Effect of streamﬂow forecast uncertainty on real-time reservoir operation
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a b s t r a c t

Various hydrological forecast products have been applied to real-time reservoir operation, including

deterministic streamﬂow forecast (DSF), DSF-based probabilistic streamﬂow forecast (pseudo-PSF, pPSF),

and ensemble or probabilistic streamﬂow forecast (denoted as real-PSF, rPSF). DSF represents forecast

uncertainty in the form of deterministic forecast errors, pPSF a conditional distribution of forecast uncertainty for a given DSF, and rPSF a probabilistic uncertainty distribution. Compared to previous studies that

treat the forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model

the dynamic evolution of uncertainties involved in the various forecast products and explores their effect

on real-time reservoir operation decisions. Through a hypothetical example of a single-objective realtime reservoir operation model, the results illustrate that forecast uncertainty exerts signiﬁcant effects.

Reservoir operation efﬁciency, as measured by a utility function, decreases as the forecast uncertainty

increases but the magnitude depends on the forecast products used. In general, the utility of the reservoir

operation with rPSF is nearly as high as the utility obtained with a perfect forecast. Meanwhile, the utilities of DSF and pPSF are similar to each other but not as high as rPSF. Moreover, streamﬂow variability

and reservoir capacity can change the magnitude of the effects of forecast uncertainty, but not the relative merit of DSF, pPSF, and rPSF.


 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Advances in weather forecasting, hydrologic modeling, and hydro-climatic teleconnection relationships have signiﬁcantly improved streamﬂow forecast precision and lead-time [3,22,24,28]

and provide great opportunities to improve the efﬁciency of water

resources system operations [23,25,29,39]. In recent years, forecast

products, particularly long-term streamﬂow forecasts (with a leadtime longer than 15 days), have been applied to reservoir operation

and water resources management (e.g. [23,25,29,39]).

In addition to forecast precision and lead-time, operation strategies also inﬂuence the efﬁciency of utilizing streamﬂow forecasts

for real-time reservoir operation [4,20,39]. As a common practice,

reservoir operation curves, which set a target storage level for each

operation period around a year, are adopted as guidelines for realtime reservoir operation as well as for operation planning [18,34].

Since operation curves are determined by historical streamﬂow records [20,34], they reﬂect suitable reservoir operation decisions

under various historical scenarios rather than real-time stream-

ﬂow conditions. Thus, even a perfect streamﬂow forecast cannot

improve reservoir operation efﬁciency when operation curves are

used [39]. In many recent studies, reservoir operation curves have

been replaced by real-time reservoir optimization and simulation

models, which are supposed to provide more ﬂexible and efﬁcient

approaches utilizing various streamﬂow forecast products [8].

One important issue with implementing streamﬂow forecasts in

real-time reservoir operation models is dealing with the uncertainty involved in streamﬂow forecast products [8,9,26]. Although

forecast uncertainty analysis has been one research focus in

hydrology (e.g. [17,31,32]), there are comparatively less studies

on the effect of forecast uncertainty on real-time reservoir operations [9,27,33]. Deterministic or probabilistic streamﬂow forecast

products are usually treated as ad hoc inputs for deterministic or

stochastic reservoir operation models. That is to say, a deterministic forecast or a stochastic forecast represented by a number of

scenarios is pre-designed for a speciﬁc reservoir operation problem

for screening test, and no non-generalizable structure of the forecast error is endogenously involved in the operation analysis.

Correspondingly, many previous studies on forecast and reservoir

operation in the literature adopt a two-component approach, one

provides (‘‘recommends’’) a forecast scenario [3,22,24,28] as input

to the other component [23,25,29,39] that dealing with forecast

application. In general, such an approach suggests that forecast

can always improve reservoir operation efﬁciency especially under

extreme conditions [21].

This study aims at analyzing the effect of forecast uncertainty

on real-time reservoir operations. As different forecast products,

e.g., deterministic and probabilistic streamﬂow forecasts, can exert
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the uncertainty in each of the streamﬂow forecasts examined and

assess its effect on real-time reservoir operation decisions. Since

the tool for such a purpose does not exist in the hydrologic literature, the Martingale Model of Forecasting Evolution (MMFE)

[11,12] used in supply chain management is introduced to quantify

real-time streamﬂow forecast uncertainty and generate deterministic and probabilistic forecast products. Simulations based on

standard operation policy (SOP), dynamic programming (DP), and

stochastic dynamic programming (SDP) [16,18] are adopted to

determine release decisions for a hypothetical reservoir using synthetic streamﬂow forecasting products.

The rest of the paper is organized as follows. Section 2 provides

some background information on streamﬂow forecasting and forecast uncertainty and introduces the Martingale Model of Forecasting Evolution (MMFE). Section 3 describes the MMFE-based

forecast uncertainty analysis in real-time reservoir operation. Section 4 introduces the numerical experiments designed in this

study. Section 5 analyzes the results and Section 6 contains the

conclusions.

2. Background

In hydrology, there are various indices reﬂecting the magnitude

of streamﬂow forecast uncertainty (e.g., [24,32]). However, few

models illustrate the forecast uncertainty evolution process. This

paper adopts MMFE from supply chain management [11,12] to

quantify the evolution of the uncertainty of real-time streamﬂow

forecasts as time progresses.

2.1. Streamﬂow forecast and forecast uncertainty

Both deterministic and probabilistic streamﬂow forecast products have been applied to real-time reservoir release decision making, as outlined in Fig. 1. Deﬁning q as the actual streamﬂow and e

as the forecast error, the relationship between deterministic

streamﬂow forecast (DSF) and q can be interpreted by Eq. (1):

DSF ¼ q þ e ð1Þ

Eq. (1) shows that the forecast uncertainty in DSF is characterized

by a deterministic forecast error e. Usually, e is assumed to be

stochastic and ﬁt a normal distribution (e.g. [2,6,28,29]):

e 
 Nð0; r

2

Þ ð2Þ

where r

2

denotes the variance of e (i.e., uncertainty level)

Probabilistic streamﬂow forecasts (PSF) can be generated with

two approaches. One involves treating the PSF as an empirical conditional distribution of forecast uncertainty for a given DSF

(namely pseudo-PSF, denoted as pPSF in this study) [6,29]. The premise of pPSF is that, since q = DSF 
 e and e 
 N(0,r

2

), the actual

streamﬂow q ﬁts a conditional normal distribution with mean

DSF and variance r

2

pPSF 
 NðDSF; r

2

Þ ¼ Nðq þ e; r

2

Þ ð3Þ

Eq. (3) shows that the forecast uncertainty in pPSF depends on the

deterministic forecast error e and the distribution of pPSF is conditional to the distribution of e.

The other approach for generating PSF takes a more rigorous

way to handle forecast uncertainty, which is to characterize the

streamﬂow forecast uncertainty by either the ensemble stream-

ﬂow forecasting method [5,8,10] or probabilistic streamﬂow forecasting methods [15,17]. We denote this type of PSF, shown in

Eq. (4), as a real-PSF (rPSF) to distinguish it from the pseudo-PSF

(pPSF) presented in Eq. (3). Assuming a normal distribution for

forecast uncertainty, rPSF can also be characterized with a normal

distribution [6,19]:

rPSF 
 Nðq; r

2

Þ ð4Þ

Eq. (4) shows that the forecast uncertainty in rPSF is also represented by a probabilistic distribution form. This is different from

Eq. (3), which contains a deterministic forecast error term as well

as a probabilistic uncertainty term.

This study simpliﬁes forecast uncertainty with the stationary

Gaussian distribution assumption and characterizes the single period streamﬂow forecast uncertainty with r

2

(the variance of e). In

hydrology, r

2

is closely related to popular hydrologic forecast evaluation criteria, such as the Nash–Sutcliffe efﬁciency coefﬁcient

(NSE) and Root Mean Square Error (RMSE) [24]. The calculation of

NSE and RMSE are shown in Eqs. (5) and (6), respectively

NSE ¼ 1 


PM

i¼1

ðf

i 
 qi

Þ
2

PM

i¼1

ðqi 
 q
Þ

2


 1 


r

2

q
 
 Cv

ð5Þ

RMSE ¼

ﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃ
1

M

XM

i¼1

ðf

i 
 qi

Þ
2

r


 r ð6Þ

where M is the number of samples, Cv is the streamﬂow coefﬁcient

of variation, qi

is the streamﬂow, and f

i

is the streamﬂow forecast.

As can be ascertained from Eqs. (5) and (6), NSE measures the comparative level of forecast uncertainty to the streamﬂow standard

deviation and represents the fraction of streamﬂow variability explained by the forecast while RMSE is a direct reﬂection of the forecast uncertainty itself.

The PSF evaluation criteria, e.g., the linear error in probability

space (LEPS), the Brier score, mainly depend on the bias and dispersion of the forecasted streamﬂow distribution, of which r

2

is an

effective statistical indicator [22,24,39].

2.2. Martingale Model of Forecasting Evolution (MMFE)

In streamﬂow forecasts, denote H as the length of forecast lead

time or forecast horizon, within which the streamﬂow is predictable with an available forecasting method. The streamﬂow forecasts can be represented by a vector:

Fig. 1. Schematic of single-period streamﬂow forecast uncertainty.
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f1;tþ1 ft;tþ2 
 
 
 ft;tþH 
 ð7Þ

where Ft,
 is a vector denoting the forecast sequence made at period

t; ft,t+i denotes the period t’s forecast for the period t + i streamﬂow.

Denoting rt,t+i as the uncertainty of ft,t+i and assuming (1) stationary

forecast uncertainty (i.e., rt,t+i does not change with t) [6,28]

and (2) a pre-determined ending time, two important properties

of real-time streamﬂow forecasts hold (as shown in Fig. 2)

[19,22,23]:

rt;t 6 rt;tþ1 6 rt;tþ2 6 
 
 
 6 rt;tþH ð8Þ

rt
H;t P rt
Hþ1;t P rt
Hþ2;t P 
 
 
 P rt;t

ð9Þ

Eq. (8) denotes that the uncertainty level of the streamﬂow

forecast increases with the forecast lead time, which is intuitive

since the longer the forecast lead time, the less reliable the forecast

information is, as shown in the upper part of Fig. 2. Eq. (9) represents a property that indicates the dynamic updating of the realtime streamﬂow forecast, i.e., when the forecast period moves towards the ending time, information becomes more reliable and the

forecast uncertainty level decreases, as shown in the lower part of

Fig. 2.

The MMFE model uses a decomposition approach to measure

the uncertainty in each of the time periods within the forecast lead

time (H):

DFt;
 ¼ ½Dft;t Df1;tþ1 Dft;tþ2 
 
 
 Dft;tþH 
 ð10Þ

where DFt,
 is a vector denoting the forecast update made at period

t from the forecasts made at period t 
 1 and DFt,t+i

is the improvement of streamﬂow forecast at period t + i, and:

Dft;tþi ¼ ft;tþi 
 ft
1;tþi

ð11Þ

MMFE, which simulates the forecast improvement process, is

based on the following four assumptions [12]: (1) Ft,
 is an unbiased forecast for the future; (2) Dft,t+i

is uncorrelated with past

forecast updates Dfs,s+i

(s < t); (3) the forecast update Dft,t+i

forms

a stationary stochastic process of t; and (4) the forecast update

Dft,t+i

is normally distributed.

Under MMFE, the total forecast uncertainty can be characterized by the variance–covariance (VCV) matrix of DFt,


VCV ¼

r

2

0;0

r

2
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 r

2
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r

2
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r
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ðHþ1Þ
ðHþ1Þ

ð12Þ

where r

2

i;j

is the covariance between Dft,t+i and Dft,t+j

. Denoting

ft,t = qt

, with Eq. (11), ft
i,t

can be expressed by:

ft
i;t ¼ qt 


Xt

j¼t
iþ1

Df

j;t

ð13Þ

With Eq. (13) and the second assumption of MMFE, the forecast

uncertainty level of ft
i,t

can be calculated by:

varðqt 
 ft
i;t

Þ ¼

Xi
1

j¼0

r

2

j;j

ð14Þ

Since var(qt 
 ft,i,t

) increases with i, MMFE naturally reﬂects

some properties of streamﬂow forecasts, i.e., increased uncertainty

with forecast lead-time and dynamic forecast updates.

It is important to note that MMFE is not a forecast model but

rather a framework representing the dynamics of forecast updates

[12,14]. Due to its simplicity and effectiveness in illustrating the

forecast uncertainty evolution processes, MMFE has been widely

applied to operations research for quantifying the economic proﬁts

from forecast improvements [12], analyzing the optimality of supply chain management strategies [14,36], determining the safety

stock level in supply chain management [30], and supporting

restocking decision making under forecast uncertainty [37].

3. MMFE-based streamﬂow forecast uncertainty analysis

To use MMFE to model the uncertainty of streamﬂow forecasts,

it is necessary to justify its assumptions, i.e. unbiasedness, non inter-period correlation, stationarity, and Gaussian distribution.

Real-time streamﬂow forecasts are based on hydrologic model inputs, such as precipitation, temperature, and soil moisture. These

inputs are updated at the beginning of each period with new

weather forecasts and hydrologic observations (e.g., streamﬂow,

soil moisture) to improve the preceding streamﬂow forecast. Since

hydrologic model input errors are usually considered to be dominated by random factors rather than structural ones, the assumption of unbiasedness in MMFE (i.e., the structural error is

negligible) has been widely adopted in hydrologic studies (e.g.

[9,10,29]).

The second assumption may be justiﬁed by the hypothetical

problem setting in this study. As time moves forward to the prescribed ending period, the forecast lead time decreases and more

information becomes available (Fig. 2). At the start of a new period,

new information becomes available, which is not available for the

previous periods. It is reasonable to assume that this new information is independent from the information that was previously

available. Therefore, it can be assumed that the update to the

streamﬂow forecast for a given period is independent of the updates in previous periods.

The third and fourth assumptions imply stationarity and a

Gaussian distribution of the uncertainty, respectively, which are

common assumptions in hydrologic studies [6,29].

In MMFE, the VCV matrix of the linearly dependent components

of Ft,
 in Eq. (12) plays a central role. Since the VCV matrix is

positive semi-deﬁnite, it can be decomposed into the product of

a matrix multiplied by its transpose through the Cholesky decomposition [1,12], i.e.,

VCV ¼ V 
 V

T

ð15Þ

Fig. 2. Schematic of the increase in forecast uncertainty with forecast lead-time.
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 XH+1] as a vector of H + 1 independent standard normal variables and transposing it with matrix V

T

:

½ Y1 Y2 
 
 
 YHþ1 
 ¼ ½ X1 X2 
 
 
 XHþ1 
 
 V

T

ð16Þ

Then, the generated vector of Y consists of normally distributed

variables with a variance–covariance matrix equal to their original

variance–covariance matrix, VCV = V 
 V

T

. Thus, Eq. (16) can be used

for generating forecast errors:

Df1;1 Df1;2 
 
 
 Df1;Hþ1

Df2;2 Df2;3 
 
 
 Df2;Hþ2
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.
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2
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3

5

¼
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x1;2 x2;2 
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.
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.
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.
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 V

T

ð17Þ

Assuming the actual streamﬂow sequence is known:

Q ¼ ½ q1

q2


 
 
 qN


 ð18Þ

The deterministic streamﬂow forecast error can be expressed by:

et
i;t ¼ qt 
 ft
i;t ¼

XHþ1

j¼Hþ2
i

Dft
H
1þj;t ¼

Xi
1

j¼0

Dft
j;t

ð19Þ

where et
i,t denotes the forecast error for period t streamﬂow in the

forecast made during period t 
 i. The synthetic DSF forecast errors,

e.g. e1;5 ¼

P5

i¼2

Df

i;5, can then be generated through Eq. (19).

With the second assumption of MMFE, the variance of the forecast error (et
i,t

) can be calculated by:

varðet
i;t

Þ ¼

Xi
1

j¼0

r

2

j;j

ði P 1Þ ð20Þ

Combining Eqs. 1, 3, 4 with Eqs. (19) and (20), the DSF, pDSF,

and rDSF made at period t 
 i for period t streamﬂow can be explicitly expressed with the following equations:

DSF : DSFt
i;t ¼ qt 
 et
i;t et
i;t 
 N 0;

Xi
1

j¼0

r

2

j;j

  !

ð21Þ

pPSF : pPSFt
i;t 
 N qt 
 et
i;t

;

Xi
1

j¼0

r

2

j;j

  !

ð22Þ

rPSF : rPSFt
i;t 
 N qt

;

Xi
1

j¼0

r

2

j;j

  !

ð23Þ

Thus, using MMFE, DSF, pPSF, and rPSF can be synthetically generated with a common framework. For probabilistic forecasts (pPSF

and rPSF), Eqs. (22) and (23) depict the forecast uncertainty of period t without reﬂecting the correlation relationship between the

uncertain terms expressed in Eqs. (10) and (12). To deal with this

concern, this study adopts a scenario-based Monte-Carlo approach

for forecast uncertainty analysis [16,35]. Then, with a deterministic

or stochastic reservoir operation model (see the Appendix for details), a framework for real-time reservoir release decisions can be

established.

It is worthwhile to note that forecast uncertainty and forecast

horizon are two important features of streamﬂow forecast and

both can affect reservoir operation using the forecast [33,41], as

the forecast can be too uncertain if it is too long (i.e., it cannot reliably reﬂect inﬂow conditions) or too short to be applicable for supporting decision making. This study focuses on the effect of

forecast uncertainty on real-time reservoir operation while the

complicating effect of forecast uncertainty and forecast horizon

will be analyzed in future work.

4. Numerical experiments

A hypothetical reservoir system with N operation periods (i.e.,

studying horizon of the operation problem) is used in this study.

In reservoir operation, the forecast lead time H is assumed to be

the same as the length of remaining operation periods (i.e., the lead

time H is N periods at the beginning, N 
 1 periods when decision

moves to next period, and so on). SOP, DP, and SDP models are then

used to generate reservoir operation decisions with various synthetic streamﬂow forecast products. SOP releases water as close

to the delivery target as possible, saving only surplus water for future delivery, and it only needs the current period inﬂow information (Appendix A.1). The formulation of DP and SDP are provided in

Appendices A.2 and A.3, respectively.

4.1. The hypothetical reservoir system

Besides forecast uncertainty, the efﬁciency of reservoir operations can also be affected by reservoir inﬂow variability, demand

change, and reservoir capacity [9,26]. To study these inﬂuential

factors, the hypothetical reservoir operation model consists of four

categories of parameters: forecast uncertainty, reservoir inﬂow,

reservoir capacity, and the objective function.

(1) Forecast uncertainty: The forecast error standard deviation r

and the forecast error correlation qerror are introduced to

characterize the streamﬂow forecast uncertainty [31,32], as

shown in Eq. (24). The VCV matrix is simpliﬁed with the

two forecast parameters:

r

2

qerror

r

2

. . . 0

qerror

r

2

qerror

r

2

. . . 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . r

2

2

4

3

5

ðHþ1Þ
ðHþ1Þ

ð24Þ

r represents the magnitude of uncertainty in the forecast. A higher

r value implies a greater forecast uncertainty. qerror

reﬂects the

temporal correlation relationship of the forecast uncertainty. In

general, a negative qerror

implies a lower amount of uncertainty in

the total inﬂow, as the overestimated forecast errors are more likely

to be balanced by the underestimated forecast errors; meanwhile, a

positive qerror

implies a higher degree of uncertainty in the total in-

ﬂow forecast.

(2) Reservoir inﬂow: The reservoir inﬂow parameters include the

mean, coefﬁcient of variation, and the correlation coefﬁcient

of the streamﬂow, which are denoted as l, Cv, and qﬂow,

respectively. A simpliﬁed Thomas–Fiering model [20] is

applied to generate the reservoir inﬂow sequences:

qtþ1 ¼ l þ qflow

ðqt 
 lÞ þ

ﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃ
1 
 q2

flow

q

ðlCv Þd ð25Þ

In Eq. (25), d is a standard normal random number. The minimum

streamﬂow is set to 0.4 so that 93% of the generated streamﬂow sequences can be subsequently used in the MMFE streamﬂow forecast

model when Cv is at its maximum value, i.e., 0.4 (Table 1).

(3) Reservoir capacity: The reservoir capacity (S) is represented

by the active maximum storage, which is the difference

between the maximum and the minimum storage

S ¼ Smax 
 Smin ð26Þ

To avoid adverse effects of initial storage and end storage on reservoir operation decisions, the initial storage and end storage are set

to half of S.
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sum of the single-period reservoir release utility (Eq. (27))

and is maximized in the DP and SDP formulations, in which

the reservoir storage and inﬂow are discretized into intervals with a width of 0.01

gt ¼

Dt 
 Dmin

Dmax 
 Dmin


 
1=2

ð27Þ

where Dt

is the beneﬁcial release (excluding the reservoir spill DSt

)

at time period t, while Dmax and Dmin represent the maximum and

minimum beneﬁcial releases, respectively. Eq. (27) is concave with

a decreasing marginal utility property [7,20,40].

The parameters of the hypothetical reservoir operation model

are summarized in Table 1. Each of the impact factors discussed

above (as shown in Table 1) is assessed individually, i.e. adjusting

the value of a given factor while holding the base values of all other

parameters. Table 1 shows the range of values tested for each

parameter. It is necessary to note that forecast uncertainty parameters (Eq. (24)) have already been speciﬁed with values in Table 1

for this hypothetical case study and the underlying assumption is

that MMFE has already been validated before the policy simulation. For real-world application of MMFE, a validation step is

needed.

4.2. Reservoir operation strategies

The following generic procedures are used to model the hypothetical reservoir operation problem: (1) time series of streamﬂow

Q during the N operation periods are generated using a ﬂow synthesis model with given reservoir inﬂow statistics; (2) DSF, pPSF,

and rPSF are generated with Q and MMFE using the predeﬁned

forecast uncertainty statistics; for pPSF and rPSF, 500 forecast error

scenarios are generated to approximate the streamﬂow probability

and state transition probability [8,16] (see Appendix A.3 for details

on the transition probability in the context of SDP); (3) with the

synthesized forecast products from (2), optimization models (DP

and SDP) and the simulation model based on SOP are employed

for reservoir operation analysis. For each parameter test, the

numerical experiment is conducted with 100 randomly generated

streamﬂow scenarios, and the mean value and standard deviation

of the utility are computed using the 100 samples.

Decision horizon (DH, how long the generated decision is

implemented), forecast horizon (FH, how long the inﬂow can be

predicted), and operation horizon (OH, how long the reservoir

operation is targeted) are important issues in reservoir operation

(also see [41]). In our study, DH is set as 1 and FH is assumed to

be the same as the length of OH (i.e., the lead time H is N periods

at the beginning, N 
 1 periods when decision moves to next period, and so on). The following procedures are undertaken for the

modeling exercise: (1) reservoir operation decision is determined

for each period with the streamﬂow forecast provided up to the

end of the operation periods; (2) for the generated decision sequence (Eqs. (A3) and (A4)), only the current period decision is

treated as ﬁnal; (3) decisions in future time periods will be updated period by period, i.e., at the beginning of the next period,

the reservoir state is updated with inﬂow and release, and new release decision is made with updated forecast (i.e., rolling horizon

decision making, see Fig. 3). This process is repeated from period

1 to N (N is set as 6 in this study).

This study undertakes a ﬁnite horizon speciﬁed with the ending

storage, which is set equal to the initial storage for this theoretical

study. Five operation scenarios, shown in the last column of Fig. 4,

are examined. The optimization models of dynamic programming

(DP) and stochastic dynamic programming (SDP) are utilized to

generate the operation decisions with the streamﬂow forecast.

The perfect forecast, Q, and DSF are implemented through DP while

the probabilistic forecast scenarios (pPSF and rPSF) are implemented through SDP. These results are compared to a simulation

model of standard operation policy (SOP) using Q. A brief summary

of reservoir operation models is provided in the Appendix.

5. Result analysis

The effect of streamﬂow forecast uncertainty on real-time reservoir operation is analyzed with reservoir operation models DP,

SDP, and SOP. In the context of forecast uncertainty analysis, the

effect of streamﬂow variability and reservoir capacity are also assessed under a pre-speciﬁed forecast uncertainty level, as shown

in Table 1.

5.1. The role of forecast uncertainty for reservoir operation

With the base parameter values in Table 1, effects of different

values of r and qerror are assessed. Figs. 5 and 6 show the effect

of r and qerror on the utility level of the reservoir operation, respectively. The mean value and standard deviation of the reservoir

operation improvement (in terms of utility increase) with deterministic forecasts (Q-DP and DSF-DP) and probabilistic forecasts

Table 1

Parameters of the hypothetical reservoir system.

Reservoir

components

Parameters

symbol

Type Value range Base

value

Forecast

uncertainty

r Variable 0.02–0.20 0.10

qerror Variable 
0.50 to

0.50

0

Reservoir inﬂow l Constant 1 –

Cv Variable 0.05–0.40 0.30

qﬂow Variable 0.4 –

Reservoir capacity S Variable 0.20–5.00 2.00

Reservoir utility Dmin Constant 0.4 –

Dmax Constant 1.2 –

Fig. 3. Schematic of rolling horizon decision making in reservoir operation (H is

assumed equal to N in this study).

Fig. 4. Procedures of modeling exercise for testing the various forecasts with

reservoir operation models.
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be seen from the upper part of Fig. 5, a threshold level exists in the

rPSF-SDP performance. With a medium uncertainty level r < 0.1

(r = 0.1 is about one third of the streamﬂow standard deviation

lCv = 0.3), the operation of rPSF-SDP is similar to Q-DP (i.e., the

optimal reservoir release decision) in terms of the mean utility

Fig. 5. Relationship between reservoir operation efﬁciency improvement from SOP and streamﬂow forecast uncertainty level.

Fig. 6. Relationship between reservoir operation efﬁciency improvement from SOP and correlation of forecast errors.
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rPSF-SDP has a decreasing trend with the increase of forecast

uncertainty level. The performances of DSF-DP and pPSF-SDP are

similar with a declining trend in the forecast uncertainty level. In

terms of the standard deviation of the utility improvement, Q-DP

and rPSF-SDP both exhibit a lower variation while DSF-DP and

pPSF-SDP show a higher variation. In general, rPSF performs superiorly to pPSF in terms of improving the real-time reservoir operation, which suggests that merely carrying out an empirical

uncertainty analysis based on DSF is not as efﬁcient as an ensemble

streamﬂow forecast.

Fig. 6 shows the reservoir performances under different forecast

uncertainty correlations varying between 
0.5 and 0.5. As with the

impact of uncertainty levels (Fig. 5), both Q-DP and rPSF-SDP perform similarly, which further illustrates the robustness of reservoir

operation under rPSF with respect to uncertainty correlation. DSFDP and pPSF-SDP both show worse performances than Q-DP and

rPSF-SDP. However, the performance of pPSF-SDP is more stable

with different qerror

levels, while the mean performance of DSFDP shows a slightly declining trend with qerror

, as shown in Fig. 6.

One characteristic of the probabilistic streamﬂow forecast is its

explicit probabilistic representation of future low and high ﬂow

conditions, which is important in decision risk analysis. In reservoir operation practice, hedging, which means slightly reducing

the current water supply to mitigate future water shortages, is

an important real-time reservoir operation practice [7,40]. As forecast uncertainty increases, it becomes more beneﬁcial to adopt

hedging to avoid large shortages [40]. Comparing the ﬁrst period

reservoir release reduction under DSF-DP, pPSF-SDP, and rPSFSDP to that under the perfect forecast Q-DP (i.e., the optimal reservoir operation without forecast uncertainty), the hedging effects of

both pPSF-SDP and rPSF-SDP exhibit an increasing trend with the

increase of the uncertainty level. On the other hand, DSF-DP shows

no signiﬁcant hedging effect (as shown in Fig. 7), which illustrates

the effectiveness of adopting probabilistic streamﬂow forecasts to

represent the future risks. Meanwhile, although the hedging trends

under pPSF and rPSF are similar, there are differences between

pPSF-SDP and rPSF-SDP in terms of utility improvement from QSOP (as shown in Figs. 5 and 6). The reason can be that the pPSFSDP operation hedges against both the deterministic forecast error

and the random forecast uncertainty. Since the magnitude of the

deterministic forecast error is approximate to that of the forecast

uncertainty (denoted by the standard deviation of the deterministic forecast error, as shown in Eqs. (1)–(3)), the beneﬁt of hedging

is not as signiﬁcant in pPSF-SDP as rPSF-SDP. Also, the hedging effect of pPSF-SDP tends to be more variable than that of rPSF-SDP.

5.2. Effect of streamﬂow variability

A reservoir is built to regulate natural streamﬂow variability

and to maintain a reliable utility from natural streamﬂow

[18,20]. The coefﬁcient of variation Cv, which is deﬁned as the ratio

of the streamﬂow standard deviation over the mean value, is commonly used to characterize the inter-period streamﬂow variability.

Fig. 8 displays the effect of Cv on reservoir operation performances

under the various forms of forecast uncertainty.

Fig. 8 illustrates that, with the increase of Cv, the utility

improvements relative to SOP under all the optimized solutions

with deterministic or probabilistic forecasts tend to increase. This

generally implies that the more variable the streamﬂow is, the

more valuable the forecast is for improving reservoir operation

efﬁciency. Meanwhile, reservoir operation under rPSF shows

robustness with a high uncertainty level (comparable to the natural variability), for example, when Cv = 0.1 (i.e., the forecast uncertainty is comparable to the streamﬂow variability r), about 50% of

the reservoir operations under DSF-DP and about 80% of the reservoir operations under pPSF-SDP are inferior to Q-SOP, while rPSFSDP shows a performance similar to Q-DP and better than DSF-DP.

Fig. 7. Hedging effects resulting from application of streamﬂow forecasts to reservoir operation.
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The effect of reservoir capacity is studied by varying reservoir

capacity S from 20% to 500% of the mean inﬂow (l in Eq. (25)),

of which the results are shown in Fig. 9. With respect to mean utility improvement, the DSF-DP and rPSF-SDP perform similarly. DSFDP performs more poorly than pPSF-SDP when the storage is small,

and gradually improves and approaches the performance of pPSFFig. 8. Effect of streamﬂow variability on the application of streamﬂow forecasts to reservoir operation.

Fig. 9. Effect of reservoir capacity on the application of streamﬂow forecasts to reservoir operation.
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the above comparisons between DSF-DP and pPSF-SDP, where the

DSF-DP performs similarly to pPSF-SDP under various forecast

uncertainty and streamﬂow variability levels. Note that pPSF differs from DSF because it includes an empirical uncertainty analysis

that addresses the risk induced by forecast error. Thus the poor

performance of DSF-DP compared to pPSF-SDP when the reservoir

storage is small implies that small reservoirs are more sensitive to

forecast uncertainties [9,13,15]. Standard deviation values of utility improvements show a similar performance with the increase

of reservoir storage, except that the DSF-DP has a larger standard

deviation when the reservoir storage is small. This also suggests

that the DSF-guided reservoir operation is vulnerable to forecast

errors when the reservoir is small.

6. Conclusions

Streamﬂow forecast uncertainty plays an important role in reservoir operation, but the effects of forecast uncertainty on reservoir

operation have yet to be thoroughly addressed in a unifying framework. Rather than treating the forecast products as ad hoc inputs to

reservoir operation models, this study provides a method to characterize the forecast uncertainty evolution and explicitly assess the

effect of streamﬂow forecast uncertainty on real-time reservoir

operation. The Martingale Model of Forecast Evolution (MMFE) is

introduced to synthetically generate deterministic and probabilistic streamﬂow forecasts through explicit representations of forecast uncertainty under various scenarios. A simulation model

based on SOP with a perfect forecast, two DP models with a perfect

forecast and DSF, respectively, and two SDP models with pPSF and

rPSF, respectively, are employed to analyze the impact of forecast

information on reservoir operation.

The hypothetical case study shows that reservoir operation efﬁ-

ciency decreases as forecast uncertainty increases, while these effects also depend on the type of forecast product being used. In

general, the reservoir operation under rPSF is near-optimal and

comparable to the optimized reservoir operation decision obtained

with a perfect forecast. The reservoir operations under DSF and

pPSF are similar but not as efﬁcient as they are under rPSF. Thus,

ensemble and probabilistic streamﬂow forecasts, which are widely

used in stochastic hydrologic modeling, have the potential to improve real-time reservoir operation. Moreover, the effect of forecast uncertainty is complicated by streamﬂow variability and

reservoir storage capacity. As the streamﬂow variability increases,

the reservoir system is subject to more frequent extreme ﬂow

(both low-ﬂow and high-ﬂow) threats and streamﬂow forecasts

are more valuable for guiding reservoir operations. The results also

show that reservoirs with a smaller storage capacity are more sensitive to forecast errors and, as a result, it is more valuable to consider the forecast uncertainty in the operation of these reservoirs.

In summary, the simulations presented in this study show the signiﬁcance of considering deterministic and probabilistic forecast

uncertainty in real-time reservoir operation and illustrate the

promising application of ensemble and probabilistic streamﬂow

forecasts.

This study simulates the forecast uncertainty using a conceptual

model, MMFE, which decomposes the total forecast uncertainty

into the uncertainties of individual single periods and assumes

unbiasedness, non inter-period correlation, stationarity, and the

Gaussian distribution of the single period uncertainty. It should

be noted that the forecast simulated in this study is simpliﬁed

compared to the real-world situation, which can be complicated

by correlated, heteroscedastic, and non-Gaussian features. While

only one parameter needs to be simulated in MMFE with a Gaussian distribution, more than one parameter with a non-Gaussian

distribution must be handled in MMFE. This will make the analysis

complex with both conceptual and computational issues to resolve, although the general procedures of MMFE are applicable to

a non-Gaussian case. For example, the correlation among the multiple parameters may be considered; the assumptions for forecast

improvement (Eq. (10)) may need to be adjusted. On the other

hand, studies on hydrologic forecast errors that attempt to remove

the stationary and/or Gaussian assumptions are undergoing

[26,31,32], which is expected to provide more scientiﬁc support

to the use of forecast for real-world reservoir operations.
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Appendix A. Reservoir operation models

A.1. Standard operation policy (SOP)

SOP releases water as close to the delivery target (Dmax) as

possible and saves only surplus water for future delivery [40]:

Dt ¼

St þ qt

ðSt þ qt 6 DmaxÞ

Dmax ðSt þ qt > DmaxÞ




ðA1Þ

The spill in SOP is determined as follows:

DSt ¼

0 ðSt þ qt 
 Dt 6 SmaxÞ

St þ qt 
 Dt 
 Smax ðSt þ qt 
 Dt > SmaxÞ




ðA2Þ

A.2. Dynamic programming (DP)

Denoting i and j as the index of discretized reservoir storage, t as

the index of time period, DP employs reservoir storage St,i

for the

state variable and the recursive function is as follows [18,38]:

Gt

ðSt;i

Þ ¼ max

j

½gt

ðDt

Þ þ Gtþ1ðStþ1;j

Þ


St;i þ xt 
 ðDt þ DSt

Þ ¼ Stþ1;j

(

ðA3Þ

In Eq. (A3), xt

is the deterministic streamﬂow forecast (Eq. (1)), gt

( )

and Gt

( ) are the single-period and maximum cumulative utility

function respectively.

A.3. Stochastic Dynamic Optimization (SDP)

Denoting i and j as the index of discretized reservoir storage, p

and q the index of discretized inﬂow, and t the index of time period, SDP employs both xt,p and St,i

for the state variables and the

recursive function can be written as follows:

Gt

ðSt;i

; xt;pÞ ¼ max

j

fgt

ðDt

Þ þ

P

q

½STt

ðp; qÞGtþ1ðStþ1;j

; xtþ1;qÞ
g

St;i þ xt;p 
 ðDt þ DSt

Þ ¼ Stþ1;j

8

<

:

ðA4Þ

In Eq. (A4), STt

(p,q) represents the inﬂow state transition probability

from p in period t to q in the following period. Denote PXt

(p) as the

probability of inﬂow is p at period t, then

PXtþ1ðqÞ ¼

X

p

PXt

ðpÞSTt

ðp; qÞ ðA5Þ
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STt

(p,q) can be simpliﬁed as PXt+1(q), but this can underestimate

the risk of consecutive high/low ﬂow. Thus, STt

(p,q) and Eq. (A4)

is adopted for decision making with pPSF and rPSF.
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