Abstract—In object detection, disparities in distributions between the training samples and the test ones are often inevitable,

resulting in degraded performance for application scenarios. In

this paper, we focus on the disparities caused by viewpoint and

scene changes and propose an efﬁcient solution to these particular

cases by adapting generic detectors, assuming boosting style. A

pretrained boosting-style detector encodes a priori knowledge

in the form of selected features and weak classiﬁer weighting.

Towards adaptiveness, the selected features are shifted to the most

discriminative locations and scales to compensate for the possible

appearance variations. Moreover, the weighting coefﬁcients are

further adapted with covariate boost, which maximally utilizes

the related training data to enrich the limited new examples. Extensive experiments validate the proposed adaptation mechanism

towards viewpoint and scene adaptiveness and show encouraging

improvement on detection accuracy over state-of-the-art methods.

Index Terms— Boosting, covariate shift, detector adaptiveness,

object detection, transfer learning.

I. INTRODUCTION

O

BJECT detection/localization has been extensively

studied for more than two decades. Although most prior

algorithms have been proposed to detect frontal human faces

[30], [37], pedestrians [10], [27], etc., they are believed to be

readily extensible to detection of other visual objects, e.g.,

animals and proﬁle faces. A straightforward extension scheme

normally consists of three steps: training examples collection,

detection model selection, and detector training. Nevertheless,

many object detection tasks are still beyond the capabilities

of the state of the art [10], [27], [37]. Even for those nearly
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Fig. 1. Data-distribution disparity problem illustrated by examples selected

from two different viewpoints. (a) Frontal view. (b) Overhead view.

solved tasks [37], the high initial cost, i.e., the cost to acquire

sufﬁcient training examples, may prohibit building practical

detection systems.

The high initial cost inherently arises from the fact that most

current solutions are based on statistical learning techniques,

whereby several thousands of positive examples are typically

required to train a detector. For instance, an early face detector

uses nearly 1050 face examples [30]. Moreover, detection problems are further complicated by variations of appearance [10],

[26]. On the other hand, a considerable number of training images which do not contain any instance of the speciﬁc object are

also required during the training phase. Negative examples are

bootstrapped from these “negative” images to ensure a low false

positive rate, e.g., .

In practice, disparities in data distributions are often inevitable between the training data and test one, possibly

resulting from differing viewpoints or scenes. For example, in

pedestrian detection, the appearance of a pedestrian may be

substantially changed when the capturing viewpoint is altered

(see Fig. 1). If we take an example of overhead view as test

data while using the detector trained from the frontal view, the

detection performance would be seriously hurt. One immediate

solution is to retrain the detector with examples recollected

from the new viewpoint, incurring again the high initial cost.

In addition, speciﬁc applications often entail conﬁned scenes,

such as a surveillance system with stationary cameras watching

a particular region only. This observation suggests the possibility to improve detection performance by adapting a generic

detector to the particular scene. Such a specialized detector is

expected to perform better than the generic detector in terms

of both accuracy and efﬁciency, since to deal with variable

backgrounds tends to increase the complexity of the detector.

We advocate transferring the knowledge residing with visual detectors across viewpoints and scenes. Although examples

captured from different viewpoints are generally distinct in appearance, there exists certainly close relationship among them.

To determine which part in a generic detector is still useful for

1057-7149/$26.00 © 2011 IEEEPANG et al.: TRANSFERRING BOOSTED DETECTORS TOWARDS VIEWPOINT AND SCENE ADAPTIVENESS 1389

Fig. 2. Schematic of transfer learning across viewpoints or scenes. (a) Transfer

learning in boosting: the image patches are transferred from the auxiliary task

to the target task. The weight of each image patch is also relearned. Note that

the image patches are all normalized into the same size for better visualization.

(b) A weak classiﬁer is built upon an image patch, where the parameter of weak

classiﬁer and threshold are learned.

a particular case, we utilize a small amount of labeled data captured from the new viewpoints or scenes, called target-distribution training data. By comparison, we term the training data for

the generic detector as auxiliary-distribution data, in view of its

potential usefulness for the target task. We transfer the generic

detector into the target task by exploiting the relation between

the auxiliary data and the target one. This naturally leads to an

instance of classic transfer learning [3], [8], [9], [28], [33].

The key underlying argument for our transfer learning is that

shared visual features may handle the overall appearance distortion. These shared local features tend to be semantically identical for auxiliary and target examples, but are observed to be

at different locations and scales [see Fig. 2(a)]. To establish

these features, it is desirable to ﬁnd correspondences of local

features between the different viewpoints or scenes. We start

with boosting-style detectors [35], [37] for viewpoint and scene

adaptiveness. The reason is that boosted detectors have been

successfully applied for detecting various objects, e.g., face [37]

and pedestrian [26], [35].

The remainder of this paper is organized as follows. After

summarizing the related work, we ﬁrst review the loss function for the classical boosted detector in Section III and then

elaborate on feature shift in Section III-B and on CovBoost

in Section III-C. In Section IV, we discuss our methods to

transfer the boosted detector across viewpoints and scenes.

Extensive experiments on two challenging tasks are presented

in Section V. We provide concluding remarks on detection

transfer in Section VI.

II. RELATED WORK

Existing possible solutions to the viewpoint and scene adaptiveness problem are partially related to three popular research

topics, i.e., multitask learning, semisupervised learning, and

transfer learning.

Multitask Learning: Learning for multiple related tasks simultaneously can be advantageous, as compared to learning for

these tasks independently [8], [18]. There has been various theoretic work devoted to multitask learning [4], [5]. In computer

vision, JointBoost [34] demonstrated that multiple simultaneously trained object detectors behave better than independently

learned ones. Recently, Ahmed et al. [2] also learned sharing

features simultaneously from pseudo (auxiliary) tasks and target

tasks with convolutional neural networks (CNNs). Multitask

learning can partly solve the deﬁciency of training examples and

possibly improve the performance. However, multitask learning

requires that new task has sufﬁcient examples in order to perform simultaneous learning with other related tasks. The high

initial cost in the viewpoint or scene adaptiveness is hence inevitable.

Recently, the idea of weighted mixture probabilities [20], [41]

suggests to weight distributions among different scenarios, but

emphasized storing knowledge in a parametric model [20]. For

instance, Taylor expansion of the loss function for auxiliary data

is parameterized as the coefﬁcients of weak classiﬁers [41]. Despite how the possible changes of appearance are handled, [20]

and [41] are not designed for either viewpoint or scene adaptiveness. In this work, feature shift is proposed to handle the

appearance distortion caused by varying viewpoint or scene.

Semi-Supervised Learning: Another related work is the

semi-supervised learning utilizing the unlabeled examples for

detectors. One of the popular methods is cotraining [6]—multiple detectors based on independent features are applied to

the same unlabeled example, and its label is determined by the

highest conﬁdence of detector. To avoid the costly retraining

process, the seminal idea [23] has inspired the research in [21]

to combine cotraining with an online method [25]. Obviously,

cotraining requires different visual cues upon which to build

independent detectors. This necessarily brings out the feature

design and representation problem, which remains largely

open-ended, e.g., bicycles, cars in visual object challenge

(VOC)’s tasks [12]. Moreover, the iterative retraining process

prohibits practical use. It is also an open problem to apply the

generic semi-supervised learning for detectors adaption. For

instance, [22] propagated the label information by pair-wise

similarity. However, available object examples are often sparse

as compared to the large volume of negative examples (the

ratio of positive and negative examples can be 1:10 000). How

to apply semi-supervised method for adaptation in the case of

detection is still vague.

Transfer Learning: Transferring knowledge across related

tasks is a known phenomenon in human learning [28]. The related research can be roughly categorized into three classes, according to the level of knowledge transferred. The model-level

transfer ﬁrst estimates the hyper prior of parameters from several related tasks and then transfers this prior to similar tasks,

e.g., hierarchical Bayesian models with hyper prior constructed

for similar tasks [4], [14], [29], [39]. However, it is generally

difﬁcult to model and incorporate priors for discriminative classiﬁers, which underpin most efﬁcient detection and recognition algorithms, e.g., boosting [16] and support vector machines

(SVM) [36] used in detection of faces [37] and human bodies

[10], [26], [35]. Second, the data-level transfer instead discovers

useful examples from the auxiliary tasks, and uses them along

with the target data in a proper strategy. For instance, auxiliary

data were used in the covariate shift [32], and the usability of1390 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 5, MAY 2011

auxiliary examples was adaptively determined in boosting [9].

Rather than determining the usability of examples by the responses of target classiﬁers, our approach instead adopts importance sampling mechanism in covariate shift. The third category

is the feature-level transfer, which searches for the shared features with satisfactory performance across domains. To uncover

these features, one might introduce some related target tasks

[3] or learn a distance function which behaves well to transfer

knowledge [33]. For instance, Farhadi et al. [13] proposed to

construct the stable features for recognizing activities from different viewpoints. Comparing with the model-level approach,

the data- and feature-level approaches are well suited to transferring knowledge in discriminative models.

The most promising approach for adaptiveness seems to be

online boosting [25] (and its variant [17]). With the i.i.d. assumption, the online boosting updates the coefﬁcients of weak

classiﬁers, and requires that weak classiﬁers have the incremental learning ability. Varying the viewpoint makes the i.i.d.

barely hold. Nevertheless, many types of weak classiﬁers do not

have the corresponding incremental versions.

III. TRANSFER DETECTOR CROSS VIEWPOINTS AND SCENES

Here, we ﬁrst review the basic notations for boosting and its

applications to object detection. Thereafter, we introduce feature shift and CovBoost for transferring classiﬁers, respectively

[see Fig. 2(a)].

A. Basic Notations and Boosted Detectors

The general approach to object detection is to learn a classi-

ﬁer, which predicts the class label for a subwindow, e.g., 1 for

yes and 1 for no. Within the context of boosting-style detectors, the strong classiﬁer can be obtained by minimizing

the exponential loss 1

(1)

where is the domain of the example-label pair ,

which is generated according to the distribution , and

is the class label of example . The strong classiﬁer is obtained from a weighted combination

of weak classiﬁers

(2)

where is the coefﬁcient characterizing the importance

of the weak classiﬁer . The ﬁnal object detector is the

cascaded strong classiﬁer [37].

In boosted detectors [37], essentially consists of three

elements: 1) location of image patches; 2) parameters of weak

classiﬁers; and 3) decision thresholds for the weak classiﬁers.

Fig. 2(b) illustrates the relation among these elements. For instance, a simple classiﬁer can be obtained by thresholding the

Haar feature [37].

1

Note that, although we focus in this paper on the discrete version of AdaBoost, the proposed approach can be easily extended for other versions of

boosting, e.g., RealBoost and LogistBoost.

Let be the target data, where

is drawn i.i.d. from the target-distribution .

Let be the auxiliary data, where

is sampled from the auxiliary-distribution .2

For a particular case of detector transferring across viewpoints, could

represent the examples collected from the horizontal viewpoint,

while could describe the examples collected from other

viewpoint (see Fig. 1).

B. Transferring Features by Feature Shift

Denote the location/state of an image patch as ,

where are the left-top–right-bottom corner coordinates.

Based on the above analysis, the auxiliary state of an image

patch should be transferred to the target state . In other words,

the new state should be determined by using the old state as

a priori knowledge

(3)

where is a Gaussian distribution with mean and

covariance matrix . The is empirically set to be ten pixels

in this work. The Gaussian dependence in (3) means that, in

most cases, deviates slightly from . As Fig. 2(b) shows, the

parameters and the threshold of a weak classiﬁer do not change

in this stage. Usually, we can generate new features based on

an old state . The critical question is how to locate the optimal

feature from these features.

Two strategies are used to locate the optimal feature. One is

to directly select from the shifted feature by updating CovBoost

in Section III-C1. The other is to average by predicting shifted

features according to target data only (see Fig. 3). We will elaborate on these two strategies next.

1) Selecting Shifted Features: Feature shift ﬁrst generates a

new enlarged feature pool, and then the optimal feature is selected by stage-wise optimization in CovBoost. Advantages of

this strategy are twofold: simultaneous updating CovBoost and

supplying more features for boosting than the following averaging strategy.

2) Averaging Shifted Features: Averaging shifted features

uses the auxiliary state as an initial guess to predict the target

state, according to the target data only. For a clear presentation,

we use instead of to represent the th weak classi-

ﬁer. The state can be computed by estimating the probability

in terms of Bayesian inference. However, the conditional probability cannot be computed directly.

Hence, conditional independence between and is adopted

to simplify as

(4)

Based on the Bayes rule and (4), we have

. Further, we have

(5)

2

Hereafter, the notation  and 
 generally represent the target and the auxiliary

data, respectively.
