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Abstract General object recognition and image understanding is recognized as a dramatic goal for computer

vision and multimedia retrieval. In spite of the great e®orts devoted in the last two decades, it still remains an

open problem. In this paper, we propose a selective attention-driven model for general image understanding,

named GORIUM (general object recognition and image understanding model). The key idea of our model is to

discover recurring visual objects by selective attention modeling and pairwise local invariant features matching

on a large image set in an unsupervised manner. Towards this end, it can be formulated as a four-layer bottom-

up model, i.e., salient region detection, object segmentation, automatic object discovering and visual dictionary

construction. By exploiting multi-task learning methods to model visual saliency simultaneously with the

bottom-up and top-down factors, the lowest layer can e®ectively detect salient objects in an image. The second

layer exploits a simple yet e®ective learning approach to generate two complementary maps from several raw

saliency maps, which then can be utilized to segment the salient objects precisely from a complex scene. For the

third layer, we have also implemented an unsupervised approach to automatically discover general objects from

large image set by pairwise matching with local invariant features. Afterwards, visual dictionary construction

can be implemented by using many state-of-the-art algorithms and tools available nowadays.
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1 Introduction

General object recognition and image understanding is widely recognized as a very di±cult problem in

computer vision and multimedia retrieval. In computer vision community, there are an abundance of

techniques and systems for solving various well-de¯ned vision tasks. However, most of them are task-

speci¯c and seldom can be generalized to a wide range of applications. While in multimedia retrieval

community, it was already observed that the general media understanding and retrieval problem was

bottlenecked by the semantic gap [1]. Over the past few years, the whole community has been working

very hard to address this issue but even the most cutting-edge image understanding system can only
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interpret an image with limited vocabularies/concepts (hundreds or less) and without a satisfactory

precision. It is thus expected that there shall be some signi¯cant break-through to be made in developing

e®ective solutions to this general and broad problem.

Local invariant features such as SIFT [2] and SURF [3] are one of the most prominent tools for object

recognition in the last decade. The local feature is invariant to a±ne transforms and possible photography

distortions. The object recognition problem is then converted to match local features extracted from a

given image with that of the target object under geometric constraint. The underlying rationalities are

1) to identify an object and distinguish it from others, local features are better than other features in

terms of object representation; 2) the elaborately-designed local features can keep invariant under various

transforms and distortions which exist inevitably in object recognition and image understanding; 3) the

geometric relationship among these local features is also an important feature to represent and identify

an object. Moreover, a group of local features with a certain geometric relationship can represent an

object uniquely, consequently leading to a feasible solution for the general object recognition problem.

The local invariant feature has been utilized for image understanding in recent years as well. By

clustering a large number of local features extracted from a quantity of training images, the cluster

centroids are taken as visual words which are used to represent an image as bag-of-visual-words (BoWs).

Then di®erent models can be employed to map the visual-words with a set of prede¯ned visual concepts,

which are in turn used to index images. This is true for natural language in which a \word" is the

fundamental block for all sentences and then concepts. However, for the natural image, the assumption

that the high-level visual concepts share a common set of visual words is questionable. Moreover, the

semantic gap still cannot be bridged by employing the BoW representation derived from local invariant

features. This is because the BoW representation loses the most important information that can be used

to identify an object when clustering local features to visual words. In our opinion, a break-through

approach for image understanding must face squarely the visual objects (including rigid objects such

as buildings and soft objects such as di®erent kinds of clouds). The meaningful elements for high-level

concepts and semantic understanding are the visual objects rather than the low-level features or its simple

derivatives (e.g., BoWs).

In this paper, we propose a selective attention-driven model for general image understanding, named

GORIUM (general object recognition and image understanding model). The key idea of GORIUM is to

discover recurring visual objects in multiple images by selective attention modeling and pairwise local

invariant features matching, and then construct a visual dictionary (VDic) to interpret any new image.

Unlike most of existing systems which compare a given image with speci¯c object(s), GORIUM does not

specify any object in advance but discover the object occurrences in a given image set.

The extraction of interesting objects is the fundamental task in GORIUM. Since visual saliency can

serve as one sort of selection mechanisms to pop out important contents, it is possible to exploit visual

saliency for interesting object detection and segmentation. By e®ectively utilizing visual saliency for

detection and segmentation of interesting objects, GORIUM can be formulated as a four-layer bottom-

up model, i.e., salient region detection, object segmentation, automatic object discovering and visual

dictionary construction. The lowest layer exploits visual saliency to detect salient objects in an image. In

this work, we have proposed two learning frameworks for visual saliency estimation, namely multi-task

learning and rank learning. Given the estimated visual saliency, the second layer exploits a simple but

e®ective learning approach to generate a sketch map and an envelop map from several raw saliency maps.

As such, the most con¯dent parts of saliency maps can be utilized to segment the salient objects precisely

from a complex scene. For the third layer, we have also implemented an unsupervised approach to

automatically discover general objects from large image set by pairwise matching local invariant features

of the images. Afterwards, visual dictionary construction can be implemented by using many state-of-

the-art algorithms and tools available nowadays.

The remainder of this paper is organized as follows: Section 2 presents the framework of the GORIUM

model. We summarize our recent work on learning-based visual saliency estimation in section 3 and

saliency-driven object segmentation in section 4. Then the possible solution for implementing automatic

object discovering and visual dictionary construction will be described in section 5. Section 6 will concludeHuang T J, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12 2463

this paper and discuss the future work.

2 The GORIUM model

As a start point, a large set of images in a given domain should be collected and fed into the GORIUM

model to train the VDic. Currently, such an image set can be easily obtained from the Web (e.g.,

ImageNet [4]). By performing pairwise feature matching operations on the image set, GORIUM could

discover various visual objects which appear in multiple images repeatedly. A basic question is if we expect

GORIUM to e®ectively recognize and understand all kinds of photos captured from our natural world,

how many visual objects it should discover and collect into its VDic. Irving Biederman evaluated that

about 30000 di®erent visual objects are recognized in the course of one person's lifetime [5]. Therefore,

a reasonable goal for GORIUM is to recognize and collect 100000 or more visual objects-three times or

more than a person can do. Considering billions of photos are available online and there are millions of

visual objects inside, to discover more than 100000 frequent objects is not an over-ambitious goal.

In general, the GORIUM model performs four steps in a bottom-up manner to discover interesting

objects and then construct the VDic:

1) Detect salient region. To ¯nd the most salient area of a given image, the underlying assumption is

that an object in that image is more visually salient than the background. Moreover, all potential objects

appearing in the VDic should be present in some images as the most salient region. Considering there

are millions of images in the training set, the assumption makes sense. In other words, even some objects

are missed if they are not the most salient region in an image, the following object discovery step still can

¯nd them from their salient instances in other images. Note that here we use the term \region" to denote

the salient components of an image which roughly corresponds to an object or part of an object. In our

design, GPOIUM holds no priors about \object" in this step. The only thing it can do is to understand

which region of the image is more salient.

2) Segment object region from background. Segmentation is to pop potential objects out from the

background. This task is made di±cult by the wide variability of the object's shape, appearance, and

its surrounding complex scene. Typically, values on a saliency map can serve as beliefs of pixels' labels

and thus are highly useful for segmentation. Such saliency priors can be exploited by various strategies

to segment objects from visual scenes. This paper will brie°y introduce our saliency-based segmentation

method which shows high accuracy in two benchmark datasets. However, the accuracy of cutting a

potential visual objects from an image is not the precondition for discovering objects from millions of

images. In other words, the coming pairwise-objects matching is not so sensitive to slightly inaccurate

segmentation results.

3) Discover fa»cades of objects from images. As the projection of a 3D scene to a 2D plane, an image only

retains the appearance of an object from one view. To distinguish from the term \object" itself, this paper

refers to the projection of an object in an image as \fa»cade". Literally, fa»cade is used to express di®erent

sides of a building in several images captured at multiple orientations. Here we extend its meaning to

express the appearance of any 3D object in a 2D image. We can perform pairwise salient object/region

matching to discover the recurring fa»cade candidates, and then several visually similar fa»cade candidates

can be grouped and merged into one fa»cade. Finally, only high frequent fa»cades appeared in multiple

images are chosen as the entities in the VDic.

4) De¯ne objects for the VDic. In the ¯nal step, the discovered fa»cades are used to de¯ne entries

(i.e., visual objects) of the VDic. In general, an isolated fa»cade which rarely shares local features (e.g.,

keypoints) with others will de¯ne a planar object. Two typical examples are outdoor logos and tra±c

signs. Meanwhile, if two or more fa»cades overlap side by side (which could be found if two fa»cades share

multiple keypoints in one side area), they may be di®erent fa»cades of one object. Such a typical example

is landmark building. The visual attributes of the fa»cade(s) could be colligated as the visual description of

the de¯ned object. In this way, a visual object in the dictionary can be de¯ned by the fa»cade(s) extracted

from multiple images and characterized by the keypoint set with spatial relationship and the appearance

attributes inheriting from the corresponding fa»cade(s). Moreover, we can also learn the textual semantic2464 Huang T J, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12

concepts of the object if some of the original images are provided with textual annotations.

Therefore, the GORIUM model can be expressed as a selective attention-driven general image under-

standing model with four layers, namely salient region detection, object segmentation, automatic object

discovering and visual dictionary construction. Each layer roughly corresponds to one step in the VDic

construction process described above. Note that the VDic construction is an incremental and dynamic

process. That is, if there are new images available, the VDic can be easily upgraded by incremental

learning.

Once generated, the VDic can be used to analyze and interpret a query image by the following steps: 1)

extract local features from the query image; 2) query the VDic to ¯nd the vocabulary entity by matching

the local features under geometric constraint; 3) (optional) compare the appearance attribute(s) of the

query image and the entities in the VDic; 4) interpret the query image using the matched visual objects-

their positions and spatial relationships, their textual description and appearance attributes.

3 Learning-based salient region detection

Typically, the visual world is highly structured in a 3D manner. As a result, the scenes in images are

composed of features that are not random in the 2D plane. Neurobiological evidence shows that the

stable properties of the visual environment, such as rough spatial layout and predicable variations, can

work as the contextual priors for individuals to ¯nd the target in similar environments. In neurobiology,

this phenomenon is called contextual cueing e®ect [6]. This e®ect can be represented as adopting similar

task-related \stimulus-saliency" functions and model fusion strategies in similar scenes. In our work,

these functions and fusion strategies are learnt from scenes in the training data and then transferred to

new scenes to estimate their visual saliency maps. Towards this end, we have proposed two learning

frameworks for visual saliency estimation, namely multi-task learning and rank learning.

3.1 Multi-task learning for visual saliency estimation

In [7], we propose a probabilistic multi-task learning framework for visual saliency estimation. To the

best of our knowledge, it is the ¯rst approach that explores the problem of visual saliency computation

with the multi-task learning framework. This framework can adaptively select di®erent fusion strategies

for di®erent scenes to integrate the predictions made by the bottom-up and top-down models.

As shown in Figure 1, this framework mainly consists of two modules: the bottom-up module and the

top-down module. In the bottom-up module, the low-level processes of human vision system are simulated

through multi-scale wavelet decomposition and mutual feature competition. In contrast, the top-down

module adopts a learning-based approach to simulate the in°uence of high-level processes in human vision

system, which may bias the mutual competition between input visual signals. In the learning process,

a multi-task learning algorithm is proposed to simultaneously learn the task-related \stimulus-saliency"

mapping functions and fusion strategies for di®erent scenes. Given K training scenes each with N blocks,

we have K £ N input-output pairs (xkn; ykn). Then the optimization problem can be formulated as

min

F;W

1

KN

XK

k=1

XN

n=1

l

Ã
X

t2T

ckt

^

ft(xkn) + ®kbbkn; ykn

!

;

s:t: 0 6 ckt; ®kb 6 1;

X

t2T

ckt + ®kb = 1; 8 k 2 f1; : : : ; Kg ; (1)

where ckt =

PTk

i=1 ®ki¯kit, ¯kit = p(T^

tjTki) is the probability that the complex task Tki comprises the

typical task T^

t, ®kb is the probability that the bottom-up process Tkb controls the visual attention on the

kth scene, and bkn is the probability that the nth block (characterized with low-level descriptor xkn) is

the salient block in such process, l(¢) is a prede¯ned loss function which quanti¯es the cost of predicting

saliency for the input xkn with the \ground-truth" ykn, and ^

ft(xkn) is a task-related \stimulus-saliency"

mapping function. We can further incorporate several penalty terms to enforce the sharing of informationHuang T J, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12 2465

Figure 1 The probabilistic multi-task learning framework for visual saliency estimation.

between tasks to improve the robustness of the learned parameters. Extensive experiments on two public

eye-¯xation dataset (MTV and ORIG) and one regional saliency dataset (RSD) show that our approach

(PMTL) outperforms previously reported work remarkably-seven bottom-up approaches and one top-

down approach [7].

3.2 Rank learning for visual saliency estimation

In the contextual cueing e®ect process, a requisite step is to identify the search priority of each location.

Such priority is closely related to visual saliency and can be derived from local visual attributes and

pairwise contexts. Therefore, we can formulate visual saliency estimation as a rank learning problem to

estimate the searching priority of each location. To learn a \stimulus-saliency" function to distinguish

salient targets and distractors on the sparsely labeled eye-¯xation dataset, we propose a cost-sensitive

rank learning approach to avoid the explicit selection of positive and negative samples [8]. Furthermore,

by integrating the multi-task learning and rank learning frameworks, we have also proposed a multi-task

rank learning approach to infer multiple saliency models for di®erent scene clusters [9]. Again, they are

among the ¯rst work to introduce the rank learning framework to solve the visual saliency computation

problem.

In our multi-task rank learning approach, scenes with similar contents are ¯rst grouped into the same

cluster; for each cluster, a ranking function is optimized to give ranks for all subsets in a scene so that

these estimated ranks are expected to approximate the ground-truth ranks. Without loss of generality,

we de¯ne Ám(x) = !

T

mx since various pre-attentive visual features are often integrated into experienced

wholes with linear weights for saliency estimation. Let W be an L £ M matrix with the mth column

equal to !m. Then the optimization objective of multi-task rank learning can be de¯ned as

min

W;®

L(W; ®) + ­(W; ®);

s:t:

XM

m=1

®km = 1; 8k and ®km 2 f0; 1g; 8m; (2)

where L(W; ®) is the empirical loss and ­(W; ®) is the penalty term that encodes the prior knowledge

on the parameters. The empirical loss L(W; ®) can be de¯ned in a pairwise manner:

L(W; ®) =

XK

k=1

XM

m=1

®km

XN

u=6 v

[gku < gkv]I [!

T

mxku > !

T

mxkv]I ; (3)

where [x]I = 1 if x holds, otherwise [x]I = 0. ­(W; ®) can be written as the weighted linear combination

of the penalties that encode the priors on scene clustering, model correlation and model complexity

[9]. With the appropriately-de¯ned empirical loss and penalty term, we can use the EM algorithm to

iteratively solve the problem and ensure the convergence. We compare the proposed approach with the2466 Huang T J, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12

state-of-the-art saliency models (including seven bottom-up models and three top-down models) and

three ranking models on a public eye-¯xation dataset. Experimental results show that our multi-task

rank learning approach outperforms these methods remarkably in visual saliency estimation [9].

4 Saliency-driven object segmentation

Given the estimated visual saliency, the next problem is how to exploit it to precisely segment objects

from complex scenes. In this case, values on a saliency map can serve as beliefs of pixels' labels and thus

are highly useful for segmentation. Typically, saliency-based segmentation methods are free from human

interaction and thus can be applied to any large dataset. However, visual saliency cannot guarantee

too much the accuracy of object segmentation. For example, some saliency-based methods are sensitive

to local sudden changes in the background (e.g., [7, 10{12]). In these methods, distracters might be

treated as salient objects due to their high saliency values. This causes each segmentation result to be

an envelope-like area containing the objects. Meanwhile, there are also some other methods (e.g., [13])

that prefer to highlight only some important parts of objects (referred to as sketch). Although objects

segmented by the two kinds of saliency-based methods independently may su®er some problems, it is

possible to obtain desirable results by integrating them in a uni¯ed framework.

Towards this end, we introduce the concept \complementary saliency map" (CSM) which consists of an

envelope map and a sketch map. As shown in Figure 2, the envelope map always highlights a large area

containing the objects while the sketch map prefers to highlight small areas inside each salient object.

Then pixels with low saliency in the envelope map can be regarded as background seeds while pixels with

high saliency in the sketch map can be treated as object seeds. As such, only the most con¯dent parts

of CSMs are utilized for object segmentation. This decreases the ambiguity of saliency maps in existing

saliency-based segmentation methods. In [14], we employ an ad hoc way to generate sketch and envelope

maps; then two KD-trees are built as the object-background color model and the remaining pixels are

classi¯ed using this model. However, one limitation of the approach is the sketch and envelope maps

are speci¯ed in an ad hoc way, making it di±cult to directly apply them to di®erent datasets, especially

those with complex scenes.

To address this problem, we combine di®erent raw maps [10{12, 15{17] in a \mixture-of-experts"

framework to generate robust CSMs. By raw maps, we refer to saliency maps that are directly generated

from a single saliency model and do not su®er complex post-processing operations. If we consider each

raw map as an expert, the saliency value of a pixel in the map will re°ect the expert's belief of this

pixel being salient; when several experts are mixed together, their opinions can be integrated to generate

CSMs. As such, we can use add and multiply operations to simulate the process of integrating raw maps.

Let R = fR(k)

gk be a set of K raw maps for image I, with the corresponding envelope weight matrices

Wenv = fW

(k)

envgk and sketch weight matrices Wske = fW

(k)

ske

gk. Then for each pixel p in envelope map

Senv and sketch map Sske, its value can be determined according to the following models:

Senv(p) =

XK

k=1

R

(k)

(p)W(k)

env

(p);

Sske(p) =

YK

k=1

(R

(k)

(p))

W(k)

ske

(p)

: (4)

We observe that the ground-truth map can serve as the ideal envelope map and sketch map simultane-

ously. Naturally, we want CSMs to ¯t it as well as possible. This is a multiple linear regression problem.

In general, least squares method is a standard approach for approximate solution of over-determined

systems. In our case, we try to minimize the sum of squared errors (SSE) for each pixel p:

SSE(p) =

XN

n=1

Ã
XK

k=1

(R

(n;k)

(p) ¢ W(k)

env

(p)) ¡ G

(n)

(p)

!2

: (5)

Eq. (5) is a convex function and we can easily derive its analytical solution.Huang T J, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12 2467

Figure 2 Demonstration of complementary saliency maps. (a) Original image; (b) the ground-truth with \Obj" and

\Bkg" marked; (c) some examples of envelope maps; (d) some examples of sketch maps.

Table 1 Performances of various saliency-based methods on the SOSB and MOCB datasets

a)

Algorithm

SOSB MOCB

Precision Recall F-measure IMP (%) Precision Recall F-measure IMP (%)

Itti98 [10] 0.78 0.49 0.60 50.0 0.48 0.47 0.47 66.0

Hou07 [12] 0.67 0.57 0.62 45.2 0.50 0.51 0.50 56.0

Achanta09 [11] 0.82 0.75 0.78 15.4 0.49 0.49 0.49 59.2

Harel07 [16] 0.71 0.72 0.71 26.8 0.58 0.60 0.59 32.2

Seo09 [17] 0.66 0.55 0.60 50.0 0.53 0.58 0.55 41.8

Goferman10 [15] 0.58 0.69 0.63 42.9 0.58 0.67 0.62 25.8

Yu10 [14] 0.88 0.89 0.88 2.2 0.74 0.64 0.69 13.0

The proposed 0.91 0.90 0.90 0.76 0.80 0.78

a) The best performance for each metric is marked as the bold ¯gure.

Then segmentation can be done using the graph cuts technique which provides a powerful framework

to combine CSMs, appearance a±nity and neighboring interaction into the object segmentation process.

In general, it seeks a labeling assignment l that globally minimizes the following cost function (see [18]):

C(l) =

X

fp;qg2N

Vp;q(lp; lq) +

X

p2I

D(lp); (6)

where N stands for the neighborhood system, Vp;q(lp; lq) is a binary cost to guarantee that two neighboring

pixels p and q are likely to have the same label, and D(lp) is a unary cost for punishment of assigning

a certain label to pixel p. An appearance model used for computing D(lp) should well represent the

visual feature distribution in a certain area. In our work, we set a threshold to binarize the envelope

map. Pixels whose saliency values are above (below) the threshold are used to train object (background)

GMMs. The optimal solution of the graph cuts can be solved by a fast max-°ow algorithm [19].

We conduct comprehensive experiments to examine whether the proposed approach can segment ob-

jects in various visual scenes. The two datasets are denoted by SOSB and MOCB, respectively. The

SOSB dataset consists of 1000 one-object images with various object classes, which were selected and

labeled with exact object masks by Achanta et al. [11]; while the MOCB dataset contains 1474 images

selected from [20] and PASCAL VOC09, in each of which various objects coexist in a complex back-

ground. The overall performances of various methods are shown in Table 1. On SOSB, our approach

has achieved rather good performance, with F-measure of 0.90. While on MOCB, the performances of

all the segmentation methods, including ours, decrease largely from simple scenes to complex scenes. In

this case, our approach still outperforms all the comparison methods, with F-measure of 0.78. Some

representative results on the two datasets are illustrated in Figure 3.

5 Visual dictionary construction

With the segmented objects or regions, GORIUM can perform pairwise salient object/region matching2468 Huang T J, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12

Figure 3 Representative results on SOSB and MOCB. (a) Original images with ground-truth; (b) [10]; (c) [12]; (d) [11];

(e) [15]; (f) ad hoc envelope maps from [14]; (g) ad hoc sketch maps from [14]; (h) our envelope maps; (i) our sketch maps;

(j) our ¯nal segmentation results.

to discover the recurring fa»cades, and then the discovered fa»cades are used to de¯ne entries (i.e., visual

objects or units) of the VDic. In this section, we will discuss the possible solution for implementing

automatic fa»cade discovering and visual dictionary construction.

5.1 Fa»cade discovery by pairwise matching

As a general framework for object recognition and image understanding, GORIUM should be able to

learn from any training image set in a speci¯c domain. What we are doing is to discover thousands of

visual objects from a publicly available dataset|ImageNet, which collects more than 12 million images

and about 5% of them are labeled with bounding boxes [20].

The image matching methods used by GORIUM are similar with those for matching a given image with

pre-de¯ned visual object(s). The only di®erence is the salient objects/regions in all images are matched

pairwise with each other. The procedure is summarized as follows:

1) Extract local features (e.g., keypoints) in salient regions and create a local features set for each

image.

2) Find all matched keypoints in all image pairs, based on the similarity of local features at these

regions.

3) Check geometry constraint for the matched keypoints, e.g., using the generalized Hough transform.

4) If there are enough keypoint pairs satisfying geometry constraint, then the two corresponding salient

regions in an image pair are chosen as a fa»cade candidate. In this case, the fa»cade candidate can be

represented by merging the two salient regions according to the geometry mapping relationship.

5) After a round of pairwise matching, similar fa»cade candidates are grouped into one fa»cade. Only

high frequent fa»cades appeared in multiple images can be chosen as the entities in the VDic.

Note that the geometry constraint means that two groups of matched keypoints should keep their

geometric isomorphism relationship unchanged under di®erent a±ne transformations such as resizing,

rotation, cropping and aspect-ratio changes. In abstract algebra, such an isomorphism is a kind of

mapping between objects that shows a relationship between two properties or operations (e.g., structurally

identical).

The main problem here is the complexity of pairwise matching on a large set. Nowadays the matching

between two images on a normal PC needs one or more seconds. The pairwise matching of one billion

images will spend 10

18

seconds or 10

11

years on a PC. Even when using the fastest super-computer

nowadays which is about 10

5

times faster than a PC, it still needs one million years. If the numberHuang T J, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12 2469

of images decreases to one million, 100 years are needed for a PC and one year needed for the super-

computer. As a result, a fast algorithm is necessary for the pairwise matching.

In fact, this pairwise matching problem can be cast as an image search task. By employing inverted

index technique and tree-based search algorithms, one query in a million-scale image set can be completed

in one second on a normal PC server [21]. Our landmark searching system can also perform one query in

one second in the one million-scale landmark image database [22]. That is to say, the pairwise matching

on one million images could be completed in one million seconds or about 10 days by a PC server.

Currently, we are optimizing the search algorithm to deal with 12 million images of ImageNet.

5.2 Visual dictionary construction

In the VDic, each vocabulary entry often corresponds to a visual object that is de¯ned by a fa»cade. If a

fa»cade has very few similar keypoints with other discovered fa»cades, we can assume that it corresponds

to a planar or tabular object. In this case, an isolated object which equals the fa»cade becomes a new

entry of the VDic. Note that the fa»cade may be synthesized by a group of fa»cade candidates and each

candidate may be further synthesized by multiple similar salient regions from the input image set.

Composite object is another type of the entries in the dictionary. It comes from multiple fa»cades which

could be stitched one by one with a set of shared keypoint pairs. Again, keypoints matching algorithm

can be carried out to ¯nd the spliced side area between any fa»cade pair. These \hand in hand" fa»cades

are stitched as a near-3D shell of a visual object|the composite entry in the VDic. A composite object

can be represented by all the keypoints on the shell and the appearance of the shell. For a given unknown

image, we can perform partial matching with the shell to identify the corresponding object.

Both isolated and composite objects are the basic objects in the dictionary and then are assigned a

unique identi¯er. Based on these basic objects, more kinds of visual entries could be generated. The

¯rst one is the component object which is a common sub-region shared by several basic objects. Once

the component objects are ¯ltered out, they can be used to represent the basic object more compactly.

Another kind of visual objects is the abstract entry. In fact, any visual attribute|color, texture, shape

or any speci¯c pattern|as long as it presents in object entries, can be de¯ned as an abstract object. In

some sense, an abstract object corresponds to a visual concept. It also should be noted that the above

three kinds of objects and the abstract object can interpret mutually.

6 Conclusions

General object recognition and image understanding is one of the hardest problems for computer vision

and multimedia retrieval. By taking the discovery of general objects in large image set as the pivot, this

paper proposes GORIUM to solve the general object recognition and image understanding problem in an

uni¯ed framework. GORUIM is a four-layer bottom-up model. For the lower two layers, we have proposed

and implemented several salient region detection and segmentation algorithms which can precisely extract

visual objects from any image. For the third layer, we have also proposed an unsupervised approach to

automatically discover general objects from large image set by pairwise matching with local invariant

features. On these bases, visual dictionary construction can be easily implemented by using existing

matured algorithms. As a consequence, a general object and image understanding machine (short for

GORIUMachine) could be turned out in the near future.
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