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Abstract 

Determining the monoisotopic peak of a precursor is a first step in interpreting mass spectra, 

which is basic but non-trivial. The reason is that in the isolation window of a precursor, other 

peaks interfere with the determination of the monoisotopic peak, leading to wrong 

mass-to-charge ratio or charge state. Here we propose a method, named pParse, to export the 

most probable monoisotopic peaks for precursors, including co-eluted precursors. We use the 

relation between the position of the highest peak and the mass of the first peak to detect 

candidate clusters. Then we extract three features to sort the candidate clusters: 1) the sum of the 

intensity, 2) the similarity of the experimental and the theoretical isotopic distribution, and 3) the 

similarity of elution profiles. We showed that the recall of pParse, MaxQuant, and BioWorks was 

98~98.8%, 0.5~17%, and 1.8~36.5% at the same precision, respectively. About 50% of tandem 

mass spectra are triggered by multiple precursors which are difficult to identify. Then we design 

a new scoring function to identify the co-eluted precursors. About 26% of all identified peptides 

were exclusively from co-eluted peptides. Therefore, accurately determining monoisotopic peaks, 

including co-eluted precursors, can greatly increase peptide identification rate. 4 

1 Introduction

Peptide identification has become a key technique in mass spectrometry (MS)-based 

proteomics [1, 2]. The main process is as follows: protein samples are proteolytically digested 

into peptides that are subsequently separated by liquid chromatography (LC) and then 

dynamically selected for fragmentation by mass  spectrometers; the resultant tandem mass 

(MS/MS) spectra are searched against a database to produce peptide-spectrum matches (PSM). 

In a database search, the monoisotopic mass and mass tolerance for a precursor can be used to 

obtain candidate peptides. Thanks to modern technology, precursor mass tolerance of part per 

million (ppm)-level can be achieved in high-resolution mass spectrometers such as the FT-ICR, 

Orbitrap, and orthogonal TOF instruments [3–5], which can be used to directly reduce the 

number of candidate peptides. In fact, dozens of candidate peptides can be obtained with several 

ppm, while thousands of candidate peptides  will be obtained with several Daltons (Da). 

Unfortunately, when the given precursor mass is not the monoisotopic one, the correct peptide 

will not fall in the precursor mass window with ppm-level mass tolerance. Therefore, accurate 

determination of monoisotopic masses for precursors is important for peptide identification in 

high-resolution mass spectra. 

While it is basic, accurate determination of monoisotopic masses is non-trivial. The main 

cause is the interference of other peaks, which is common in mass spectra, because noise peaks 

and co-eluted precursors are common in the precursor isolation window [6]. In this case, 

incorrect monoisotopic mass-to-charge ratios (m/z) or charge states may be exported, which 

occurs in some software, e.g., BioWorks. Furthermore, co-eluted precursors may produce 

fragment ions in the corresponding MS/MS spectra (mixed spectra) and could be identified in a 

database search, if the monoisotopic peak of each co-eluted precursor should also be exported. In 5 

short, the interference from other peaks, including co-eluted  precursors, should be carefully 

treated in a determination method of monoisotopic peaks. 

For the purpose of determining monoisotopic peaks, about four methods have been reported. 

Among them is the well-known averagine model [7], in which an averaged molecular formula is 

obtained from a protein database and used to estimate the peptide molecular formula, and then 

the distance between the experimental and the estimated isotopic distribution is calculated to 

determine the monoisotopic mass. This idea is used in many software tools, e.g., THRASH [8], 

Decon2LS [9], DeconMSn [10], Hardklor [11], Bullseye [12], and DTASuperCharge [13]. 

Similar to the averagine model, another method is based on the relationship between the intensity 

ratio of adjacent isotopic peaks and the peptide mass [14–16], in which the theoretical 

relationship is obtained from a protein database, and then the distance between the experimental 

and the theoretical relationship is calculated to determine the monoisotopic mass. Both methods 

determine the monoisotopic mass based on a single MS scan, in which low-abundance precursors 

are sometimes selected at the two ends of elution profiles. This becomes problematic when these 

precursors exhibit unusual isotopic distributions that are dissimilar to the theoretical ones. 

To overcome the disadvantage of low-abundance precursors, many software tools consider 

the elution profile of a peak  over several MS scans, e.g.,  MaxQuant [17], Raw2MSM [18], 

VIPER [19], Superhirn [20], MapQuand [21], msInspect [22], Peplist [23], and MZmine [24], 

most of which are described in the review [25]. However, the three types of methods just 

mentioned (averagine model, intensity ratio, and elution profile) seldom consider the interference 

of other peaks. They export only one candidate monoisotopic peak for each MS/MS spectrum. 

Therefore, they may miss some correct monoisotopic peaks because of the interference of other 

peaks. The fourth method strives to include  the correct monoisotopic peaks by searching the 6 

MS/MS spectra with a large precursor mass tolerance, e.g., ±3.1 Da, and filtering MS/MS spectra 

with a small precursor mass tolerance, e.g., ±10 ppm, in each local region that corresponds to 

precursor mass errors of 0, 1, 2, and 3. When the charge state of the precursor is incorrect, this 

strategy will also miss the correct monoisotopic peaks. Furthermore, co-eluted precursors are out 

of consideration in all of these four methods. 

Recently, several methods have tried to consider co-eluted precursors. Some export the 

monoisotopic peaks of co-eluted precursors separately in the isolation window for identification, 

while the MS/MS spectrum is the same as the original one [26–29]. Some exclude the fragment 

ions of the first identified peptide from the MS/MS spectrum and use the left fragment ions to 

identify the second peptide [30]. Some use the  identification idea of cross-linked peptides to 

identify mixed spectra [31]. Others use simulated mixed spectra to study the influence of 

co-eluted precursors on database and spectral library searches [32–34]. These methods have 

shown that mixed spectra are common but less likely to result in accurate identification. 

Therefore, how to identify mixed spectra effectively is still a problem. 

In this paper, we propose a new method, named pParse, to accurately determine the 

monoisotopic masses of precursors. Because of the existence of co-eluted precursors, pParse 

exports several probable monoisotopic peaks for  precursors. The key point is how to use the 

relation between the position of the highest peak and the mass of the first peak to detect 

candidate clusters. To avoid enumerating all possibilities, we extract  three features for each 

cluster: 1) the sum of the intensity, 2) the similarity of the experimental and the theoretical 

isotopic distribution, and 3) the similarity of elution profiles. pParse uses these features to sort all 

possible monoisotopic peaks in the precursor isolation window including the co-eluted 

precursors. The top ranked monoisotopic peaks are exported and assigned to the corresponding 7 

MS/MS spectrum separately. To improve the identification rate of mixed spectra, a new scoring 

function is designed, which is similar to the identification of selected-reaction monitoring (SRM) 

data [35]. Concisely, we have achieved two improvements for determining monoisotopic peaks: 

the recall of correct monoisotopic peaks at high precision and the identification rate of co-eluted 

precursors. 

In the following section, we will introduce the workflow of pParse and the scoring function 

for the identification of co-eluted precursors. Then we will list some results of improvements and 

discuss: 1) how to evaluate the correctness of monoisotopic peaks, 2) why there are incorrect 

monoisotopic peaks exported, 3) how to effectively identify co-eluted precursors and what the 

influence of co-eluted precursors is, 4) what the difference between pParse and BioWorks is, and 

5) what the time and space cost of pParse is. 

2 Materials and methods

2.1 Methods 

Because the instrument software may determine the monoisotopic peak simply by the 

highest intensity, a more accurate method for determining monoisotopic peaks is required after 

the raw data are produced. Our software tool, pParse, acts as a post-data acquisition procedure to 

accurately determine the monoisotopic peaks for precursors. The flow chart for pParse, shown in 

Figure 1, consists of three major steps: 1) detecting candidate isotopic clusters in a single MS 

scan, 2) reconstructing elution profiles for  each candidate cluster, and 3) determining 

monoisotopic peaks. Each step is described below. 

2.1.1 Detecting candidate isotopic clusters in a single MS scan 8 

In the precursor isolation window of the MS scan just preceding an MS/MS scan, candidate 

isotopic clusters can be detected by scanning peaks from low m/z to high m/z with the assumed 

m/z interval. When the peak in the isolation window has a low  signal-to-noise ratio (S/N), 

candidate clusters may not include the precursor originally selected for the MS/MS scan. In this 

case, candidate clusters need to be detected in MS scans before and after the current MS scan (as 

shown in Figure 1). 

During the candidate detection step, the S/N is computed for each peak to discard noise 

peaks. The distribution of the peak intensity in the MS scan can be obtained. Then the intensity 

with the highest frequency is defined as the noise level, and the S/N for a peak is defined as the 

ratio of the peak intensity to the noise level. MS peaks whose S/Ns are less than one (below the 

noise level) will be discarded. 

Two important criteria are then applied to detect candidate clusters in the precursor isolation 

window. One is that adjacent peaks in a candidate cluster should have a suitable m/z difference, 

e.g., 1.0032 Da (the average value of the mass  difference of adjacent isotopic peaks obtained 

from pre-identified MS/MS spectra) divided by the assumed charge state of the precursor ion, 

which ranges from 2 to 7. The other is that the similarity of the experimental and the theoretical 

(by the averagine model) isotopic distribution should satisfy given conditions. For example, there 

are two conditions that must be satisfied if only one candidate cluster is exported starting from 

the first peak to the end peak. Those two conditions are: (1) the first peak in the current cluster is 

the highest, and its mass is less than 1,800 Da, and (2) the similarity of the experimental and the 

theoretical isotopic distribution is more than 0.99 (the  threshold can be obtained from 

pre-identified MS/MS spectra). Otherwise, when the first condition is satisfied, but the second is 

not satisfied, two candidate clusters are exported: one starts from the first peak to the end peak; 9 

the other starts from the second peak to the end peak. 

In the second criterion, pParse considers the relation between the position of the highest 

peak and the mass of the first peak, which is missed in other averagine model based methods. 

The relation can be inferred from the averagine model: when the peptide mass is less than 1,800 

Da, the first peak is the highest; when the peptide mass is between 1,800 Da and 3,300 Da, the 

second peak is the highest. As a  result, a list of candidate clusters in the original precursor 

isolation window can be obtained, including co-eluted precursors. 

2.1.2 Reconstructing elution profiles for each candidate cluster

For all peaks in each isotopic cluster, the elution profiles are similar because all of the 

isotopic peaks are concomitant. But a noise peak does not have an elution profile. Therefore, 

elution profiles can be used to remove noise peaks. To reconstruct the elution profiles, pParse 

starts from the MS scan  n from which an MS/MS scan is triggered, identifies the peaks 

belonging to a candidate cluster, and then searches for matching peaks with mass deviations no 

more than a pre-defined threshold in MS scans  n－1 and  n＋1. The matching procedure 

continues to the neighboring MS scans in both directions until no matching peak is found in two 

(or other user-defined values) consecutive MS scans. Noise peaks that cannot be assembled into 

elution profiles are filtered out. For two adjacent  peaks in a candidate cluster, the correlation 

between their elution profiles is  calculated using the cosine of the angle between the vectors 

corresponding to the elution profiles. The correlation of the first two peaks is defined as the 

similarity of elution profiles in each isotopic cluster. 

2.1.3 Determining monoisotopic peaks10 

After the elution profile's reconstruction, three features can be extracted: 1) the sum of the 

intensity for each cluster on the current MS scan, 2) the similarity of the experimental and the 

theoretical isotopic distribution for each cluster, and 3) the similarity of elution profiles in each 

cluster. The ranks of each feature are multiplied as the final scoring function. The top k, e.g., 5, 

monoisotopic peaks are exported. 

After the above three determinations are verified, the MS/MS spectra are exported with all 

of the determined precursor m/z values and charge states, while the fragment ions are the same as 

the original ones. On the basis of the algorithm, pParse is implemented using MATLAB and 

Python. The user manual and the MATLAB source code of pParse are provided in the 

supplemental material. 

2.2 Mixed spectra identification

Mixed spectra are less likely to identify  with common database search engines [36–39] 

because some fragment ions of co-eluted precursors may be low and not fragmented well. To 

improve the identification rate of mixed spectra, the SRM identification method can be used 

which uses only one precursor and two fragment ions to identify a peptide [35]. Here, we use 

ppm mass tolerance to obtain dozens of candidate peptides. For each peptide we follow the steps: 

1) calculating the theoretical fragment ions, 2) counting the fragment ion pairs which occur only 

in the current peptide (unique ion signature, UIS) and the frequency of non-UIS fragment ions 

which occur in all candidate peptides, 3) matching the theoretical fragment ions to the MS/MS 

spectrum, and 4) summing the matched intensity of UIS fragment ions and the matched intensity 

of non-UIS fragment ions divided by their frequency as the score (UIS score). At last, the peptide 

of the highest score is exported as the PSM result. To estimate the false discovery rate (FDR), we 11 

also calculate the UIS score for the reversed sequence of each candidate peptide [40]. 

2.3 Data sets 

To demonstrate the benefit of pParse, we showed the analysis of two published data sets with 

high precursor mass accuracy. The first data set was generated from yeast samples, referred to as 

Yeast data hereafter [41]. The second data set was generated from HeLa cells, referred to as 

HeLa data hereafter [42]. In the Yeast data, peptides were separated with the LC-MS analysis. In 

the HeLa data, the digested human cell samples were fractionated with isoelectric focusing (IEF), 

followed by LC-MS analysis of each fraction. The difference of these two data sets is the 

separation method. If the samples are only separated by LC, more mixed spectra will occur. If 

the samples are fractionated with IEF or SDS-PAGE, less mixed spectra will occur but still reach 

about 50%. The detailed information for these two data sets is shown in Supplemental Table 1. 

3 Results and discussion

3.1 Evaluation for the correctness of monoisotopic peaks 

To evaluate the correctness of monoisotopic peaks, we should first generate a confident test 

set of correct monoisotopic peaks. The central peak in the precursor isolation window can be 

exported, which is recorded in the raw data. Because the central peak may be the isotopic peak 

rather than the monoisotopic peak, a large precursor mass tolerance, e.g., ±3.1 Da, is used to 

search the exported MS/MS spectra (the searching parameters are shown in Supplemental Table 

2). In each local region that corresponds to precursor mass errors of 0, 1, 2, and 3, search results 

are filtered with a small precursor mass tolerance, e.g., ±10 ppm, using the target-decoy strategy. 

Second, we can use several kinds of software  to export the monoisotopic peaks, such as 12 

pParse, MaxQuant, and the instrument software BioWorks (the exporting parameters are shown 

in Supplemental Table 3). For each identified monoisotopic peak, we compare its m/z value and 

charge state with the exported precursors. When the charge states are the same and the difference 

of m/z values is no more than 10 ppm, the  exported precursor is correct, which means the 

software exports the correct monoisotopic peak. Otherwise, the exported precursor is incorrect. 

Third, we sort the identified  monoisotopic peaks by their database search scores in a 

descending order. The higher the database search score, the more reliable the monoisotopic peak. 

Therefore, we can calculate the two evaluation measurements, precision and recall. Precision is 

calculated by the number of correct precursors in the current set divided by the size of the current 

set, e.g., the first  k sorted monoisotopic peaks. Recall is calculated by the number of correct 

precursors in the current set divided by the number of all identified monoisotopic peaks, which is 

the same measurement as sensitivity. 

The above three steps are used to evaluate the correctness of the monoisotopic peak for the 

cluster of the central peak in the precursor isolation window. To evaluate the correctness of all 

monoisotopic peaks in the precursor isolation window, we should modify the first step above. In 

the precursor isolation window, adjacent peaks with a suitable m/z difference constitute a 

candidate cluster. All the peaks in each candidate cluster are exported (by so called brute force). 

A small precursor mass tolerance, e.g., ±10 ppm, is used to search the exported MS/MS spectra. 

Search results are filtered by the target-decoy strategy. The second and third steps remain the 

same as the steps above. 

The evaluation results for the Yeast data and the HeLa data are shown in Figure 2. In Figure 

2, the search engine is pFind. Actually, the evaluation approaches can be used with any search 

engine. Supplemental Figure 1 repeats similar results by Mascot. Concisely, pParse is the most 13 

sensitive of all cases, and the sensitivity on all identified monoisotopic peaks reaches more than 

98%. In the case of evaluating the correctness  of all monoisotopic peaks in the precursor 

isolation window, the precision of pParse, MaxQuant, and BioWorks was 99~99.1%, 88~93.2%, 

and 79.9~94.7% at the same recall, and the recall of pParse, MaxQuant, and BioWorks was 

98~98.8%, 0.5~17%, and 1.8~36.5% at the same precision (as shown in Table 1), because 

MaxQuant and BioWorks do not export co-eluted precursors. 

In the two cases of evaluating the correctness of monoisotopic peaks, there are still a few 

precursors exported by pParse that are different from the identified monoisotopic peaks. In fact, 

the identified monoisotopic peaks are indeed incorrect, because the corresponding monoisotopic 

peaks to the peptides are missing in the precursor isolation window.  After the deamidation 

modification is considered, the  peptides can be identified with this modification and the 

corresponding monoisotopic peaks appear in the precursor isolation window, which are the same 

as the monoisotopic peaks exported by pParse. Checking the identification in this way, it is found 

that 99% of the identified monoisotopic peaks are correct. Therefore, this approach has proven 

suitable for evaluating the correctness of monoisotopic peaks. 

3.2 The reasons for exporting incorrect monoisotopic peaks

After evaluation with the identified monoisotopic peaks, we can find out some reasons for 

BioWorks and MaxQuant exporting incorrect  monoisotopic peaks. BioWorks has shown a 

propensity for exporting incorrect monoisotopic peaks in two cases (Supplemental Figure 2). The 

first case is when the central peak is the highest in the cluster (but not the first peak), the central 

peak is exported as the monoisotopic peak; the second case is that when another cluster appears 

before the central peak cluster with the same m/z difference, one peak in the former cluster is 14 

exported as the monoisotopic peak. The first case is the main cause, because BioWorks seems to 

determine monoisotopic peaks by the highest intensity rather than the isotopic distribution. 

In five cases MaxQuant is easy to export incorrect monoisotopic peaks: (1) when co-eluted 

precursors occur, only one monoisotopic peak is exported; (2) when there is another cluster 

before the central peak cluster with the same m/z difference, one peak in the former cluster is 

exported as the monoisotopic peak; (3) when the central peak cluster has two candidate charge 

states and the clusters of both charge states have elution profiles, only one charge state is 

exported; (4) when there are two peaks close to the monoisotopic peak, the mass deviation of the 

exported monoisotopic peak is a little larger; (5) a few precursors are filtered out by MaxQuant. 

The first four cases are shown in Supplemental Figure 3. The first three cases are the main causes. 

The first two cases occur because there are co-eluted precursors that need be considered in 

monoisotopic peak detection. The third case occurs because elution profile cannot distinguish 

them in the isolation window, but the isotopic distribution can help. 

In the fourth case of MaxQuant, pParse may also export the monoisotopic peak with a little 

larger mass deviation, because the monoisotopic peak has been interfered with a nearby peak. 

But pParse can deal well with other four cases of MaxQuant and the two cases of BioWorks. 

Therefore, pParse outperforms MaxQuant and BioWorks. 

3.3 The identification and the influence of co-eluted precursors

Using pParse we find that in all MS/MS spectra, the proportion of mixed spectra (at least 

two precursors in the isolation window) is 50~60%. Unfortunately, mixed spectra are less likely 

to result in identification with common database search engines, because some fragment ions for 

the co-eluted precursors may be low and not fragmented well. For example, using the search 15 

engine pFind we identified 5~8% of all co-eluted precursors at the FDR<=1%. Then we design a 

new scoring function (UIS score) similar to the SRM identification. To estimate the FDR, we 

also calculate the UIS score for the reversed sequence of each candidate peptide. We searched the 

Yeast data on E. coli database with UIS and found that the ratio of the number of co-eluted 

precursors identified from target and decoy  peptides was 0.987:1, which means the estimated 

FDR is higher than the real FDR. Therefore, we set the FDR<=5% for UIS. Furthermore, 

because with pFind the ratio was 1.09:1, we set the FDR<=1% for pFind. 

In the Yeast data, UIS identified 1,343 co-eluted precursors as having the same peptides as 

pFind, and four co-eluted precursors as having different peptides from pFind. pFind identified 

415 more co-eluted precursors which were  missed by UIS, and UIS identified 1,781 more 

co-eluted precursors which were missed by pFind (as shown in Figure 3). We checked the 1,781 

more co-eluted precursors and found that 70% of them were the same top-one peptides found by 

pFind which were filtered out by the FDR<=1%. After merging the results of UIS and pFind, 

16% of all co-eluted precursors were identified. Therefore, UIS can improve the identification 

rate of co-eluted precursors. 

A typical example of mixed spectrum is shown in Figure 4. The peptide A of the central peak 

cluster is identified both by pFind and UIS. The co-eluted peptide B is only identified by UIS. 

From the matched MS/MS spectrum, we know that most of the fragment ions of peptide A are 

high and consecutive, while only  a few fragment ions of peptide B are high or consecutive. 

Because pFind gives high weights to consecutive ions, the score of peptide A is much higher than 

that of peptide B. Thus, peptide A is easy to be identified by pFind, but peptide B may be 

unidentified. Anyhow, there are still a few high peaks which cannot be matched by peptide A. 

When these few high peaks can only be matched with peptide B, we can also identify peptide B. 16 

UIS uses the uniqueness of two peak pairs to identify less consecutive fragment ions. Therefore, 

the uniqueness of UIS and the consecutiveness  of pFind are complementary and can be 

combined to improve the identification rate of mixed spectra. 

After the combinational identification of mixed spectra by UIS and pFind, more peptides 

and proteins can be identified. The number of identified mixed spectra in the Yeast data is shown 

in Table 2. In the Yeast data, 26.2% of all identified peptides were exclusively from co-eluted 

peptides, and 35.8% of all identified proteins were exclusively from co-eluted peptides (one 

example shown in Figure 5a). About 30% of all identified proteins had been identified from the 

central peak precursors and the coverage values were increased by the co-eluted precursors (one 

example shown in Figure 5b). The detailed protein coverage of the Yeast data is shown in the 

supplemental material, which shows that the average protein coverage identified from the central 

peak precursors was 18.8%, and the average protein coverage identified from the co-eluted 

precursors was 3.2%. Therefore, the detection and identification of co-eluted precursors can 

increase the number of identified proteins and protein coverage greatly. 

3.4 Comparison of pParse with the instrument software 

Though the instrument software, BioWorks, can export some correct monoisotopic peaks, 

there are still some cases in which BioWorks exports incorrect monoisotopic peaks. One way to 

resolve the problem is by searching MS/MS spectra exported by BioWorks with a large precursor 

mass tolerance and filtering MS/MS spectra with a small precursor mass tolerance in each local 

region, e.g., 0, 1, 2, and 3. In the Yeast data, this strategy identified 5,356 peptides. Then we 

search the MS/MS spectra exported by pParse with a small precursor mass tolerance. The second 

strategy identified 7,668 peptides. The overlapping of these two strategies is 5,339. The second 17 

strategy identified 2,329 more peptides, and the first strategy identified only 17 more peptides (as 

shown in Figure 6). Two cases occur for these 17 peptides in pParse: (1) the mass deviation of 

the exported monoisotopic peak is a little larger, and (2) there is a deamidation modification. The 

2,329 peptides only identified by pParse are mainly from co-eluted precursors. Therefore, pParse 

outperforms BioWorks in determining monoisotopic peaks. 

3.5 The performance of pParse 

In the precursor isolation window, adjacent peaks with a suitable m/z difference constitute a 

candidate cluster. All the peaks in each candidate cluster can be exported, which is the so called 

brute force. In this way, correct monoisotopic peaks cannot be missed. We compared the 

exporting time and the number of exported precursors for brute force, pParse, MaxQuant, and 

BioWorks in the Yeast data. The result is shown in Table 3. (All the programs were executed on 

the same PC: Intel Core 2 Duo processor  2.66 GHz, 2 GB RAM, Windows XP OS.) The 

exporting time of all four ways is acceptable, while the difference is the sensitivity of correct 

monoisotopic peaks and the number of exported monoisotopic peaks. Because pParse considers 

the most probable monoisotopic peaks and avoids brute force, the sensitivity of pParse is similar 

to that of brute force. The number of exported precursors of pParse is two times more than that 

of BioWorks, while the number of exported precursors of brute force is six times more than that 

of BioWorks. Therefore, pParse reaches high sensitivity and controls the number of exported 

precursors, whereas sensitivity is much more important in monoisotopic peak determination. 

4 Concluding remarks

Monoisotopic peak determination and co-eluted precursor identification are challenges in 18 

interpreting mass spectra. In this paper, we presented pParse, a new method to determine the 

monoisotopic masses of precursors for MS/MS spectra. Because pParse uses a new way to detect 

candidate clusters and three important features to sort them, the sensitivity of pParse reaches 

more than 98%. Though co-eluted precursors are less likely to identify, we use the uniqueness of 

UIS and the consecutiveness of pFind to improve the identification rate of mixed spectra from 

8% to 16%, and increase protein identification and coverage greatly. 

pParse is designed for Thermo FT/Orbitrap RAW files, i.e., high-resolution RAW files for 

shotgun proteomics and is not suitable for low-resolution RAW files. It is known that other mass 

spectrometers also need to determine correct monoisotopic peaks and detect co-eluted precursors. 

Therefore, we will extend the algorithm of pParse to these mass spectrometers as a future work. 
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Figure Legends

Figure 1. Flow chart of pParse. pParse has three main steps: 1) detecting candidate isotopic 

clusters in a single MS scan, 2) reconstructing elution profiles for each candidate cluster, and 3) 

determining monoisotopic peaks by the rank of all clusters. To detect candidate clusters, two 

factors are considered in each cluster: 1) the relation between the position of the highest peak and 

the mass of the first peak, and 2) the similarity of the experimental and the theoretical isotopic 

distribution. To rank all clusters, three features can be extracted for each cluster: 1) the sum of 

the intensity, 2) the similarity of the experimental and the theoretical isotopic distribution, and 3) 

the similarity of elution profiles. 

Figure 2. Evaluation for the correctness of monoisotopic peaks. Two evaluation approaches 

are designed in the text: 1) evaluation for the correctness of the monoisotopic peaks for the 

central peak clusters, and 2)  evaluation for the correctness of all monoisotopic peaks in the 

precursor isolation window. Points (a) and (b) are the precision recall curves for the Yeast data, 

while (c) and (d) are the precision recall curves for the HeLa data. In four cases pParse is the 

most sensitive and the sensitivity on all identified monoisotopic peaks reaches more than 98%. 

Figure 3. Venn diagram for the identified co-eluted precursors in the Yeast data. The left 

smaller circle represents the number of identified co-eluted precursors by pFind. The right larger 

circle represents the number of identified co-eluted precursors by UIS. UIS identified 1,343 

co-eluted precursors with the same peptides as pFind, and four co-eluted precursors with 

different peptides from those found by pFind. pFind identified 415 more co-eluted precursors, 

and UIS identified 1,781 more co-eluted precursors. 22 

Figure 4. An example of an identified mixed spectrum. (a) Two monoisotopic peaks are 

determined in the precursor isolation window: one is the central peak; the other is the peak close 

to the left side of the isolation window. (b) The peptide A of the central peak precursor is 

matched with the MS/MS spectrum. (c) The peptide B of the co-eluted precursor is matched with 

the MS/MS spectrum. Most of the fragment ions of peptide A are high and consecutive, while a 

few fragment ions of peptide B are high or consecutive. Actually, peptide B is the top-one PSM 

in pFind, but it is below the FDR threshold. UIS gives peptide B a relatively high score and 

identifies it. UIS and pFind can be combined to give more reliable peptides. 

Figure 5. The influence of co-eluted precursors. Co-eluted precursors can increase the protein 

coverage. In the Yeast data, 735 proteins were solely identified from co-eluted precursors (e.g., 

Figure 5a); 631 proteins had been identified from central peak  precursors and the coverage 

values were increased by co-eluted precursors (e.g., Figure 5b); 685 proteins were solely 

identified from central peak precursors. 

Figure 6. Venn diagram for the identified peptides in the Yeast data. The left smaller circle 

represents the number of identified peptides from BioWorks. The right larger circle represents 

the number of identified peptides from pParse. The first strategy is that MS/MS spectra are 

exported by BioWorks, searched with a large precursor mass tolerance, and filtered with a small 

precursor mass tolerance in each local region that corresponds to precursor mass errors of 0, 1, 2, 

and 3. The second strategy is that MS/MS spectra are exported by pParse and searched with a 

small precursor mass tolerance. 23 

Table 1. Comparison of three software programs’ precision at the same recall and recall at 

the same precision to evaluate the correctness of all monoisotopic peaks in the precursor 

isolation window. 

 Precision of 

BioWorks (%) 

Precision of 

MaxQuant (%) 

Precision of 

pParse (%) 

Recall of 79.9% in the Yeast data 79.9 88 99

Recall of 93.2% in the HeLa data 94.7 93.2 99.1

 Recall of 

BioWorks (%)

Recall of 

MaxQuant (%)

Recall of 

pParse (%) 

Precision of 98% in the Yeast data 1.8 17 98

Precision of 98.8% in the HeLa data 36.5 0.5 98.8

Table 2. The number of mixed spectra according to the number of identified peptides in the 

Yeast data by UIS and pFind. 

number of identified peptides in each MS/MS spectra 2 3 4 

number of mixed spectra  1,765 91 3 

Table 3. Comparison of the exporting time and the number of exported precursors for 

brute force, pParse, MaxQuant, and BioWorks in the Yeast data. 

tools the exporting time (min) the number of exported precursors 

brute force  33.8 237,452 

pParse  33.7 88,419 

MaxQuant  44.6 45,760 

BioWorks  21.4 39,829 24 
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