Abstract—Over the past few decades, dimensionality reduction has been widely exploited in computer vision and pattern analysis.

This paper proposes a simple but effective nonlinear dimensionality reduction algorithm, named Maximal Linear Embedding (MLE).

MLE learns a parametric mapping to recover a single global low-dimensional coordinate space and yields an isometric embedding for

the manifold. Inspired by geometric intuition, we introduce a reasonable definition of locally linear patch, Maximal Linear Patch (MLP),

which seeks to maximize the local neighborhood in which linearity holds. The input data are first decomposed into a collection of local

linear models, each depicting an MLP. These local models are then aligned into a global coordinate space, which is achieved by

applying MDS to some randomly selected landmarks. The proposed alignment method, called Landmarks-based Global Alignment

(LGA), can efficiently produce a closed-form solution with no risk of local optima. It just involves some small-scale eigenvalue

problems, while most previous aligning techniques employ time-consuming iterative optimization. Compared with traditional methods

such as ISOMAP and LLE, our MLE yields an explicit modeling of the intrinsic variation modes of the observation data. Extensive

experiments on both synthetic and real data indicate the effectivity and efficiency of the proposed algorithm.

Index Terms—Dimensionality reduction, manifold learning, maximal linear patch, landmarks-based global alignment.

Ç
1 INTRODUCTION

MANY applications in computer vision and pattern

analysis have steadily expanded their use of complex,

large high-dimensional data sets. Such applications typically

involve recovering compact, informative, and meaningful

low-dimensional structures hidden in raw high-dimensional

data for subsequent operations such as classification and

visualization [24], [25], [28], [29], [37], [51], [52], [53]. An

example might be a set of images of an individual’s face

observed under different poses and lighting conditions;

the task is to identify the underlying variables given only the

high-dimensional image data. Typically, the underlying

structure of the observed data lies on or near a lowdimensional manifold rather than linear subspace of the

(high-dimensional) input sample space. In this situation, the

dimensionality reduction problem is known as “manifold

learning.” Generally, manifold learning approaches seek to

explicitly or implicitly define a low-dimensional embedding

that preserves some properties (such as geodesic distance or

local relationships) of the high-dimensional observation

data set.

In this paper, we propose a nonlinear dimensionality

reduction algorithm, called Maximal Linear Embedding

(MLE). Compared with the existing methods, MLE has

several essential characteristics worth being highlighted:

1. MLE introduces a novel concept of Maximal

Linear Patch (MLP), which is defined as the

maximal local neighborhood in which linearity

holds. The global nonlinear data structure is then

represented by an integration of local linear

models, each depicting an MLP.

2. MLE aligns the local models into a global lowdimensional coordinate space by a Landmarks-based

Global Alignment (LGA) method, which provides an

isometric embedding for the manifold. The proposed

LGA method can preserve both the local geometry and

the global structure of the manifold well.

3. MLE learns a nonlinear, invertible mapping function

in closed form, with no risk of local optima during

its global alignment procedure. Thus, the mapping

can analytically project both training and unseen

testing samples.

4. MLE is able to explicitly model the underlying

modes of variability of the manifold, which has been

less investigated in previous work.

5. MLE is computationally efficient. The proposed

learning method is noniterative and only needs to

solve an eigenproblem scaling with the number of

the local models rather than the number of the

training samples.

The rest of the paper is organized as follows: A brief review

of dimensionality reduction methods is outlined in Section 2.
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 2011 IEEE Published by the IEEE Computer SocietySection 3 describes the motivation and basic ideas of the

proposed MLE. The detailed implementation of MLE along

with further discussion is given in Section 4. In Section 5,

extensive experiments are conducted on both synthetic and

real data to evaluate the method. Finally, we give concluding

remarks and a discussion of future work in Section 6.

2 RELATED WORK

Over the past two decades, a large family of algorithms,

stemming from different literatures, has been proposed to

address the problem of dimensionality reduction. Among

them, two representative linear techniques are principal

component analysis (PCA) [20] and multidimensional

scaling (MDS) [8]. In the case of so-called classical scaling,

MDS is equivalent to PCA (up to a linear transformation)

[37]. Recently, from the viewpoint of manifold learning,

some new linear methods have been proposed, such as

locality preserving projections (LPP) [18], neighborhood

preserving embedding (NPE) [17], local discriminant

embedding (LDE) [7], unsupervised discriminant projection

(UDP) [52], and orthogonal neighborhood preserving

projections (ONPP) [24]. These methods can preserve either

local or global relationships and uncover the essential

manifold structure within the data set.

The history of nonlinear dimensionality reduction

(NLDR) traces back to Sammon’s mapping [36]. Over time,

other nonlinear methods have been developed, such as selforganizing maps (SOM) [23], principal curves and its

extensions [16], [43], autoencoder neural networks [2], [9],

and generative topographic maps (GTM) [5]. Recently,

kernel methods [31], [38] provide new means to perform

linear algorithms in an implicit higher-dimensional feature

space. Although these methods improve the performance of

linear ones, most of them are computationally expensive,

and some of them have difficulties in designing cost

functions or tuning many parameters, thus limiting their

utility in high-dimensional data sets.

In the past few years, a new line of NLDR algorithms has

been proposed based on the assumption that the data lie on

or close to a manifold [39]. In general, these algorithms all

formalize manifold learning as optimizing a cost function

that encodes how well certain interpoint relationships are

preserved [45]. For example, isometric feature mapping

(ISOMAP) [42] preserves the estimated geodesic distances

on the manifold when seeking the embedding. Locally

linear embedding (LLE) [34] projects points to a lowdimensional space that preserves local geometric properties. Laplacian Eigenmap [3] and Hessian LLE (hLLE) [10]

estimate the Laplacian and Hessian on the manifold,

respectively. Semidefinite embedding (SDE) [49] estimates

local angles and distances, and then “unrolls” the manifold

to a flat hyperplane. Conformal eigenmaps [40] provides

angle-preserving embedding by maximizing the similarity

of triangles in each neighborhood. While these methods

have been presented with different motivations, some

researchers have tried to formalize them within a general

framework, such as the kernel PCA (KPCA) interpretation

[15], the graph embedding framework [51], and the

Riemannian manifold learning (RML) formulation [29]. In

addition, different from the traditional “batch” training

mode, several incremental learning methods [26], [55] were

developed recently to facilitate the applications in which

data come sequentially.

Besides the above-mentioned nonparametric embedding

methods, several parametric coordination methods are

proposed, including global coordination [35], manifold

charting [6], locally linear coordination (LLC) [41], and

coordinated factor analysis (CFA) [44], [45]. These algorithms generally integrate several local feature extractors

into a single global representation. They perform the

nonlinear feature extraction by minimizing an objective

function. After the training procedure, they are able to

derive a functional mapping which can be used to project

previously unseen high-dimensional observation data into

their low-dimensional global coordinates.

In view of previous work, many algorithms are hindered

by the so-called out-of-sample problem, i.e., they provide

embeddings only for training data but not for unseen testing

data. To tackle this problem, a common solution in [4] is

presented for ISOMAP, LLE, and Laplacian Eigenmap.

However, as a nonparametric method, in principle, it

requires storage and access to all the training data, which is

costly for large high-dimensional data sets, especially when

generalizing the recovered manifold structure to unseen new

data. Clearly, a better solution is to derive an explicit

parametric mapping function between the high-dimensional

sample space and the low-dimensional coordinate space.

While finding low-dimensional embedding is the core

problem of manifold learning, another essential issue is to

discover the underlying structure of the observation data.

This can provide useful insights into the manifold geometric structure, and help to determine “interesting”

regions that need extra attention [19], [21]. To this end,

previous works mainly focus on the estimation of the

manifold intrinsic dimensionality [13], [27], [33]. However,

this is not adequate for fully exploring the manifold

structure. To infer the intrinsic modes of variability of the

manifold, current methods usually can only analyze the

visualized embedding results in a somewhat indirect

manner [34], [42], [49], based on the assumption that the

coordinate axes of the embedding space correlate with the

degrees of freedom underlying the original manifold data.

Moreover, compared with their linear counterparts, most

existing nonlinear manifold learning approaches show

inferior computational performance since they either involve a large eigenproblem scaling with the training set size

[3], [6], [34], [42] or require an iterative optimization

procedure such as the EM framework [35], [44].

The proposed MLE method in this paper provides a

solution to the above problems, with five distinct characteristics briefly summarized in Section 1. The details of the

algorithm are described in the following sections.

3 MOTIVATION AND BASIC IDEAS

Trusted-set methods [6], such as ISOMAP and LLE, usually

define their locally linear patches on each data point by

k-NN or "-ball, generally of fixed and small size. Because

this kind of definition cannot adaptively take into account

the real structure of the neighborhood, it runs the risk of

dividing a large linear patch into multiple smaller ones.
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avoid excessive overlaps like in LLE). Also, it has been

noted that small changes to the size of the trusted set can

make the resulting embedding unstable in some cases [1].

Some efforts have been made to alleviate the effect of fixed

neighborhood size [32], [48], [50]. However, the local patch

definition in these methods is still essentially NN-based,

without explicitly accounting for the real linear/nonlinear

structure of the larger neighborhood.

In this paper, we propose to define linear patch

according to the real linear/nonlinear structure in an

adaptive local area. The motivation arises from some

geometric intuition. See a toy example, the “V-like shape”

data illustrated in Fig. 1. It is a patch-wise linear manifold,

where points on the same plane actually span a “global”

linear patch or subspace, and the two neighboring planes

are smoothly connected. However, trusted-set methods will

always ignore this “global” information. With this problem

in mind, we argue that the linear patch should be defined in

a more general and reasonable manner. Therefore, the

concept of Maximal Linear Patch is introduced to capture the

real linear structure. Specifically, each local patch tries to

capture as much “global” information as possible and span

a maximal linear subspace, whose nonlinearity degree is

constrained by the deviation between the euclidean distances and geodesic distances in the patch. Fig. 2 demonstrates this idea. Intuitively, we can conjecture that each

maximal linear subspace should be of the intrinsic

dimensionality of the manifold.

Based on the geometric intuition of MLP, a novel

hierarchical clustering algorithm is proposed to partition

the sample data set into a collection of MLPs. Then, for each

MLP, a local linear model can be easily computed as its

low-dimensional representation by using some subspace

analysis method. In this paper, PCA is exploited for this

purpose considering its simplicity and analytic nature.

Once the local models are constructed, we then need to

align them into a global coordinate system and simultaneously seek the explicit parametric mapping. To this end,

we do have some possible choices as presented in [6], [35],

[41], [44], [45], etc. However, the methods in [6], [35], [44],

and [45] either need the results of LLE or ISOMAP as the

initialization, or are very time consuming due to the large

number of local models. The method in [41] avoids such

problems and provides a general solution to global

alignment. However, it pursues the LLE cost function

under the unit covariance constraint, which will result in

the deficiency of global metrics and undesired rescaling of

the manifold, as also pointed out in [29] and [30].

Therefore, we further propose a local linear model

alignment method, also inspired from geometric configuration. We call the method Landmarks-based Global Alignment.

The basic idea is as follows: We first build the global

isometric coordinate system with an MDS process among a

certain number of landmarks sampled sparsely from each

MLP. Then, with these “locally-globally” aligned landmarks

as control points, we can consistently align all the local

models by estimating an explicit invertible linear transformation (translation, scale, and rotation) for each local

model. By integrating these linear transformations, LGA

finally results in a piecewise linear, invertible mapping

function from the sample space to the global embedding

space which can be naturally applied to both training and

unseen testing data points.

Briefly, in sum, the main novelty of the proposed MLE is

two-fold: the concept of MLP and the LGA method, which

lead to several highlighted characteristics, as described in

the introduction.

4 MAXIMAL LINEAR EMBEDDING

In this section, we first introduce the concept of MLP and

the proposed method for MLP construction. Then, the

learning procedure of MLE is presented in detail including

the construction of local model, the Landmarks-based

Global Alignment, i.e., the LGA method, and the analyzing

method for manifold structure. Finally, comparisons of

MLE with other relevant methods are discussed, followed

by the complexity analysis of MLE.
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Fig. 1. The problem of nonlinear dimensionality reduction. (a) 3D “V-like shape” data, which is a patch-wise linear manifold. (b) Three thousand

points are sampled from the manifold (a). (c) The proposed MLE discovers the isometric embedding in two dimensions.

Fig. 2. Illustration of the idea of MLP. The solid semicircle represents a

1D manifold. Intuitively, the piece from P to Q is more likely to be

discovered as an MLP, since its corresponding euclidean distance PQ

(dashed line) approximates the geodesic distance PQc (solid arc)

preferably. In contrast, the piece from M to N is too curved to be

viewed as a desirable MLP because MN (dashed line) deviates too

much from MNd (solid arc).4.1 Maximal Linear Patch

We can view manifold learning as an attempt to invert a

generative model for a set of observation data. Given the

observation data set ¼ f 1; x2; . . . ; xNg, i 2 IRD

, where

N is the sample number and D is the feature dimension.

Assuming that these points are sampled from a manifold of

intrinsic dimensionality d < D, we seek a nonlinear mapping onto a vector space: Fð Þ ! ¼ f 1

; y2

; . . . ; yNg,

i

2 IR

d

, and 1-to-1 reverse mapping F
1

ð Þ ! such

that both global structure and local relationships between

points are preserved. As mentioned above, our method

approximates the nonlinear mapping F by concatenating

patch-wise local linear models, each learned from an MLP.

Therefore, we first present the definition of MLP and the

way to construct such MLPs from the observation data.

Following that, a further discussion on a few important

issues of the construction procedure is addressed.

4.1.1 MLP Construction

The principal insight for MLP lies in two criteria—1) linear

criterion: for each point pair in the patch, their geodesic

distance should be as close to their euclidean distance as

possible, which guarantees the patch does span a near

linear subspace and 2) maximal criterion: the patch size

should be maximized until that any appending of additional data point would violate the linear criterion.

To construct MLPs, our earlier work [46], [47] has

conducted some preliminary study on both one-shot

sequential clustering and hierarchical clustering ways, mainly

for the real application of object recognition with image set.

In this paper, we propose to build MLPs in the more

effective and flexible hierarchical manner since it allows one

to create a cluster tree called dendrogram over different

degrees [11], [22]. Here, for the sake of efficiency, we exploit

hierarchical divisive clustering (HDC) rather than hierarchical agglomerative clustering (HAC), because in most cases

the appropriate number of clusters is much smaller than the

number of data samples.

Fig. 3 gives a conceptual illustration of the proposed

HDC method. All samples are initiated as a singleton MLP

(cluster) in the first level. Then in each new level, the MLP

in the previous level with the largest nonlinearity degree

will split into two smaller ones with decreased degrees.

Finally, we are able to obtain multilevel MLPs associated

with different nonlinearity degrees. We next formulate the

algorithm in a more detailed and rigorous manner.

Formally, we aim at performing a partitioning on the

data set to obtain a collection of disjoint MLPs

ðiÞ

, i.e.,

¼
[P

i¼1

ðiÞ

;

ðiÞ

\

ðjÞ

¼ 
 ði ¼6 j; i; j ¼ 1; 2; . . . ; PÞ;

ðiÞ

¼



ðiÞ

1

; x

ðiÞ

2

; . . . ; x

ðiÞ

Ni


 XP

i¼1

Ni ¼ N

  !

;

ð1Þ

where P is the number of patches and Ni

is the number of

points in patch

ðiÞ

.

First, the pair-wise euclidean distance matrix E and

geodesic distance matrix G, based on k-NN graph, are

computed [42]. Then a matrix holding distance ratios is

obtained as: ð i

; xj

Þ ¼ Gð i

; xj

Þ=DEð i

; xj

Þ. Clearly,

these three matrices are all of size N 
 N. Since geodesic

distance is always no smaller than euclidean distance,

ð i

; xj

Þ 
 1 holds for any entry of . Besides, another

matrix of size k 
 N is also constructed, each column

ð:; jÞ ðj ¼ 1; 2; . . . ; NÞ holding the indices of k nearest

neighbors of the data point j

. Note that, as a byproduct of

the computation of E and G, the construction of

requires no extra computation. Now we can measure the

nonlinearity degree of one MLP

ðiÞ

by defining a

nonlinearity score function as follows:

S

ðiÞ

¼
1

N2

i

XNi

m¼1

XNi

n¼1




ðiÞ

m ; x

ðiÞ

n




: ð2Þ

With these definitions, the P disjoint MLPs are found

using the HDC Algorithm 1 shown in Table 1. Note that the

threshold 
 in step 3 controls the termination of the

algorithm, and thus the number of final clusters as well as

their nonlinearity degrees. Obviously, the complete clustering hierarchy can be produced whenever 
 is specified to

any value less than 1, since all S

ðiÞ

s are larger than 1.

4.1.2 Further Discussion

Concerning the above method for the MLP construction,

several issues need to be further investigated. One is the

linear criterion for MLP. Here in (2), we take the choice of

the average ratio between two distances among all data

pairs in a single MLP. Some alternative strategies might also

be considered, such as the ratio between the respective

sums of the two distances among all data pairs in the MLP,

or the difference between two distances, etc. We believe that

these strategies are in some sense equivalent.

Another feature is the hierarchical clustering manner in

Algorithm 1. Then, how to determine an appropriate

number of the final clusters (MLPs), i.e., P? Take the

“V-like shape” manifold in Fig. 1 for example. By applying
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Fig. 3. Conceptual illustration of our HDC algorithm. The solid semicircle

ABdrepresents a 1D manifold. (a)-(d) give the first four levels of MLPs

output. In the first level (a), ABdis initiated as a single MLP. In the second

level (b), ABdsplits into two smaller ones, ACdand BCd, with decreased

nonlinearity degrees. In the third and fourth levels (c) and (d), ACdand

BCdbreak into further smaller MLPs. Dashed lines in the figure represent

euclidean distances between two points, and solid arcs correspond to

geodesic distances.Algorithm 1 to this data set, we can obtain the average

nonlinearity score of corresponding MLPs in each clustering level, as is shown in Fig. 4a. It can be seen that, the score

decreases as the levels and MLPs are increased. Fortunately,

this curve provides an easy guide to select the proper

number of MLPs. A simple but effective choice is the elbow

of the curve, after the nonlinearity score falls below a

reasonable value, typically being 1.1. At the elbow, the

curve ceases to decrease significantly with added MLPs. In

the given example, two MLPs are discovered as expected,

which are demonstrated in Fig. 4b.

Considering the two disjoint MLPs in Fig. 4b, one can

readily raise a question that the k-NNs of those data points

lying along the patch boundary are assigned to distinct

MLPs. We call these data as boundary points. More generally,

for certain types of data set (imagine a “U-like shape”

manifold), it is likely to divide a large linear patch, which

exactly matches to a true MLP, into two smaller clusters if

only following Algorithm 1. Therefore, the algorithm cannot

guarantee to finally obtain the essential MLPs, while in most

real-world cases it is rather difficult or even impossible to

know the true MLPs. In fact, Algorithm 1 produces a hard

partitioning on the manifold. To tackle the above problem

and achieve more robustness, we can further consider a soft

generalization of the hard partitioning to stitch the disjoint

neighboring MLPs with some additional MLPs. Specifically,

each new MLP stems from a boundary point, and grows to

the same nonlinearity degree as the former hard partitioning

MLPs. The growing process runs in a similar way to the oneshot algorithm mentioned above. For detailed implementation, please refer to our work [46]. Fig. 4c shows the final soft

partitioning results on our “V-like shape” manifold.

Clearly, the soft partitioning produces a smooth decomposition of the data set , which can lead to a more stable

low-dimensional embedding space and enable the learned

mapping function to be continuous to some extent. Hereinafter, we denote by M the total number of MLPs after soft

partitioning.

4.2 Local Linear Models

After MLPs are obtained, we need to construct local linear

model for each MLP. PCA is employed for its simplicity and

efficiency. Formally, for each sample

ðiÞ

m in MLP

ðiÞ

, its

PCA projection is computed by
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TABLE 1

Algorithm 1: Hierarchical Divisive Clustering (HDC)

Fig. 4. Applying HDC to the “V-like shape” data. (a) The average

nonlinearity score in each clustering level. (b) and (c) give the

discovered MLPs in the XY view (encoded with different colors and

shapes) before and after applying the soft stitching generalization,

respectively. As is expected, each plane is approximately discovered as

a single MLP in (b); moreover, the stitching procedure constructs some

additional patches (black open circles in (c)) along the neighboring patch

boundary.z

ðiÞ

m ¼

T

i







ðiÞ

m 
 


ðiÞ




ðm ¼ 1; 2; . . . ; Ni

; and i ¼ 1; 2; . . . ; MÞ;

ð3Þ

where the sample mean




ðiÞ

¼
1

Ni

XNi

m¼1

ðiÞ

m ; ð4Þ

and the D 
 d principal component matrix

i ¼




ðiÞ

1

; p

ðiÞ

2

; . . . ; p

ðiÞ

d


; ð5Þ

jointly describe the local linear model, Mi

(i ¼ 1; 2; . . . ; M),

learned from ðiÞ

.

As a result, each local model Mi

represents a local

d-dimensional Cartesian coordinate system in the input

sample space, centered on 


ðiÞ

with axes along the column

vectors of i

. Here, the dimensionality d can be determined

by preserving maximal variances, and all MLPs should

share a common value since they belong to the same

manifold. Refer to Section 4.3.4 for more details on the

estimation of d.

Local model representations of the samples in the MLP

ðiÞ

then write afterward as

ðiÞ

¼



ðiÞ

1

; z

ðiÞ

2

; . . . ; z

ðiÞ

Ni




ði ¼ 1; 2; . . . ; MÞ: ð6Þ

4.3 Landmarks-Based Global Alignment

Now the local relationships among the samples in each

MLP have been well preserved by the local models. Hence,

what we need to do next is to pursue a global coordinate

space that preserves the topological relationships between

the local models, i.e., the global structure.

4.3.1 Landmarks Preparation

Intuitively, the global structure can be characterized by the

relationships among the sample means and the principal

axes of all the MLPs. So a natural choice of the final

embedding space can be the isometric coordinate space

learned by the MDS analysis of the sample means and some

samples along the principal axes of the MLPs. Here, we

name these means and sampled points landmarks. Evidently, the MDS must be based on geodesic distance since

the relationship among the local models reflects the

nonlinearity of the manifold.

In theory, to constrain each local model, we need only

the mean and one sample along each principal axis, i.e.,

d þ 1 landmarks. In practice, the mean is not necessarily a

sample among the training set. In this case, the training

sample nearest to the mean, hereinafter we call it centroid, is

used instead. Similarly, the other landmarks need not

be sampled along the principal axes. Instead, they can be

randomly selected, if only their amount for each MLP is a

little greater than d to ensure stability.

Formally, from each MLP

ðiÞ

we randomly select a

number, say ni

(ni 
 d þ 1), of data points in general

position as landmarks to form the following landmarks set:

ðiÞ

L

¼



ðiÞ

Lð1Þ

; . . . ; x

ðiÞ

Lðni

Þ



; ð7Þ

where LðkÞ (k ¼ 1; 2; . . . ; ni

) is the original sample index in

ðiÞ

(refer to (1)) of the specific landmark. For convenience,

the centroid sample is always set to be

ðiÞ

Lð1Þ

.

Denote the set of all selected landmarks by

L ¼

[M

i¼1

ðiÞ

L

¼



ð1Þ

Lð1Þ

; . . . ; x

ð1Þ

Lðn1Þ

; . . . ;

ðMÞ

Lð1Þ

; . . . ; x

ðMÞ

LðnMÞ




:

ð8Þ

Correspondingly, the representations of the landmarks in

their individual local model form the following set:

L ¼

[M

i¼1

ðiÞ

L

¼



ð1Þ

Lð1Þ

; . . . ; z

ð1Þ

Lðn1Þ

; . . . ;

ðMÞ

Lð1Þ

; . . . ; z

ðMÞ

LðnMÞ




: ð9Þ

For the ith MLP, as mentioned above, in case the sample

mean 


ðiÞ

is not among the training set, the centroid, say

ðiÞ

n

, is used instead. Then, to remain consistent, the origin of

the local coordinate system must be relocated at

ðiÞ

n

, i.e.,

ðiÞ

n

should be subtracted from all the samples in

ðiÞ

. Therefore,

it is easy to know that, in (9),

ðiÞ

Lð1Þ

is a d-dimensional zero

vector as follows:

ðiÞ

Lð1Þ

¼ ½0; 0; . . . ; 0


T

ði ¼ 1; 2; . . . ; MÞ: ð10Þ

For notational convenience, hereinafter we still denote

the centroid of each MLP by 


ðiÞ

.

4.3.2 Global Alignment Based on Landmarks

The landmarks can be readily exploited to pursue the global

coordinate system using MDS. We then align the local

models into the global space by estimating piecewise linear

transformations. The procedure is intuitively illustrated in

Fig. 5 and formally described next.

Given the landmarks set L and their corresponding

interpoint geodesic distances (simply obtain from G, refer
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Fig. 5. Conceptual illustration of the LGA method. First, the global

coordinate system is learned with an MDS process among the

landmarks. Then, LGA consistently aligns all the local models by

estimating a linear transformation for each local model. The transformation mainly involves a rotation from the principal components to the

latent components, which are discussed in Section 4.3.4.to Section 4.1.1), classical MDS can be easily conducted to

locate the landmarks uniquely in a d-dimensional euclidean

space, E. Thanks to the metric preserving property of MDS,

the space E will then serve as a desirable destination space

for isometrically embedding the whole training set . The

set of the landmarks represented in E is written as

~

L ¼

[M

i¼1

~

ðiÞ

L

¼



~

ð1Þ

Lð1Þ

; . . . ; ~

ð1Þ

Lðn1Þ

; . . . ; ~

ðMÞ

Lð1Þ

; . . . ; ~

ðMÞ

LðnMÞ




;

ð11Þ

where

~

ðiÞ

L

¼



~

ðiÞ

Lð1Þ

; . . . ; ~

ðiÞ

Lðni

Þ



: ð12Þ

Toward the final embedding of the whole training data,

it only remains to learn the mappings from the individual

local models to the unified space E. Let us first check the

relationships between the local models and the unified

space. On the one hand, the single global MDS process on

all the selected landmarks implies one separate local MDS

process on each MLP (up to a linear transformation). On the

other hand, an MDS process on MLP is approximately

equivalent to PCA (up to a linear transformation) [37]

because geodesic distance is approximately equal to

euclidean distance in MLP due to the nonlinearity degree

constraint in (2). Consequently, we can conclude that for

each MLP, the representations of its samples in PCA-based

local model (i.e., Mi

) are approximately equivalent to their

representations in the unified space E, also up to a linear

transformation. The three parameters of this linear transformation, i.e., rotation, translation, and scale, then need to

be solved in order to map each local PCA model Mi

to its

counterpart local embedding in E. Hereinafter, we denote

the local embedding in E of the ith MLP by i

. Note that

they have been aligned in the global space E.

For each MLP, easy to know that ~

ðiÞ

Lð1Þ

should be the

center of its local embedding in E. As a result, translation

can be removed by subtracting ~

ðiÞ

Lð1Þ

from i

. For the scale

problem, it can be easily removed by scaling the coordinates

in i

to make the pair-wise distance between landmarks in

E equal to their distance in

ðiÞ

L

.

Formally, we denote the landmarks in E after scaling and

translation by

^

ðiÞ

L

¼



^

ðiÞ

Lð1Þ

; . . . ; ^

ðiÞ

Lðni

Þ



ði ¼ 1; 2; . . . ; MÞ; ð13Þ

where

^

ðiÞ

LðkÞ

¼ si







~

ðiÞ

LðkÞ


 ~

ðiÞ

Lð1Þ




ðk ¼ 1; 2; . . . ; ni

Þ; ð14Þ

with si being the scaling factor. Because all landmarks are

embedded in the same space E by MDS, scaling factors for

all MLPs should be the same. For the purpose of simplicity,

we assume si ¼ 1 afterward. Note that ^

ðiÞ

Lð1Þ

becomes also a

d-dimensional zero vector. Thus, the only difference

between the coordinates in

ðiÞ

L

and ^

ðiÞ

L

is determined by

a rotation operation. As we know, this rotation can be

characterized by a d 
 d transition matrix i

, which should

be an orthogonal matrix theoretically and satisfy the

coordinate transformation as




ðiÞ

Lð1Þ


 
 


ðiÞ

Lðni

Þ

d
ni

¼ i







^

ðiÞ

Lð1Þ


 
 
 ^

ðiÞ

Lðni

Þ

d
ni

: ð15Þ

Let i ¼ ½

ðiÞ

Lð1Þ


 
 


ðiÞ

Lðni

Þ



d
ni

and i ¼ ½^

ðiÞ

Lð1Þ


 
 
 ^

ðiÞ

Lðni

Þ



d
ni

,

i can then be solved by

i ¼

:

i

y

i

¼ i

T

i




i

T

i



1

; ð16Þ

where ð
Þ

y

denotes pseudo-inverse. For each MLP

ðiÞ

, i

therefore describes the mapping from the local PCA model

Mi

to its local embedding i

in the global unified space E.

Note that (16) needs to compute the inverse matrix of

i

T

i

. Fortunately, as discussed in Section 4.3.1, the ni

(ni 
 d þ 1) randomly selected landmarks in general position can generally ensure rankð i

Þ 
 d, thus guaranteeing

the nonsingularity of i

T

i

.

The final embedding of the whole training data now can

be fulfilled by applying corresponding transformation from

each local linear model to the global coordinate space. The

transformation only involves very simple computations as

follows:

ðiÞ

m ¼


1

i




ðiÞ

m þ ~

ðiÞ

Lð1Þ

¼

1

i







T

i







ðiÞ

m 
 


ðiÞ





þ ~

ðiÞ

Lð1Þ

ðm ¼ 1; 2; . . . ; Ni

; and i ¼ 1; 2; . . . ; MÞ:

ð17Þ

Grouping results from all models, according to the sample

indices in the training set, we get the final d-dimensional

coordinates: ¼ f 1

; y2

; . . . ; yNg,

i

2 IR

d

. Recall that the

soft partitioning in Section 4.1.2 has assigned a number of

boundary points into multiple local models. In our current

setting, their final coordinates are computed simply by

averaging the multiresults from corresponding local

models.

To summarize, so far we have learned an explicit

mapping function: F ¼ fF1; F2; . . . ; FMg, where Fi

(i ¼ 1;

2; . . . ; M) is parameterized by (17) with parameters f


ðiÞ

;

i

; T i

; ~

ðiÞ

Lð1Þ

g.

4.3.3 Analytic Projection of Unseen Samples

The mapping function (17) gives an explicit forward

mapping from the observation space to the embedding

space. Furthermore, its reverse mapping can be easily

deduced in an entirely inverse manner, i.e.,

ðiÞ

m ¼ 


ðiÞ

þ i


 i







ðiÞ

m 
 ~

ðiÞ

Lð1Þ




ðm ¼ 1; 2; . . . ; Ni

; and i ¼ 1; 2; . . . ; MÞ:

ð18Þ

Equations (17) and (18) imply another advantage of the

proposed method, i.e., once the mapping function F is

learned, the training set is no longer required for subsequent process, leading to significant computational and

storage savings.

Easy to understand, as the mapping between the two

spaces is built through a mixture of linear transformations,

when applying to new test data, MLE only needs to first

identify to which local model the test data belongs and then

perform the corresponding transformation. Specifically, as

formulated in Tables 2 and 3, two algorithms are designed

to generalize the training results to unseen cases in the

observation and embedding space, respectively.
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The intrinsic dimensionality of a manifold, d, represents the

underlying degrees of freedom of the observation data.

Intuitively, under manifold assumption, both the local PCA

models and the unified embedding space should be of

d-dimension. As stated before, the dimensionality d of PCA

can be roughly chosen by preserving maximal variances.

On the other hand, when classical MDS is conducted to

pursue the embedding space, as indicated in [42], d can also

be observed from the residual variance curve. In this paper,

we combine the merits of both PCA and MDS for the

estimation of d in a validation-feedback fashion by deriving

the following method.

First, a relatively small interval for possible d, e.g.,

½dmin; dmax
, can be estimated from both PCA and MDS.

Then, transformation error caused by (15) is utilized as a

cost function to evaluate each value in this interval. That is

to say, we aim at minimizing the transformation distortions

between the low-dimensional representations of PCA and

that of MDS over all landmarks. Specifically, for each MLP,

since the transition matrix i

is solved from i ¼ i


 i

,

then


i

¼

1

i


 i

should be as close to i as possible.

Therefore, the optimization for estimating the optimal d can

be written as follows:

d


¼ arg min

d

XM

i¼1

Xni

k¼1


1

i




ðiÞ

LðkÞ


 ^

ðiÞ

LðkÞ

;

s:t: dmin 
 d 
 dmax;

ð23Þ

where i 2 IR

d
d

,

ðiÞ

LðkÞ

; ^

ðiÞ

LðkÞ

2 IR

d
1

. This optimization thus

combines the estimations of PCA and MDS together to

make the final arbitration. Because the lower dimensional

coordinates of both PCA and MDS remain the same while

higher ones are added, the two processes only need to be

performed once. Hence, the optimization is very efficient.

With the estimated intrinsic dimensionality, one may

further concern the hidden variation modes, each corresponding to one dimension or degree of freedom, to fully

explore the manifold structure. Here, by hidden variation

modes, we mean the directions in the high-dimensional

observation space along which the manifold data exhibit

global variability. For instance, the “V-like shape” manifold

in Fig. 1 has two hidden variation modes, one along the

curved direction in the XOZ plane and another along the

depth direction parallel to the Y -axis. To deduce such

modes, previous work usually can only act in an indirect

manner [34], [42], [49], by visualizing and analyzing the

distribution of training data in the embedding space.

In contrast, our method enables an explicit modeling of

the hidden variation modes. Let us revisit Fig. 5. Within

each MLP, the PCA basis i

(i.e., principal components,

shown as the dashed line axes) describes the directions with

the largest variances confined only to that local region. To

characterize the global variations across different MLPs, the

PCA basis needs to be transformed to another basis

E

i

(shown as the solid line axes) that are consistently aligned

in the embedding space. In fact, (15) depicts the coordinate

transformation between the landmarks’ coordinates under

the two bases. As a direct consequence, the corresponding

basis transformation can be written as

E

i

¼ i


 i ¼




ðiÞ

1

; q

ðiÞ

2

; . . . ; q

ðiÞ

d


ði ¼ 1; 2; . . . ; MÞ: ð24Þ

Since

E

i

directly describes the latent modes of variability

of the high-dimensional data, we analogously call

ðiÞ

1

; q

ðiÞ

2

; . . . ; q

ðiÞ

d

Latent Components (LCs), each component

ðiÞ

j

(j ¼ 1; 2; . . . ; d) characterizing one axis of the embedding

space. With (24), we then rewrite (18) as

ðiÞ

m 
 


ðiÞ

¼
E

i







ðiÞ

m 
 ~

ðiÞ

Lð1Þ




: ð25Þ

One can see that as the factor loading matrix in Factor

Analysis (FA) [12], [14], the LCs plays a similar role in

establishing a direct connection between the representations

of manifold data in the high and low-dimensional spaces,

thus it can be expected to find potential uses in many

applications, e.g., manifold denoising, sample interpolation.

In addition, some previous alignment methods like [41],

[45], have used FA to fit their local models and finally also

resulted in a parametric mapping. While the operation to

translate global latent coordinates into directions in the

input space also applies to these methods, they have paid

less attention to this issue and not given an explicit

modeling of the hidden variation modes.

4.4 Discussion

4.4.1 Comparisons with Previous Work

It can be seen that MLE bears some resemblance to global

coordination [35] and subsequent methods [6], [41], [44],

[53], [54]. Generally speaking, these methods all share the

similar philosophy of aligning local linear models in a

global coordinate space, which is first proposed in [35].

Both [35] and [44] use expectation-maximization (EM) to

fit and align local linear models. This makes the algorithms
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TABLE 2

Algorithm 2: Visualization Algorithm

TABLE 3

Algorithm 3: Reconstruction Algorithmquite inefficient, though [44] improves the training algorithm of [35] for a more constrained model. Moreover, as

indicated in [35], because such EM-based methods are

susceptible to local optima, they need a good initialization

based on other methods (e.g., LLE or ISOMAP) to supervise

the iterative optimization procedure.

Differently from [35], [44], the charting [6], LLC [41] and

our MLE can all be viewed as post coordination, where the

local models are coordinated or aligned after they have

been fit to data [41]. By decoupling the local model fitting

and coordination phases, all three methods produce closedform solutions and gain efficiency in a noniterative scheme.

Based on convex cost functions, they effectively avoid local

optima in the coordination phase. However, the charting

method builds one local model for each point, so its scaling

is the same as that of LLE and ISOMAP, which is

computationally demanding [29]. In contrast, LLC and our

MLE only need to solve an eigenproblem scaling with the

number of local models, which is far less than the number

of training points.

We further compare MLE with LLC [41]. While LLC

mainly serves as a general alignment method, the work

presented in [41] has exploited a mixture of factor analyzers

(MFA) [14] in the first phase, i.e., local model fitting. The

construction of MFA is performed using an EM algorithm,

which is likely to get stuck in local minima and be hampered

by the presence of outliers, as indicated in [30]. Furthermore,

LLC requires careful optimization of the number of local

models in addition to the optimization of the parameters of

the local models. The proposed MLP, though not guaranteed

to be the optimal local linear models, has an explicit measure

of the nonlinearity degree, which thereby facilitates the

determination of the proper number of local models. In the

second phase, i.e., the coordination, both methods need to

solve the linear transformation (denoted by i

) from each

local model to the global embedding space. LLC incorporates

the parameter i

into the LLE cost function and then directly

obtains i by solving an eigenproblem, which requires the

intrinsic dimensionality d to be specified a priori. The unit

covariance constraint imposed by LLC will also lead to

undesired rescaling of the manifold. On the contrary, the

LGA algorithm in MLE can be considered as to first pursue

the global space explicitly by exploiting the similar convex

cost function as ISOMAP, and then solve i

in a spectral

regression way. This procedure not only gives rise to an

automatic dimensionality estimation method in Section 4.3.4,

but also enables us to preserve both global shape information

and local structure more faithfully.

In addition, the local tangent space alignment (LTSA)

[54] and locally multidimensional scaling (LMDS) [53] both

share the similar alignment method to LLC in spirit. The

local models in both LTSA and LMDS are still k-NN

neighborhood, which is very crucial to the success of the

methods, as pointed in [53] and [54]. Like charting [6], LTSA

builds extremely overlapping local models on each data

point. To alleviate this heavy redundance, LMDS seeks to

find an approximate minimum set of the overlapping

neighborhoods. Moreover, both methods do not derive a

parametric mapping function. Although LMDS addresses a

nonparametric out-of-sample extension, it suffers from the

same computational cost problem as [4], and no further

experimental justification is provided in [53].

4.4.2 Complexity Analysis

Basically, the computational complexity of MLE is dominated by the following four parts.

1. Computing the three N 
 N matrices E, G, and

. The complexity of E computation is OðN2

Þ. G

can be computed using Dijkstra’s algorithm with

Fibonacci heaps in OðN2

log N þ kN2

=2Þ time (k is

the neighborhood size in the k-NN graph) [29]. is

computed in OðN2

Þ.

2. Constructing MLPs based on Algorithm 1. From

Table 1, one can see that most steps of the algorithm

are accessing operations against existing matrices

computed in advance. The major computation is in

step 3.3 to compute the nonlinearity score S

ðiÞ

for each

MLP according to (2). For simplicity, we assume the

two child MLPs,

ðiÞ

l

and

ðiÞ

r

, are of equal size. Thus,

the total complexity of Algorithm 1 is

O

b c logXN

p¼1

ð2

p

ðN=2

p

Þ
2

Þ
  !


 OðN

2

Þ:

3. Building local PCA models. For each MLP

ðiÞ

with

its data matrix of size D 
 Ni

, the PCA mainly

involves eigenvalue decomposition of the D 
 D

covariance matrix. Since it is often the case that in

real problems D 

 Ni

, the eigendecomposition can

be conducted on a Ni 
 Ni matrix plus some

additional matrix multiplications whose complexity

can be ignored. Thus, the time complexity of this

step is OðminðD; Ni

Þ
3

Þ for each of the M MLPs.

4. Aligning the local models by MDS. As discussed

above, MDS is applied to a set of landmarks, whose

minimal number for each model is d þ 1. So the

complexity of MDS is OðM3

d

3

Þ, which scales mainly

with the number of local models M. This exhibits

significant efficiency compared with OðN3

Þ in

ISOMAP and LLE. Once MDS is finished, the

remaining computations to align the local models

only involve several matrix multiplications in (16),

(17). Note that the matrix inverse in (16) is only

d 
 d, which can be conducted very efficiently.

To sum up, the total complexity of MLE is the sum of the

above four parts, which can be approximated by

OðN

2

log N þ kN

2

þ
XM

i¼1

minðD; Ni

Þ
3

þ M3

d

3

Þ:

Generally, Ni

, M, and d are far smaller than N, hence the

complexity is roughly OðN2

log NÞ, i.e., the complexity in

the first part is a major burden.

5 EXPERIMENTAL RESULTS

In this section, extensive experiments on both synthetic and

real data are conducted to validate the proposed MLE for

dimension reduction and data reconstruction.
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First, we illustrate the algorithm on two benchmark

synthetic data sets: the “swiss-roll” and “s-curve.” For each

set, 3,000 points were randomly sampled from the original

3D manifold surface. The parameters in MLE include: 1) the

neighborhood size, k; 2) the number of hard partitioning

MLPs, P; and 3) the number of landmarks in each MLP, ni

.

They were tuned in the same manner for both sets. Note

that as stated in Section 4.1.2, the final number of MLPs

after soft partitioning is denoted by M.

By specifying k ¼ 12, Algorithm 1 was first applied to

compute the hard partitioning MLPs. The HDC results for

both sets are shown in Figs. 6 and 7. In the following

experiments, according to the average nonlinearity score

curves, we chose the typical value of P as 20 and 16 for the

two data sets, respectively, and selected about 10 percent of

the training data as landmarks.

For a systematic empirical evaluation, we compared our

MLE with three classical methods: ISOMAP, LLE, and LLC.

Since LLC shares the similar two-phase procedure (i.e., local

model fitting + coordination) with MLE, to further

investigate their differences we implemented a variant of

MLE, called MLP Coordination (MLPC). The variant simply

takes our MLP-based PCA subspaces as local models in the

first phase, but uses the alignment method of LLC instead

of our LGA in the second phase.

To conduct quantitative comparison between different

algorithms, we assess the quality of the resulting lowdimensional embeddings by evaluating to what extent

the global and local structure of the data is retained. The

evaluation is performed in two ways: 1) by measuring the

embedding error (as is done in [45]) and 2) by measuring

the trustworthiness and the continuity errors of the

embeddings (as is used in [30] and [56]). The embedding

error measures the squared distance from the recovered

low-dimensional embedding to the known true latent

coordinates. Due to the unit covariance constraint in LLE,

LLC, and MLPC, the global metric information will be lost

in these methods. To enable their comparison with MLE

and ISOMAP, we simply scaled the true 2D latent

coordinates to ½
1; 1
, as shown in the top row of Fig. 8,

and optimally linearly transform the recovered embeddings

of different methods to the true latent coordinates as in [45].

The embedding error is then defined as follows:

E ¼

ﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃ
XN

n¼1

k n 
 
n

k

2

v

t ; ð26Þ

where N is the sample number, n

and


n

represent the

recovered and true latent coordinates, respectively. It is

easy to see that the embedding error tends to measure the

global structure distortion of the manifold. To measure the

local structure distortion, we resort to the trustworthiness

and continuity errors. The trustworthiness error measures the

proportion of points that are too close together in the lowdimensional space, and is defined as

TðkÞ ¼ 100 


2

Nkð2N 
 3k 
 1Þ

XN

n¼1

X

m2U

ðkÞ

n

ðrðn; mÞ 
 kÞ; ð27Þ

where k is the neighborhood size, rðn; mÞ is the rank of the

point m in the ordering according to the pair-wise distance

from point n in the high-dimensional space. The variable

U

ðkÞ

n

denotes the set of points that are among the k-NNs of n

in the low-dimensional space but not in the high-dimensional

space. In contrast, the continuity error measures the proportion of points that are pushed away from their neighborhood

in the low-dimensional space, and is analogously defined as

CðkÞ ¼ 100 


2

Nkð2N 
 3k 
 1Þ

XN

n¼1

X

m2V

ðkÞ

n

ðr^ðn; mÞ 
 kÞ; ð28Þ

where r^ðn; mÞ is the rank of the point m in the ordering

according to the pair-wise distance from point n

in the lowdimensional space. The variable V

ðkÞ

n

denotes the set of points

that are among the k-NNs of n in the high-dimensional space

but not in the low-dimensional space. In the following Figs. 8,

9, and 10, the three errors are written under each embedding

and in the form of “Embedding/Trustworthiness/Continuity” (abbreviated as E./T./C.).

Experiment 1: Influence of k. To evaluate the robustness to

varying neighborhood size k, we have tried sizes from 6 to

18 points and compare results of different methods in Fig. 8.
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Fig. 6. Applying HDC to the “swiss-roll”. (a) Original sampled data.

(b) The average nonlinearity score curve. (c) The first four levels

clustering dendrogram. MLPs are encoded with varying colors.

Fig. 7. Applying HDC to the “s-curve.” Figures in (a)-(c) are similar to

those in Fig. 6.In our comparisons, we show the best LLC result among

several trials for each parameter, since multiple runs of the

algorithm will initialize different MFA local models, thus

yielding different results. The number of local models used

in LLC and MLPC is 50 and 30, respectively. From the

figure, it is confirmed that the proposed MLE, as ISOMAP,

has preserved the global metric information and produced

more faithful embeddings. In contrast, the aspect ratio is

mostly lost in LLE, LLC, and MLPC due to their unit

covariance constraint. As a local approach, LLE is the most

sensitive to k on preserving global shape information of the

manifold. LLC and MLPC are also shown to generate some

deformations especially under smaller neighbor size. The

advantage of MLE over other methods can be more clearly

demonstrated when observing the quantitative error measures in the figure. Specifically, while LLC delivers

comparable E.-error to MLE, its T./C.-error is significantly

larger than that of MLE. A similar phenomenon can also be

observed from the comparison between MLE and MLPC,

which only differ in their alignment methods for global

coordination. Such results verify that MLE can show more

reliability on preserving local geometry. We believe that the

success of MLE is attributed to both its efficient local model

MLP and its global coordination method LGA. In addition,

our experiment shows that when applied to evaluate the

embedding, the E.-error and the T./C.-error measures

complement each other since a low E.-error measure does

not necessarily imply the similar low T./C.-error measure.

Experiment 2: Influence of P. Here the number of local

linear models P is a direct reflection of the threshold

parameter 
 in Algorithm 1, as noted in the end of

Section 4.1.1. Intuitively, the parameter P plays a trade-off

between computational cost and representation accuracy.

That is, a smaller P implies fewer MLPs (thus more

efficiency) but larger linearity deviation within each MLP,

and vice versa. Take the above “swiss-roll” data for

example. According to Fig. 6b, in MLE and MLPC, we

have tested different values of P from 5 to 30 MLPs. For fair

comparison with LLC/MLPC, we used only the hard

partitioning MLPs for subsequent LGA procedure of MLE

in this experiment. For LLC, we also tried different numbers

of local models under the same neighbor size k ¼ 12 as

MLE. Fig. 9 gives the results from the three methods along

with respective computation time. As expected, MLE yields

more and more stable results with increased local models.

Even with very few MLPs, say P ¼ 5, it can still output
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Fig. 8. Comparison of different algorithms with varying neighborhood size k on two synthetic data sets, (a) swiss-roll and (b) s-curve. Results in the

three columns correspond to k ¼ 6, 12, and 18, respectively. The values under each embedding give the error measures in the form of “Embedding/

Trustworthiness/Continuity” (E./T./C.).desirable embedding. On the contrary, LLC is shown to be

more sensitive to the setting of P, and it requires more local

models (i.e., MFA) to unfold the curved data reliably. When

combining our local models (i.e., MLP) with the alignment

procedure of LLC, the variant MLPC shows improved

embeddings over LLC; however, like LLC, it produces

substantial deformation with small numbers of local

models. Also note that both LLC and MLPC have much

larger T./C.-error than MLE, even though they are under

the similar E.-error. These comparisons, in one aspect, again

verify the economical and efficient merit of MLP, and in

another aspect, demonstrate the advantage of LGA over

LLC for aligning the local models. In terms of the

computation time, both MLE and LLC spend the most part

in local model fitting. We observe that with the same

increase of local models, e.g., from 5 to 20, the time cost

increase for MLE is much less than that for LLC. The reason

is that, as discussed in Section 4.4.2, the major burden of

MLE lies in the computation of geodesic distances, while

the HDC algorithm only takes very little time. In LLC,

however, the time grows proportionally to the number of

local models, and each local model is iteratively optimized

to a factor analyzer by an EM algorithm.

Experiment 3: Influence of ni

. For the “swiss-roll” data,

under P ¼ 20, finally M ¼ 57 MLPs were discovered after

the soft partitioning. As stated in Section 4.3.1, the number of

landmarks in each MLP should satisfy ni 
 d þ 1, where the

intrinsic dimensionality here is d ¼ 2. To investigate its

effect on MLE, by specifying different values, we pursued

the 2D embeddings and computed the residual variances as

[42]. In Fig. 10, more stable embedding with decreased

E./T./C. errors and residual variance can be yielded as the

landmarks increase. Even relying on the least number (d þ 1)

of landmarks, a favorable result with slight distortion can

still be obtained. When ni ¼ 5, i.e., a total of 57 
 5 ¼ 285

landmarks (about 10 percent of the training set) were used,

the residual variance gets comparable to that of ISOMAP at

5 
 10
4

. However, in this case, ISOMAP confronts a much

larger eigenproblem of size 3;000 
 3;000, compared with

285 
 285 in MLE.

In addition to testing different parameters, we next

highlight several theoretical issues of MLE through empirical observations on the “swiss-roll” manifold.

1. Orthogonality of transition matrix i

. For each of the

57 local models, we compute the Frobenius-norm of

the matrix ð i

Þ
T

i 
 , where i

is the local

transition matrix in (15) and is the identity matrix.

From Fig. 11a, we see that most values are very

close to the target value 0.

2. Estimation of intrinsic dimensionality d. Under the

correct estimation d


¼ 2, we observe the transformation error, i.e., each summed term in (23). As

shown in Fig. 11b, the errors are indeed very small

when considering the magnitude of the MLE

embedding space in Fig. 8a. Over a total of 285

landmarks, the mean error 0.247 is even smaller than

the mean nearest neighbor distance 0.389 that is

computed among all data points in the manifold.

3. Validity of the Latent Component. In Fig. 6a, the first

variation mode of “swiss-roll” is along the twisting

direction in the XOZ plane and the second one is

along the depth direction parallel to the Y -axis.

While different local models twist along varying

direction vectors, they all share a common depth

direction vector of ½0; 1; 0


T

in the observation

space. As in (24), we thus compare Latent

Component

ðiÞ

2

(i ¼ 1; 2; . . . ; 57) with the vector

½0; 1; 0


T

and demonstrate their correlation coefficient for each local model in Fig. 11c. The result

turns out to be that the Latent Component is almost

perfectly high-correlated with the essential variation mode. This observation supports that our

algorithm is able to explicitly model the underlying

variations of the manifold.

5.2 Experiments on Synthetic Image Data

To validate MLE on high-dimensional data, we first used

the ISOFace data set [42], which consists of 698 synthetic

face images of 64 
 64 ¼ 4;096 pixels each. All faces lie on
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Fig. 9. Comparison of (a) MLE, (b) LLC, and (c) MLPC with different

numbers of local models. The three rows under each embedding are:

the E./T./C. error measures, the number of local models, and the

computation time (seconds). The time is given in the form of “the first

phase (fitting)” + “the second phase (coordination).”

Fig. 10. MLE 2D embeddings and corresponding E./T./C. error

measures with different numbers of landmarks.an intrinsically 3D manifold parameterized by two pose

variables plus an azimuthal lighting angle [42]. The whole

set was divided into a training set with the first 650 images,

and a test set with the remaining 48 ones. Note that in the

original set, images are randomly ordered.

Qualitative evaluation. We compared with ISOMAP to

evaluate how well MLE can perform to unravel very highdimensional raw data and further to yield parametric

mapping. To learn the manifold, ISOMAP used all

698 samples and MLE employed only the 650 training

images both with setting k ¼ 6 as [42]. For MLE, M ¼ 27

MLPs were finally discovered. By specifying ni ¼ 7, we thus

used a total of 27 
 7 ¼ 189 landmarks, about 30 percent of

the training data. Both methods have correctly discovered the

3D face manifold, with the first 2D embeddings visualized in

Fig. 12. One can see again that, similarly to ISOMAP, our

MLE has preserved the underlying global structure of the

manifold whereas it used a relatively smaller training set.

After manifold learning, MLE then allows for out-ofsample extensions by parametric mapping. We first applied

forward mapping to the test data (index from 651 to 698) to

appropriately locate them in the reduced dimensional space.

Fig. 12 also shows several examples, with each image denoted

by its index. As can be seen, these testing samples successfully

find their coordinates which reflect their intrinsic properties,

i.e.,left-right and up-down pose.We then synthesized a series

of virtual views as shown in Fig. 13 by the backward

mapping. There may be question that some virtual faces

seem not as good as the raw images. Two reasons may be

adduced: One is the sparseness of the training set; the other

is that each face is reconstructed by only three components (since d ¼ 3).

Quantitative comparison. We made further comparisons

between the generalization performance of MLE and LLC/

MLPC in terms of reconstruction error as [45]. As MLE,

both LLC and MLPC also used the 650 training images to

learn the parametric mapping with P ¼ 30 and 27 local

models, respectively, under the setting of k ¼ 6 neighbors.

The learned mappings from all the three methods were then

utilized to reconstruct each sample in the test set. For each

test sample n, its reconstruction ^n is obtained by mapping

n to a single point n

in the embedding space and then

mapping n

back to the image data space [45]. The

reconstruction error is defined as

En ¼

1

ﬃﬃﬃﬃ
D

p k n 
 ^nk; ð29Þ

where D (in this case D ¼ 4;096) is the dimension of the

image space. Intuitively, the error (29) measures the average

perturbation over all pixels in the test image. Note that,

each pixel is quantized to ½0; 255
 in our experiment.

Since the alignment procedure of LLC requires the latent

dimensionality d to be specified a priori, we have tried

different values of d ranging from 3 to 20 for LLC and MLPC.

The errors are summarized in Table 4 and some of the

reconstructions are shown in Fig. 14, where “MLE_3” depicts

MLE trained with d ¼ 3 and the others have analogous

meanings. The reported results in Table 4 are averages and

standard deviations over the 48 test samples. We find that

MLE, with d ¼ 3, can perform as well as LLC with a much

higher d ¼ 20; while LLC fails to reconstruct the face images

with the intrinsic dimensionality well (d ¼ 3). While MLPC

outperforms LLC with decreased reconstruction error under

the same dimensionality as the findings in the “swiss-roll”

data, it still exhibits considerably inferior performance
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Fig. 11. Evaluation of three theoretical issues of MLE on the “swiss-roll” manifold. (a) Frobenius-norm of the matrix ð i

Þ
T

i 
 . (b) Transformation

error for the landmarks. (c) Correlations between the Latent Component and the direction vector of the variation mode.

Fig. 12. 2D embeddings of the ISOFace manifold discovered by (a)

ISOMAP and (b) MLE, respectively. Stars in the figure denote test

samples with corresponding images and indices superimposed. Note

that, in the ISOMAP result (a), “test” images are coprojected with

training samples by the ISOMAP training procedure.

Fig. 13. Each row contains faces reconstructed from test points along an

axis-parallel line in the 3D embedding space. From top to bottom: leftright pose, up-down pose, and light direction variations.compared to MLE. We attribute the gain of MLE to the high

accuracy of its MLP-based PCA modeling and the cost

controllable LGA coordination facilitated by (23). It is also

worth noting that, given different values of parameter d, LLC

needs to run repeatedly to solve different eigenproblems of

varying sizes. The training time here for MLE_3 and LLC_3/

10/20 is 11.5 and 27.6/35.0/49.5, respectively, all in seconds.

We find that the MFA fitting in LLC on high-dimensional

data is quite time demanding from this experiment.

Estimation of intrinsic dimensionality. To check the feasibility of the method described in Section 4.3.4, here we

show the intermediate results on this synthetic data set.

Figs. 15a and 15b show the estimations from PCA and

MDS, respectively, where the PCA energy preserving ratio

under each dimension was computed by averaging the

ratios from all the 27 local models. Within a roughly

estimated interval ½2; 10
 for possible d, according to (23), we

computed the total transformation error of the 189 landmarks for each value in this interval. On first sight it seems

that higher dimensionality would always lead to smaller

error and the criterion in (23) would thus favor a large value

for d. However, it should also be noted that once d exceeds

its proper value, the added higher dimensional coordinates

in

ðiÞ

LðkÞ

and ^

ðiÞ

LðkÞ

(both are d-dimensional vectors in (23))

will also inevitably cause increase in the transformation

error. Therefore, the cost function (23) does not always

decrease with increasing the dimensionality. The experimental result in Fig. 15c verifies the above analysis. The

correct estimation of d ¼ 3 for ISOFace data demonstrates

the potential of our method to be applied to other more

complex high-dimensional manifold.

5.3 Experiments on Realistic Video Data

In this section, we test MLE on another data set, called

LLEFace [34], which contains real faces believed to reside

on a complex manifold with few degrees of freedom. The

20 
 28 face images come from a 1,965-frame video [34] in

which a single person strikes a variety of poses and

expressions, along with heavy synthetic camera jitters.

The data set has also been widely used in [35], [41], [45], etc.

Qualitative evaluation. We first applied MLE on the whole

1,965 samples. For comparison with LLC, the same parameter

setting as [41] was used. With k ¼ 36 neighbors, we chose

P ¼ 10 by HDC. After soft partitioning, M ¼ 26 MLPs were

constructed at last. Since the true latent dimension of this real

image set is not known, we set d ¼ 8 as [41]. By specifying

ni ¼ 15, in total 26 
 15 ¼ 390 landmarks (about 20 percent of

the training data) were then exploited to map the face images

from 560D image space to an 8D embedding space. Fig. 16

illustrates the first 2D embedding and some reconstructions.

Similarly to previous work [35], [41], [45], the 2D MLE

embedding correctly discovers the two dominant variations

in the face manifold, one for pose and another for expression.

One may also see that some reconstructions near the

boundary are not good enough. This is mainly because the

model is extrapolating from the training images to low

sample density regions.

Further discussion on the Latent Component. As discussed

in Section 4.3.4, those virtual faces in Figs. 13 and 16 are in

fact reconstructed along the directions of Latent Components via (25). In analogy to Eigenface in the face

recognition literature, we call the Latent Component here

as Latentface. Fig. 17 shows the Eigenfaces and Latentfaces

from one local model of the LLEFace manifold. While

Eigenfaces describe the directions with the largest variances

in the high-dimensional data space, Latentfaces describe the

directions which dominate the intrinsic (latent) variability

WANG ET AL.: MAXIMAL LINEAR EMBEDDING FOR DIMENSIONALITY REDUCTION 1789

Fig. 14. Some source face images and corresponding reconstructions

from MLE/LLC/MLPC under different latent dimensionalities.

TABLE 4

Reconstruction Errors for the ISOFace Data Set

Fig. 15. Estimation of intrinsic dimensionality on the ISOFace manifold.

(a) and (b) give the estimation from PCA and MDS, respectively.

(c) shows the estimation using the proposed cost function in (23).of the manifold. Therefore, when we reconstruct face

images along the directions of Latentfaces, they will exhibit

the intrinsic modes of variability, which correspond to the

global data variations. With this merit, Latentfaces can be

expected to find potential widespread applications in

various problems, such as pose estimation, facial expression

analysis, face recognition, and so on.

Quantitative comparison. As in the ISOFace data set, we

compared our MLE against LLC to show how their

performances depend on the amount of training data and

the number of local models. From the total 1,965 samples,

we used varying percentage of training data (ranging from

60 to 90 percent) to learn the mapping and the rest as test

data to assess the reconstruction quality. We measure the

average reconstruction error over all test samples n:

Erec ¼

1

N

ﬃﬃﬃﬃ
D

p

XN

n¼1

k n 
 ^nk: ð30Þ

Similarly to (29), here D ¼ 560 is the dimension of the image

space, and N is the number of test samples, which takes 785,

589, 393, and 196, respectively, for each train percentage.

We trained MLE and LLC using k ¼ 36 and d ¼ 8, while

varying the number P of local models (ranging from 10 to

25). Again, for fair comparison, we used only the hard

partitioning MLPs for MLE. We tabulated the results in

Table 5, where each error is an average and standard

deviation over five randomly drawn train and test sets for

each percentage. The results show that MLE is always able

to deliver higher accuracy than LLC and both methods

generally obtain decreased errors with more training data,

as expected. Moreover, as the number P grows larger, the

errors of MLE consistently become smaller thanks to the

increased accuracy with more MLPs. In comparison, LLC

shows moderate overfitting when more parameters need to

be estimated for many local models, as also found in [45].

6 CONCLUSION AND FUTURE WORK

We propose a manifold learning method, Maximal Linear

Embedding. Compared to classic ISOMAP and LLE, our

approach can well preserve both local geometry and global

structure of the manifold. The method further derives a

parametric function for out-of-sample extension. Unlike the

locally linear neighborhood in LLE, MLE defines maximal

linear patch as the basis for linear embedding, which is

more reasonable and efficient. Since MLP is constructed

according to the geodesic distance, our method also exploits

the most essential point of ISOMAP. In comparison with

related parametric methods such as LLC, MLE improves

upon them in both phases of local model fitting and

coordination, as discussed in Section 4.4.1. Experimental

results in Section 5 indicate that MLE compares favorably to

LLC in the sense that fewer local models are required to

pursue reliable low-dimensional embedding, and smaller

reconstruction errors can be obtained under the similar

parameter settings.

One interesting research direction is to introduce a

probabilistic model into our MLP, as in LLC and CFA,

which will give a notion of uncertainty in the mapping and

result in more stability and flexibility. Currently, our

coordination method LGA exploits the similar rigid constraint of isometry as ISOMAP, which might limit their

applications. Inspired by [29], [57], we will investigate a

more flexible algorithm to achieve a trade-off between the

rigid constraint of isometry and the deficiency of global

metrics. Moreover, we will make an effort to study two

issues plaguing almost all manifold learning methods, noise

sensitivity and sampling density, to extend our work to

more practical and challenging applications.
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