  coding theory, then bringing 

forward the feature extraction algorithm, and finally 

establishing a corresponding  similarity measurement. The 

scheme's performance is evaluated in Section III. In Section IV, 

conclusions are drawn and the future work is given. 

II. IMAGE AUTHENTICATION BASED ON SPARSE CODING

As a neural coding strategy, sparse coding draws great 

attention for its potential application in high-efficiency visual 

information representation and encoding [13]. Here, we 

explore the possibility of applying it to image authentication. 

As the flow of image authentication has already been illustrated 

and described in Section I, this section will be dedicated to 

sparse coding theory, feature extraction of sparse coding and 

the corresponding image similarity measurement. 

A. Sparse Coding 

When presented to a scene, only a small number of early 

visual neurons out of a large  set will be activated [14]. To 

simulate this property of simple  cells in the primary visual 

cortex, the sparse coding theory is proposed to extract the 

intrinsic structure of natural images [11]. The theory assumes 

that an image patch is a linear superposition of a set of basis 

functions: 

               (1)


where 

i

a is the response from the ith neuron, and can also be 

viewed as the contribution of the basis function  
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 to 

the image patch. This coefficient can be computed by its 

corresponding filter function: 
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Adopting Independent Component Analysis (ICA) [15], we 

learn a set of basis functions that yields a sparse representation 

of natural images. Since color reduction is usually accepted as 

a content-preserving operation, 64 basis functions are learned 

from 50,000 8x8 gray image patches randomly extracted from 

natural images (see Figure 2). Thereafter, 64 filter functions 

can be obtained as each being the pseudo inverse of 

corresponding basis function. 

Figure 2 64 basis functions for gray level images. 

B. Feature Extraction 

For the same set of basis functions, similar sets of sparse 

coding coefficients will be acquired among perceptually 

similar patches, while randomness is to appear at coefficients 

for perceptually different images. Thus, the set of coefficients 

are assumed to possess properties of robustness and 

discrimination to some extent, which implies the possibility of 

being used as a new feature in image authentication. 

Feature extraction of sparse coding is performed both at 

sender side and receiver side (see Figure 1). It actually consists 

of three stages, namely, preprocessing, feature extraction and 

postprocessing. The specific steps involved at each stage are 

briefly described as follows. 


 Normalize an image. Decode a compressed image into 

a YUV image, extract the one-channel Y image, and 

resize it to 64x64. This  preprocessing step targets for 

improving the robustness to color reduction as well as 

scaling and resizing. 


 Extract sparse coding coefficients. Divide the resized 

image into 64 8x8 blocks (patches), index them in the 

order of “top to bottom, left to right”, and filter each 

block by Eq. (2) to get 64 sparse coding coefficients. 

The result is a feature of 4096 (64x64) sparse coding 

coefficients for the image: 
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 Quantize the feature. For each block, a string of 64 bits 

is achieved in the following way: 
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Thus, a feature of 4096 bits is obtained for an image by 

concatenating all feature bits block by block: 

(0) || (1) || ... || (63 ) || (0) || ... || (63 ), H 
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which results in a feature space of the size 2

4096
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324C. Similarity Measurement 

Accordingly, the Hamming distance between quantized 

features extracted from two blocks at the same location of two 

images can be computed as: 
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Therefore, the similarity between two images is calculated 

as follows: 
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Generally, for two random strings of 4096 bits, the 

expected number of different bits is 2048, which implies an 

expected similarity value of 0.5. Thus, ideally, the similarity 

value assessed by the proposed similarity measurement should 

be about 0.5 between two different images, while is close to 1 

between an original image and its slightly modified version. 

III. PERFORMANCE EVALUATION

Experiments are carried out mainly on two datasets. The 

original images for the first dataset is 1000 high definition JPG 

photographs selected from NOVA  “Art Explosion 800000” 

[16], which covers ten categories from art, landmark, flowers, 

sports, and humans to wildlife, plus 10 super high resolution 

raw images [17]. The other set of original images includes 

3600 images extracted from evaluation datasets of TRECVID 

[18]. By performing 7 content-preserving operations and 8 

complicated manipulations  respectively to the two sets of 

original images, we obtain one dataset of 7020 images and the 

other of the size of 32400. 

Due to the fact that the trade-off between robustness and 

discrimination is purely determined by practical application 

requirements, the performance  of the proposed feature is 

evaluated separately in terms of robustness and discrimination. 

For comparison of the features themselves, a DCT based 

similarity measurement is performed by only substituting 1 DC 

and 3 ACs in zig-zag scanning order for the 64 sparse coding 

coefficients.  

A. Robustness Evaluation 

Seven content-preserving operations are carried out 

respectively on 1000 JPG photographs from NOVA [16] to 

produce modified versions, with the exception of JPEG 

compression which is performed on 10 super high resolution 

raw images [17]. SPC (short for sparse coding) and DCT based 

similarity measurements are respectively applied to assess the 

similarity between each original image and its modified 

versions. Great robustness can be observed for both SPC and 

DCT from Table I. 

B. Discrimination Evaluation 

By arranging the same 1000 original images into a ring and 

measuring each pair of two neighboring images, SPC achieves  

TABLE I. AVERAGE SIMILARITY VALUES ON NOVA

Content-preserving Parameters SPC Sim. DCT Sim. 

Aspect ratio 4:3 
 16:9 0.9582 0.9930 

Auto-level  0.9831 0.9970 

Blur 3x3 0.9496 0.9922 

Brightness change +10% 0.9354 0.9759 

Gaussian noise 4.0 0.9369 0.9866 

JPEG compression QF:80 0.9133 0.9664 

Scaling 90% 0.9515 0.9917 

an average similarity value of 0.5001, while DCT achieves 

0.5096. Distribution of similarity is shown in Figure 3, with 4 

pairs of similar but different  images given for intuitive 

illustration (see Figure 4). It is observed that SPC bears 

excellent discrimination. In particular, the resulted average 

similarity value between different  images matches very well 

with the expected similarity value of 0.5.  

By comparison, SPC shows better discrimination while 

DCT is more robust.  
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Figure 3 Distribution of similarity values. (a) SPC; (b) DCT 

SPC:       0.460938            0.515625             0.476563            0.570313 

DCT:      0.492188            0.558594             0.578125            0.585938 

Figure 4 Similarity values between similar but different images. 

The performance of the proposed feature is further 

evaluated on a dataset derived  from TRECVID [18], which 

intends to simulate the complicated real world manipulations. 

According to the modifications contained therein, the eight 

tasks of copy detection are roughly classified into two 

categories: content-preserving  and content-altering. The 

category of content-preserving  includes insertion of pattern 

(T3), strong re-encoding (T4), change of gamma (T5) and 

decrease in quality (T6). Whilst, the category of contentaltering consists of simulated  camcording (T1), picture in 

picture (T2), post production  (T8) and combination of 3 

randomly chosen transformations (T10). The tasks of T7 and 

T9, which are similar to T6 and T8 respectively but are more 

complicated, have been dropped  by TRECVID. Examples of 

325these two categories of tasks are shown in Figure 5. It should 

be noted that the objective of image authentication and that of 

copy detection are different: the former is to accept moderately 

modified versions of original images, while the latter attempts 

to identify even severely distorted copies. Thus, for image 

authentication, it would make sense to reject T1 as a kind of 

counterfeit attack, while accepting T3 if the degree of 

modification is not severe with  respect to content integrity. 

Experimental results in Table II show that DCT achieves better 

robustness as indicated by the larger similarity values by DCT 

at content-preserving tasks, while SPC bears better 

discrimination, which can be seen from the smaller similarity 

values by SPC at content-altering tasks. Generally speaking, 

SPC will be preferred at image authentication because better 

discrimination implies better sensitivity at tamper detection, 

which is especially highlighted by systems of which security is 

the first priority.  

      (a) 

(b)            (c)                      (d)              (e) 

(f)             (g)            (h)               (i) 

Figure 5 Examples of copy detection tasks, with the tasks on the second row 

viewed as content-preserving, and the third row as content-altering. 

. (a) Source image; (b) T3; (c) T4; (d) T5; (e) T6; (f) T1; (g) T2; (h) T8; (i) T10. 

TABLE II. AVERAGE SIMILARITY VALUES ON TRECVID

Contentpreserving

SPC

Sim. 

DCT

Sim. 

Contentaltering

SPC

Sim. 

DCT

Sim. 

T3 0.7892 0.8312 T1 0.5769 0.6586 

T4 0.6870 0.8567 T2 0.5066 0.5077 

T5 0.8587 0.9262 T8 0.5530 0.5647 

T6 0.6743 0.8001 T10 0.5235 0.5436 

IV. CONCLUSIONS

We propose a new feature of sparse coding for robust and 

discriminating image authentication. By exploiting the 

characteristics of sparse coding that it extracts intrinsic 

structure of natural images, we suggest representing an image 

by a set of sparse coding coefficients and measuring image 

similarity based on it. Experimental results demonstrate its 

excellent performance of robustness  and discrimination, thus 

indicate the effectiveness of sparse coding as a potentially ideal 

feature for image authentication. 

Due to the fact that the acceptable content-preserving 

operations vary greatly from one application to another, there 

lacks a benchmark dataset for image authentication. Our future 

work could be a contribution to this benchmark construction by 

defining different levels of acceptable modifications to cover 

the whole range of authentication requirements. 
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