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Based on spatial interpolation rainfall of the ground gauge measurement, we proposed a method to comprehensively evaluate 

and compare the accuracy of satellite rainfall estimates (SREs) at three spatial scales: 0.25°×0.25° grid scale, sub-catchment 

scale and the whole basin scale. Using this method, we evaluated the accuracy of six high-resolution monthly SREs (TRMM 

3B42 V6, 3B42RT V6, CMORPH, GSMaP MWR+, GSMaP MVK+ and PERSIANN) and revealed the spatio-temporal variation of the SRE accuracy based on spatial interpolated rainfall from a dense network of 325 gauges during 2003–2009 over the 

Ganjiang River Basin in the Southeast China. The results showed that ground gauge-calibrated 3B42 had the highest accuracy 

with slight overestimation, whereas the other five uncalibrated SREs had severe underestimation. The accuracy of the six SREs 

in wet seasons was remarkably higher than that in the dry seasons. When the time scale was expanded, the accuracy of SRE, 

particularly 3B42, increased. Furthermore, the accuracy of SREs was relatively low in the western mountains and northern 

piedmont areas, while it was relatively high in the central and southeastern hills and basins of the Ganjiang River Basin. When

the space scale was expanded, the accuracy of the six SREs gradually increased. This study provided an example for of SRE 

accuracy validation in other regions, and a direct basis for further study of SRE-based hydrological process. 
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1  Introduction 

Rainfall is one of the fundamental hydrometeorological 

elements with great variability across different spatial and 

temporal scales. Accurately obtaining the spatial and temporal distribution of rainfall has important theoretical and 

practical significance for the fields of meteorology, hydrology, ecology and geology. With the increasingly rich remote sensing information, satellite precipitation retrieval 

techniques have been extensively studied. Currently, there 

are over 30 satellite precipitation retrieval techniques and 

more than 10 kinds of satellite rainfall estimations (SREs) 

[1]. The most well-known SREs include TMMM 3B42 

(Tropical Rainfall Measurement Mission 3B42), TRMM 

3B42RT (TRMM 3B42 Real Time)[2], CMORPH (Climate 

Predication Centre Morphing Technique) [3], PERSIANN 

(Precipitation Estimation from Remote Sensing Information 

using Artificial Neural Network) [4], GSMaP MWR+ 

(Global Satellite Mapping of  Precipitation Microwave Radiometers plus AMSU-B) and GSMaP MVK+ (GSMaP 

Moving Vector with Kalman Filter plus AMSU-B) [5]. SRE 

has the advantage of wide coverage and strong timeliness, 

which overcomes the shortcomings of ground-based gauge  854 Hu Q F, et al.    Sci China Tech Sci   April (2013) Vol.56 No.4 

and weather radar monitoring. The initial purpose of SRE 

was to obtain large scale precipitation information, especially for areas without or short of rainfall measurement in 

order to support global meteorological and hydrological 

researches and applications.  Recently, scientists are increasingly concerned with the feasibility of applying SRE to 

regional hydrological analysis. Gebremichael and Hossain

[6] aggregated international studies on SREs development, 

validation as well as application in hydrological analysis. 

The International Precipitation Working Group systematically carried out validation and comparison of different 

SREs through the Program to Evaluate High Resolution 

Precipitation Products in the United States, Australia, Japan 

and elsewhere [7]. China has a vast territory of various climate types. Careful assessment on the accuracy of representative SREs in each geographical region can improve the 

satellite precipitation retrieval and fusion algorithms and 

broaden the SRE application. Recently, several studies have 

analyzed the accuracy of several popular SREs including 

3B42 and CMORPH in China [8–11] and the results have 

been applied to runoff simulation, soil erosion assessment 

and vegetation productivity estimation [12–14]. However, 

systematic regional evaluation of SRE accuracy is still limited in China.  

According to the previous studies [15], the accuracy of 

SREs is influenced by various factors. As the source of data 

and precipitation retrieval algorithms change among different SREs, their accuracy and function also differ. Even for 

the same type of data, the accuracy often varies remarkably 

in different regions. In addition, the SRE accuracy has also 

been associated with temporal-spatial scales. In this study, 

we developed a method to comprehensively evaluate the 

SRE accuracy and its spatio-temporal variation feature 

based on spatial interpolation rainfall. Using this method, 

we assessed the quantitative and classification accuracy of 

SREs at three spatial scales: 0.25°×0.25° pixel scale, 

sub-catchment scale and the whole basin scale. This method 

helps to fully clarify three important problems: 1) accuracy 

characteristics and differences among the six SREs; 2)  

spatial pattern of SRE accuracy including the spatial distribution of the accuracy indices and the characteristic changes 

with different spatial scales; and 3) temporal pattern of SRE 

accuracy indices including the seasonal variability and the 

pattern change with time steps. The Ganjiang River Basin is 

located in the middle and lower reaches of the Yangtze 

River with complex terrain and variable types of precipitation. High resolution SRE is  of great significance for improving the precipitation monitoring and forecasting in this 

region. Currently, the region has established a relatively 

dense network of rainfall gauges, and is an excellent area 

for SRE accuracy analysis. Therefore, this study used the 

proposed multi-scale evaluation method to systematically 

investigate the SRE accuracy on a daily scale in the Ganjiang River basin. 

2  Study area and data 

2.1  Study area 

As the largest sub-catchment of the Poyang Lake water system, the Ganjiang River Basin is situated in the southeast 

(mainly in Jiangxi Province) of mainland China with a 

drainage area about 83374 km

2

. The topography in this basin is complex and elevation ranges from 2 to 2120 m above 

sea level. Areas between the basin and river are hilly. Basin 

develops between mountains and along the rivers. Low hills 

lie in the central part of the basin while alluvial plains govern the lower reach.  

The study area has an average annual rainfall about 1581 

mm with distinct seasonal variations. The heaviest rainfall 

occurs in the plum rain season between April and June, 

while monsoon and typhoon rainstorms frequently occur 

between July and September. The spatial distribution of 

rainfall is also uneven with a high rainfall zone in the 

mountainous western part of the middle reach (average annual rainfall above 1800 mm) and a low rainfall zone in the  

central part and the lower reach (average annual rainfall 

below 1400 mm). 

2.2  Study data 

2.2.1  The benchmark rainfall 

The daily rainfall data of the Ganjiang River and its surrounding areas was collected by 325 gauges from 2003 to 

2009. The gauges spatial distribution is shown in Figure 

1(a). Based on gauge observation, we obtained the gridded 

monthly rainfall with 1 km×1 km resolution using inverse 

distance weighting interpolation [16]. Subsequently, we 

obtained the daily ground rainfall grids data with 0.25° × 

0.25° spatial resolution (Figure 1(a)) over the whole basin 

and all sub catchments (Figure 1(b)). Because of the relatively dense rainfall gauge network, these three spatial scale 

interpolations can be used as the reference to validate SREs. 

2.2.2  SREs 

Six high-resolution SREs were collected from 2003 to 2009 

and are shown in Table 1. All of them are multi-sources 

satellite rainfall estimation data, but the data sources and 

rainfall retrieval algorithms are different. The IR/PMW fusion retrieval algorithms for both 3B42 and 3B42RT use 

TRMM multi-satellite precipitation analysis (TMPA) [2]. 

The IR/PMW fusion retrieval algorithms for CMORPH, 

MWR+ and MVK+ are based on cloud system motion vector propagation [3, 5]. PERSIANN belongs to the IR/VIS 

type of data and its retrieval algorithms are based on the 

artificial neural network [4]. Among these six SREs, 3B42 

is the only one calibrated by Global Precipitation Climatology Project (GPCP) or Climate Assessment and Monitoring 

System (CAMS). The remaining 5 SREs are pure satellite Hu Q F, et al.    Sci China Tech Sci   April (2013) Vol.56 No.4  855

retrieval rainfall data without calibrations [2].  

The temporal resolutions for these 6 SREs are 3 or 1 h. 

Daily precipitation was obtained by accumulation of all the 

hourly rainfalls. The spatial resolution was 0.1°×0.1° for 

MVK+; while the remaining SREs had a resolution of 

0.25°×0.25°. We uniformly transformed all the SREs into 

the corresponding 0.25°×0.25° daily grids data. Subsequent 

spatial analysis yielded the rainfall data over various sub 

regions and the whole basin. To facilitate effective inter-  

comparison and simple description, the six evaluated SREs 

were divided into four types, namely Type I (3B42), Type II 

(3B42RT), Type III (CMORPH, MWR+ and MVK+) and 

Type IV (PERSIANN) according to the data source, rainfall 

retrieval algorithm and the availability of gauge data calibration. 

3  Methodology 

3.1  Spatial scales for evaluation 

The accuracy of SREs were evaluated and compared at 

three different spatial scales, namely the 0.25° × 0.25° grid, 

sub-catchment and the whole basin. Because the majority of 

SREs in this study had a spatial resolution of 0.25° × 0.25°, 

the scale of the grid also used 0.25° × 0.25°. There were 142  

SREs-related 0.25°×0.25° grid elements fully or partly situated in the Ganjiang River Basin. Based on Pfafstetter river 

numbering system [17], a total of 7 sub-catchments were 

delineated here according to topologic relation between the 

mainstream and tributaries as well as topography (Figure 

1(b)). The areas of sub-catchments range from 7705 to 

19516 km

2

, with an average about 12000 km

2

. The spatial 

variation feature of SRE accuracy could be comprehensively clarified by analysis on different spatial scales. 

3.2  Accuracy evaluation methodology 

Both quantitative and classification accuracy indices were 

employed to comprehensively reflect the SRE accuracy 

features. Quantitative indices reflect the amount consistency 

of SRE with the benchmark rainfall. Based on the error (Ei

) 

and absolute error (AEi

) defined in eqs. (1) and (2), respectively, the mean error (ME),  mean absolute error (MAE), 

bias (BIAS), absolute bias (ABIAS), correlation coefficient 

(CC) and efficient coefficient (R

2

) were calculated by eqs. 

(3)–(8), respectively. ME and BIAS represent the systematic error of SRE and its relative degree respectively. CC implies the synchronism of the two data series and R

2

 represents the explanation ability of SREs for the benchmark’s 

variance. Classification indices including probability of  

Figure 1  The distribution rainfall gauges, grids and sub-catchments over the study area. 

Table 1  Basic information for the six evaluated high-resolution SREs 

Dataset Sources data IR/PMW merging scheme Spatial resolution Temporal resolution

TRMM 3B42 

Geo-IR, PR-TMI, SSMI, 

AMSR-E, AMSU-B, GPCC/CAMS 

TMPA 0.25°×0.25° 3 h 

TRMM 3B42RT Geo-IR, PR-TMI, SSMI, AMSR-E, AMSRU-B  TMPA  0.25°×0.25°  3 h 

CMORPH Geo-IR, PR-TMI, SSMI, AMSR-E, AMSRU-B CPC cloud moving vector morphing 0.25°×0.25° 3 h 

GSMaP MWR+ Geo-IR, PR-TMI, SSMI, AMSR, AMSR-E, AMSRU-B GSMaP microwave radiometer 0.25°×0.25°  1 h 

GSMaP MVK+ Geo-IR, PR-TMI, SSM/I, AMSR, AMSR-E, AMSRU-B Cloud moving vector +Kalman filter 0.10°×0.10° 1 h 

PERSIANN  Geo-IR, VIS, TMI  ANN  0.25°×0.25°  3 h 

  Note: 1) PR-TMI: Precipitation Radar-Microwave Imager; 2) SSMI: Special Sensor Microwave Imager; 3) AMSR-E: Advanced Microwave Scanning 

Radiometer-Earth Observing System; 4) AMSU-B: Advanced Microwave Sounding Unit-B; 5) GEO-IR: Geosynchronous Earth Orbit Satellite Infrared 

Dataset; 6) ANN: Artificial Neural Network. 856 Hu Q F, et al.    Sci China Tech Sci   April (2013) Vol.56 No.4 

detection (PD), frequency of hit (FH), and Heidke’s skill 

score (HSS) reflect the ability of SRE to predict the daily 

precipitation event. A higher PD indicates a lower probability of missing the prediction of rainfall event by SRE. A 

higher FH indicates a lower probability of a false prediction 

of rainfall by SRE. HSS is a relative value to systematically 

reflect the ability of forecasting rainfall events [18]. PD, FH 

and HSS were calculated by eqs. (9), (10) and (11), respectively. In eqs. (1)–(9), Gi

 and Si

 represent benchmark rainfalls and SRE, respectively, at a particular time point.  G

and  S represent the average benchmark rainfall and SRE, 

respectively. n represents the number of time points. n11, n12, 

n21 and  n22 are defined in Table 2.  n11 indicates the total 

frequency where both SRE and benchmark data show rainfall event. Other variables are defined similarly. The threshold to define daily rainfall events is 0.1 mm/d. 
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Table 2  Contingency table for SREs 

SRE 

The benchmark 

Rainy No rain 

Rainy  n11 n10

No rain  n01 n00

4  Results and discussion 

4.1  Comparison of SRE accuracy at three spatial scales 

4.1.1  Comparison at the 0.25° × 0.25° grid scale 

Figure 2 shows that all SREs (except PERSIANN) had the 

same variation trend as the benchmark for all the 0.25° × 

0.25° grids, but errors still obviously existed. ME and BIAS 

of 3B42 were much lower than those of the other 4 types of 

SREs (Table 3). ME of 3B42 ranged from 0.9 to 0.5 mm/d 

with an average of 0.3 mm/d. BIAS of 3B42 ranged from 

23.4% to 10.4% with an average of  7.8%. However, the 

average ABIAS of 3B42 was 83.2%, which was higher than 

all the other SREs except PERSIANN. These results indicate that fusion of 3B42RT with GPCP/CAMS significantly 

reduced ME and BIAS, but did not obviously reduce MAE 

or ABIAS. R

2

 of 3B42 was below 0.5, indicating that it has 

weak explanation ability for the variance of benchmark. For 

the classification accuracy indices, PD of 3B42 ranged from 

0.39 to 0.62 with an average of 0.47, indicating that 3B42 

missed the prediction of many daily rainfall events. PD of 

3B42 was similar to those of 3B42RT and PERSIANN, but 

was lower than that of type III SREs. FH of 3B42 ranged 

from 0.66 to 0.92 with a mean value of 0.86, which was 

slightly higher than those of 3B42RT and CMORPH. HSS 

of 3B42 ranged from 0.1 to 0.27 with a mean of 0.17, which 

was similar to that of 3B42RT, higher than that of 

PERSIANN, but was lower than that of type III SREs. 

BIAS of type II SRE, 3B42RT, ranged from 12.1% to 

43.7% with an average of 26.2%, which was lower than 

those of the other 2 types of SREs (except 3B42). 3B42RT 

had an average R

2

 of 0.35, indicating it has stronger ability 

than 3B42 to explain the variance of benchmark. In contrast, 

3B42 and 3B42RT had comparable level of MAE, ABIAS 

and HSS. The distribution of HSS suggested that rainfall 

prediction ability of 3B42RT was lower than that of type III 

SREs. The average BIAS of  3 type III SREs (CMORPH, 

MWR+, MVK+) was over 30%, which was significantly 

higher than those of 3B42 and 3B42RT. However, Type III 

SREs had the lowest MAE and ABIAS and the highest ability to explain benchmark variance among these 4 types of 

SREs. Based on HSS and PD, the classification accuracy of 

type III SREs was higher than those of 3B42 and 3B42RT. 

The average CMORPH of type III SREs was comparable to 

that of 3B42RT. PERSIANN  had the poorest accuracy 

among all the 4 types of SREs. PERSIANN had a BIAS 

value of 51.5%, indicating it  severely underestimated the 

benchmark rainfalls. Furthermore, PERSIANN had the 

highest MAE and ABIAS, but the lowest PD and HSS. 

4.1.2  Comparison at the sub-catchment scale 

BIAS of 3B42 ranged from 12.1% to 0.9% and overestimated the daily rainfalls at all the 7 sub-catchments (in Table 4). The remaining 5 SREs showed underestimation of  Hu Q F, et al.    Sci China Tech Sci   April (2013) Vol.56 No.4  857

Figure 2  Scatter plots of SREs versus the benchmark daily rainfall at the scale of 0.25° × 0.25° grid. 

Table 3  The maximal, minimal and average values of SRE accuracy indices at the 0.25°×0.25° grid scale 

Evaluation indices TRMM 3B42 TRMM 3B42RT CMORPH GSMaP MWR+ GSMaP MVK+ PERSIANN 

ME (mm/d) 

Mean  0.3  1.0 1.2 1.7 1.8 2.0 

Max 0.5 1.6 1.8 2.4 2.7 2.8 

Min  0.9  0.5 0.8 1.2 1.3 1.5 

MAE (mm/d) 

Mean 3.2 3.1 2.6 2.7 2.7 3.3 

Max 3.7 3.6 3.1 3.4 3.4 4.0 

Min 2.8 2.7 2.3 2.3 2.2 2.9 

BIAS 

Mean  7.8%  26.2% 30.4% 41.3% 45.5% 51.6% 

Max 10.4% 43.7% 41.9% 54.4% 57.4% 61.3% 

Min  23.4%  12.1% 21.0% 32.2% 35.8% 41.4% 

ABIAS 

Mean 83.2% 78.8% 67.8% 67.5% 67.3% 84.6% 

Max 95.0% 87.3% 75.0% 78.3% 75.3% 92.8% 

Min 73.8% 72.2% 62.7% 62.0% 62.6% 77.9% 

CC 

Mean 0.71 0.65 0.74 0.74 0.75 0.56 

Max 0.77 0.72 0.79 0.80 0.81 0.64 

Min 0.60 0.56 0.68 0.56 0.64 0.48 

R

2

Mean 0.26 0.35 0.52 0.51 0.52 0.26 

Max 0.47 0.48 0.62 0.60 0.59 0.36 

Min 0.03 0.17 0.42  0.01  0.34 0.16 

PD 

Mean 0.60 0.59 0.71 0.65 0.71 0.54 

Max 0.68 0.68 0.78 0.73 0.77 0.60 

Min 0.48 0.42 0.61 0.57 0.62 0.45 

FH 

Mean 0.86 0.84 0.83 0.86 0.84 0.76 

Max 0.92 0.89 0.90 0.91 0.91 0.85 

Min 0.66 0.68 0.71 0.77 0.75 0.64 

HSS 

Mean 0.28 0.27 0.31 0.30 0.31 0.22 

Max 0.32 0.31 0.35 0.33 0.35 0.25 

Min 0.20 0.19 0.25 0.20 0.24 0.16 

daily rainfalls. 3B42RT and CMORPH had an average 

BIAS about 30.0%. For MVK+ and MWR+, this value is 

about 45% while it was 52.3% for PERSIANN. All the 4 

types of SREs still had a relatively high ABIAS with an 

average of over 60.0%. The order of ABIAS (from low to 

high) was CMORPH, MWR+, MVK+, 3B42, 3B42RT and 

PERSIANN. ABIAS of 3B42 was comparable with that of 

type III SREs. R

2

 had a similar order for all SREs. CC of 858 Hu Q F, et al.    Sci China Tech Sci   April (2013) Vol.56 No.4 

3B42 was comparable with that of type III SREs, followed 

by 3B42RT. The lowest CC was observed in PERSIANN. It 

is worthwhile to note that PD of 3B42 was higher than those 

of the other 3 types of SREs and HSS of 3B42 reached the 

similar level of type III SREs. 3B42RT had an average HSS 

of 0.30, which was slightly lower than those of types I and III 

SREs. HSS of PERSIANN was greatly lower than those of 

the other 5 SREs. Therefore, at the sub-catchment level, 3B42 

had the highest comprehensive accuracy, followed by CMO-                      

RPH. However, not all the accuracy indices of 3B42 surpassed those of CMORPH. ABIAS of MWR+ and MVK+ 

was inferior to that of 3B42RT, but HSS and R

2

 were superior to 3B42RT. PERSIANN still had the lowest accuracy. 

4.1.3  Comparison at the whole basin scale 

Based on Table 5, 3B42 overestimated the daily rainfalls at 

the whole basin scale. ME and BIAS of 3B42 were    

0.3 mm/d and  7.9%, respectively. CC and  R

2

 of 3B42 

were 0.87 and 0.71, respectively. The other five SREs generally underestimated rainfalls over the study area. BIAS of 

3B42RT, CMORPH, MWR+, MVK+ and PERSIANN were 

26.0%, 30.3%, 41.2%, 45.4%, and 51.5%, respectively. 

MAE and ABIAS of all the SREs (except PERSIANN) 

were similar. ABIAS of 3B42 and CMORPH were below 

50.0%. ABIAS of MWR+ was slightly over 50.0%. ABIAS 

of MVK+ was about 55.0%, but for PERSIANN it was  

70.7%. CC of 3B42 was slightly lower than that of MWR+, 

but was higher than those of CMORPH and MVK+. CC of 

3B42RT was slightly lower than those of CMORPH and 

MVK+. PERSIANN still had the lowest CC. 3B42 had the 

highest R

2

 with an average of 0.71, followed by CMORPH 

and MWR+.  R

2

 of 3B42RT and MVK+ were 0.63, while 

PERSIANN had an average R

2

 of only 0.37. HSS of 3B42 

was close to that of type III SREs. The classification accuracy of 3B42RT was slightly lower than those of types I and 

III SREs, while PERSIANN still had the poorest classification accuracy. At the whole basin scale, 3B42 had the highest comprehensive accuracy, followed by CMORPH. The 

accuracy indices of 3B42RT had advantages and disadvantages compared to those of MWR+ and MVK+, as was 

similar to the sub-catchment scale. The accuracy of MWR+ 

was higher than that of MVK+ and PERSIANN still had the 

lowest accuracy.  

Based on the comprehensive evaluations at the three different spatial scales over the study basin, the data of 3B42 

after GPCP/CAMS calibration was close to the benchmark 

in the sense of daily mean. The comprehensive accuracy of 

3B42 always greatly exceeded the other five SREs, but the 

absolute value of 3B42 was overestimated. In contrast, the 

uncalibrated SREs greatly underestimated the benchmark. 

The average BIAS of 3B42RT was similar to that of 

CMORPH, but CC, R

2 

and HSS of 3B42RT were lower than  

Table 4  The maximal, minimal and average values of SRE accuracy indices at the sub-catchment scale 

Evaluation indices TRMM 3B42 TRMM 3B42RT CMORPH GSMaP MWR+ GSMaP MVK+ PERSIANN 

ME (mm/d) 

Mean  0.3  1.0 1.2 1.7 1.9 2.0 

Max 0.0 1.2 1.5 1.9 2.1 2.1 

Min  0.5  0.8 1.0 1.5 1.7 1.9 

MAE (mm/d) 

Mean 2.4 2.5 2.2 2.3 2.5 3.0 

Max 2.6 2.8 2.5 2.7 2.8 3.4 

Min 2.2 2.3 2.0 2.1 2.2 2.9 

BIAS 

Mean  7.3%  26.6% 30.9% 42.0% 46.2% 52.1% 

Max  0.9%  30.7% 35.6% 46.0% 49.2% 54.9% 

Min  12.1%  21.1% 26.5% 39.2% 42.7% 49.0% 

ABIAS 

Mean 62.2% 64.3% 57.7% 58.2% 61.3% 78.2% 

Max 66.4% 68.6% 61.4% 61.1% 65.2% 82.7% 

Min 57.6% 59.9% 53.0% 54.5% 56.7% 74.2% 

CC 

Mean 0.81 0.75 0.80 0.82 0.80 0.61 

Max 0.84 0.79 0.83 0.85 0.84 0.65 

Min 0.78 0.72 0.79 0.80 0.77 0.58 

R

2

Mean 0.57 0.54 0.63 0.61 0.58 0.31 

Max 0.64 0.60 0.67 0.66 0.64 0.37 

Min 0.48 0.50 0.59 0.55 0.52 0.28 

PD 

Mean 0.78 0.73 0.74 0.73 0.69 0.59 

Max 0.83 0.79 0.79 0.76 0.72 0.62 

Min 0.75 0.69 0.71 0.72 0.66 0.56 

FH 

Mean 0.85 0.87 0.90 0.92 0.92 0.83 

Max 0.89 0.89 0.92 0.94 0.94 0.86 

Min 0.75 0.85 0.86 0.89 0.90 0.76 

HSS 

Mean 0.31 0.30 0.32 0.33 0.3 0.23 

Max 0.35 0.34 0.36 0.34 0.33 0.25 

Min 0.25 0.28 0.30 0.32 0.29 0.21 Hu Q F, et al.    Sci China Tech Sci   April (2013) Vol.56 No.4  859

Table 5  The SRE accuracy indices at the whole basin scale 

Evaluation indices TRMM 3B42 TRMM 3B42RT CMORPH GSMaP MWR+ GSMaP MVK+ PERSIANN 

ME (mm/d)  0.3  1.0 1.2 1.6 1.8 2.0 

MAE (mm/d) 1.9 2.1 1.9 2.0 2.2 2.7 

BIAS  7.9%  26.0% 30.3% 41.2% 45.4% 51.5% 

ABIAS 48.2% 54.2% 49.5% 50.9% 55.3% 70.7% 

CC 0.87 0.81 0.84 0.88 0.85 0.67 

R

2

 0.71 0.63 0.67 0.67 0.63 0.37 

PD 0.86 0.79 0.78 0.79 0.74 0.63 

FH 0.88 0.91 0.95 0.96 0.96 0.89 

HSS 0.33 0.31 0.33 0.34 0.32 0.22 

those of CMORPH. PERSIANN had the poorest accuracy. 

Although these results were consistent with some previous 

studies [11, 19–21], but also showed differences. According 

to Jiang et al. [11] and Nesbitt et al. [19], CMORPH and 

PERSIANN overestimated the  ground rainfall which was 

contrary to our results in the Ganjiang River Basin.

4.2  Temporal variation of SREs accuracy indices 

4.2.1  Seasonal distribution 

Figure 3 shows the yearly distribution of average ME at 

0.25°×0.25° grids. Generally, the degree of ME values deviating from 0 in the first half year (January-June) was 

greater than that in the second half year (July-December). 

For 3B42, ME was above 0 in January and October and 

below 0 in the other months. ME of the other five SREs was 

above 0 throughout the year. In Figure 3(b), MAE exhibited 

a triangular distribution with values from March to June 

obviously higher than those in other months (particularly, 

January-February and September-December). Because 

rainfalls distributed unevenly within one year in the Ganjiang River Basin, the variation of average grid BIAS was 

not fully consistent with ME. The seasonal variation was 

not obvious for BIAS of 3B42. In January, March, July and 

September, BIAS had greater deviation from 0, but the deviation was within ±20.0%. In May, October and November, 

BIAS was close to 0. BIAS of types II, III and IV SREs was 

above 0 throughout the year with obviously being higher 

BIAS in dry months (January-March) than that in the wet 

months (April-September). Type III SREs severely underestimated the benchmark rainfalls, particularly in January, 

February, November and December. For example, BIAS of 

CMORPH reached maximal 82.7% in these 4 months. Similar to BIAS, ABIAS of types II, III and IV SREs in dry 

months (particularly January, February and December) was 

generally higher than that in wet months (particularly April 

to July). The seasonal variations of CC and R

2

 were not observed for all SREs (Figures 3(e) and (f)). CC and  R

2

 in 

January and December were relatively low. PD exhibited an 

“inverted U-like” distribution with wet months being higher 

than dry months. PD reached the maximum ranging from 

0.7 to 0.9 in May and June. In dry months (particularly 

January, February and December), PD was generally below 

0.5, even sometimes below 0.3. All SREs frequently missed 

the forecasting of daily rainfall events in dry months, which 

is an important reason for high systematic errors during this 

period. Similar to PD, HSS also exhibited an “inverted 

U-like” distribution (Figure 3(h)). In wet months, HSS 

could reach the maximum of 0.30, while in dry months, 

HSS could be below 0.20. In summary, the accuracy of daily SRE in wet months was better than that in the dry months 

at the 0.25°×0.25° grid scale. At the sub-catchment or 

whole basin scale, the distribution of SRE accuracy was 

similar to that at the 0.25° ×0.25° grid scale.  

The distribution of SRE accuracy in the Ganjiang River 

Basin was greatly different from those in other regions [20, 

22]. For example, types II, III and IV SREs underestimated 

the monthly benchmark rainfalls in the Ganjiang River Basin. However, Gottschalck et al. [22] proposed that in Central America, PERSIANN overestimated the benchmark 

rainfalls in the spring and summer, while in the autumn, it 

underestimated the benchmark rainfalls. 

4.2.2  Variation with time scale 

Generally, classified accuracy indices are not needed at 

monthly or yearly scale. Furthermore, indices including ME 

and BIAS are proportional among daily, monthly and yearly 

temporal scales. Therefore, we only discussed the variations 

of MAE, ABIAS, CC and R

2

 at the temporal scales. In addition, the variations of CC and R

2

 were only discussed at the 

daily or monthly scale because of the insufficient data samples at yearly scale. It is shown in Table 6 that the average 

values of MAE and ABIAS decreased rapidly when the 

time scale was expanded from day to month. The fastest 

decrease was observed in 3B42 and 3B42RT, which had a 

lower MAE and ABIAS than type III SREs at the monthly 

scale. MAE and ABIAS further decreased when the time 

scale was expanded from month to year. However, the reduction extent was not as obvious as that observed from 

daily scale to monthly scale. At the yearly scale, ABIAS of 

3B42 was only 8.7%, indicating that 3B42 was consistent 

with the yearly benchmark rainfalls. ABIAS of the other 

three types SREs were still high. CC of all the 6 SREs increased with the time scale expansion from day to month. 

At the monthly scale, the average CC was 0.93 for 3B42  860 Hu Q F, et al.    Sci China Tech Sci   April (2013) Vol.56 No.4 

Figure 3  Accuracy indices of SRE daily rainfall at the 12 months at the scale of 0.25° × 0.25° grid.

Table 6  The SRE evaluation indices at the 0.25°×0.25° grids with different time scales 

Evaluation indices Time scale TRMM 3B42 TRMM 3B42RT CMORPH GSMaP MWR+ GSMaP MVK+ PERSIANN 

MAE (mm/d) 

Day 3.2 3.1 2.6 2.7 2.7 3.3 

Month 0.9 1.6 1.7 1.9 2.0 2.4 

Year 0.3 1.2 1.3 1.8 1.9 2.1 

ABIAS 

Day 83.2% 78.8% 67.8% 67.5% 67.3% 84.6% 

Month 22.6% 40.6% 41.2% 44.9% 48.6% 58.3% 

Year 8.7% 28.7% 32.4% 42.8% 46.9% 52.9% 

CC 

Day 0.71 0.65 0.74 0.74 0.75 0.56 

Month 0.93 0.83 0.85 0.89 0.88 0.72 

R

2

Day 0.26 0.35 0.52 0.51 0.52 0.26 

Month 0.82 0.51 0.52 0.44 0.37 0.03 

and 0.90 for both MWR+ and MVK+. The lowest CC was 

observed in PERSIANN, with a mean value over 0.70. The 

variation of R

2

 was relatively complex. When changed from 

daily to monthly scale, R

2

 of 3B42 and 3B42RT increased 

greatly, R

2

 of CMORPH changed rather limitedly, while R

2

of the other 3 SREs decreased. At the monthly scale, the 

average  R

2

 of 3B42 reached 0.82,  R

2 

of 3B42RT and 

CMORPH were slightly over 0.5, R

2

 of MWR+ and MVK+ 

were approximately 0.4 and R

2

 of PERSIANN was close to 
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scale expansion. At the daily scale, the performance of 

MAE, ABIAS, CC and R

2

 of 3B42 was inferior to that of 

type III SREs. However, at the monthly or yearly scale, the 

performance of these 4 indices of 3B42 was better than that 

of other SREs. At the daily scale, ABIAS of 3B42RT was 

inferior to that of type III SREs, while at the monthly scale, 

it was similar to that of CMORPH and better than those of 

MWR+ and MVK+. Compared with other SREs, the accuracy of 3B42 increased substantially with the expansion of 

time scale, which was mainly due to the positive and negative alternative equilibrium of errors at the daily scale. 

Hence, at the monthly or yearly scale, the positive errors 

counteracted the negative errors, resulting in the rather consistence between the monthly or yearly rainfalls and the 

benchmark. 

4.3  Spatial variation of SRE accuracy indices 

4.3.1  Features of spatial distribution 

The BIASs of 3B42 and 3B42RT were relatively low at the 

northern or western edge areas of the basin (Figure 4), with 

the lowest values of 23.4% and 12.1%, respectively. The 

BIAS of type III SREs exhibited positive values throughout 

the entire basin. Areas with high BIAS values were distributed from northern region along southwestern and to the 

southeastern mountains in a counter clockwise manner. Areas with low BIAS values were distributed in the central 

basins  and  plains  (sub-catchments  4-5  and  1).  For  PERSI-                                                     

ANN, areas with high BIAS were distributed similarly to 

that of the type III SREs. Most of the areas with low BIAS 

values were distributed in the northeastern regions. Grids 

with low R

2

s of 3B42, 3B42RT, CMORPH and PERSIANN 

were located in sub-catchment 1 and southwestern edge 

areas (Figure 5). Grids with high R

2

 were mainly located in 

the central and southeastern regions (sub-catchments 4-5). 

Grids with low R

2

 of MWR+ and MVK+ were concentrated 

in southwestern edges (sub-catchments 4, 6-7), while for 

these two SRE grids with high  R

2

 were located in 

sub-catchment 5 and areas between sub-catchments 4 and 5. 

The western mountain areas and northeastern regions had 

the lowest HSS for all SREs, while southeastern and southern edge areas (particularly sub-catchments 5 and 7) had the 

highest HSS (Figure 6). For example, the HSS of CMORPH 

in western areas was only about 0.25, while in eastern areas, 

it could reach 0.35. Therefore, at the 0.25°×0.25° grid scale, 

the western and northern piedmont areas had a high accuracy for SREs, while the central and southeastern hilly and 

valley basin had a low accuracy. These results determined 

the difference of SRE accuracy at the sub-catchment scale. 

Among the 7 sub-catchments, sub-catchment 5 located in 

the southeastern region of the study area had the highest 

accuracy (Figure 7), where the systematic error of SREs 

was close to 0. In addition, MAE and ABIAS were relatively low and the classification accuracy indices were high 

in this sub-catchment.  

The spatial distribution of SREs accuracy in the Ganjiang 

River Basin was affected by the topography, as was consistent with previous studies [8, 23, 24]. Under complex  

topography, the reflecting ability of the sensors on satellite 

borders was reduced. At the 0.25°×0.25° grid scale, the  

Figure 4  The spatial distributions of BIAS of SREs at the 0.25°×0.25° grid scale. 862 Hu Q F, et al.    Sci China Tech Sci   April (2013) Vol.56 No.4 

Figure 5  The spatial distributions of R

2

 at the 0.25°×0.25° grids scale. 

Figure 6  The spatial distributions of HSS at the.25°×0.25° grid scale. 

elevation, one of the main factors of topography, had a certain impact on the accuracy of 3B42RT. The main trend is 

that the grids at an elevation of 400 m had a relatively high 

accuracy (Figure 8). However, in addition to elevation, 

there were a variety of other factors including slope, slope 

direction and occlusion degree affecting the accuracy of 

SREs. Thus, the relationship between elevation and SRE 

performance is still uncertain. Topgraphic relationship with 

SRE accuracy indices requires  further investigations. In 

addition, it should be pointed out that under complex  Hu Q F, et al.    Sci China Tech Sci   April (2013) Vol.56 No.4  863

Figure 7  Comparison of the accuracy indices of each SRE at the sub-catchment scale. 

Figure 8  Scatters of TRMM 3B42RT accuracy indices versus elevation at the 0.25° × 0.25° grid scale. 

topography, there are high error for rainfall measurement 

and interpolation. This is also a reason for the relative poor 

accuracy of the SRE. 

4.3.2  Variation with spatial scale 

Figure 9 shows the comparison of the accuracy parameters 

of SREs at different spatial scales. Scales 1, 2 and 3 represent the 0.25°×0.25° grid, sub-catchment and whole basin 

scales, respectively. The average BIAS of SRE changed 

slightly from Scale 1 to Scale 2. However, the maximal 

BIAS decreased and the minimal BIAS increased when spatial scale changed from Scale 1 to Scale 2. Overall, the  864 Hu Q F, et al.    Sci China Tech Sci   April (2013) Vol.56 No.4 

Figure 9  SREs accuracy indices comparison among various spatial scales. 

average, maximal and minimal ABIASs deceased, while CC 

and R

2

 increased when the spatial scale changed from Scale 

1 to Scale 2. The situations for PD and HSS were relatively 

complicated. When the scale changed from Scale 1 to Scale 

2, the minimal values of PD and HSS for all SREs increased 

significantly. However, the maximal and average values 

increased only for types 1 and II SREs. The maximal values 

of PD and HSS for MVK+ even decreased slightly when the 

scale changed from Scale 1 to Scale 2. The average BIAS of 

SREs at Scale 3 was similar to the corresponding value at 

Scale 1 or 2. The ABIAS of Scale 3 was lower than that of 

Scale 1 or 2. CC,  R

2

, PD of Scale 3 were slightly higher 

than or similar to the maximal value of Scale 1 or 2. The 

HSS of Scale 3 was slightly higher than the average value 

of Scale 2, but lower than the maximal value of Scale 2. 

Overall, with the expansion of the spatial scale, the SRE 

accuracy increased and the errors decreased. The variance 

explanation ability for the benchmark rainfalls and classification accuracy indices increased, while the accuracy difference between various evaluation units decreased. These 

were consistent with Huffman et al. whose study showed 

that SRE is more suitable for rainfall analysis at large spatial scales [2]. Hence, at present it is not fully feasible to 

directly apply SRE to rainfall analysis at small spatial 

scales. 

5  Conclusions and prospects 

In this study, we analyzed the features of the accuracy for 6 

high resolution SREs at 0.25°×0.25° grid, sub-catchment 

and the whole basin scales in the Ganjiang River Basin from 

2003 to 2009. We also investigated the spatio-temporal variation of the accuracy indices. Main conclusions were 

drawn as follows. 

1) At the daily scale, the 3B42 accuracy ranked the highest among the six evaluated SREs. The BIAS of 3B42 was 

only 7.8% at grid scale, but the ABIAS of 3B42 was relatively high. The other five uncalibrated SREs had large underestimation of the benchmark rainfalls, with an average 

BIAS from 26.2%–51.6% at the grid scale. The overall accuracy of 3B42RT was lower than those of the 3B42 and 

CMORPH. The overall accuracy of CMORPH, MWR+ and 

MVK+ decreased sequentially. The lowest accuracy was 

observed in PERSIANN. All indices of PERSIANN were 

rather poor. 

2) The overall accuracy of SRE in wet months was higher than that in dry months. The SRE easily misses the prediction of daily rainfall events, which is an important reason 

of its underestimation of daily rainfall. At the 0.25° × 0.25° 

grid scale, PD in wet months (particularly May and June) 

ranged from 0.7 to 0.9, while in dry months, PD was generally not over 0.5, sometimes, it was even below 0.3 (particularly in winter, e.g., January, February and December). 

The accuracy of SRE increased continuously when the time 

scale was expanded from day to month. The accuracy of 

3B42 can be largely optimized when the time scale is expanded. 

3) The spatial distribution of SRE accuracy has a certain 

relationship with the topography. Overall, the western and Hu Q F, et al.    Sci China Tech Sci   April (2013) Vol.56 No.4  865

northern piedmont areas had a low accuracy of SREs, while 

the central and southeastern hilly and valley basin had a 

high accuracy of SREs. Sub-catchment 5 located in the 

southern part of the basin  had the highest accuracy. With 

the expansion of spatial scale, SRE accuracy increased continuously. 

In summary, this study provided a direct evidence for 

further studying the fusion algorisms between SRE and 

ground rainfalls and SRE-based hydrological process. This 

study also provided a method and example for validating 

the SRE accuracy regionally. Application of this method to 

other areas in China can achieve more universal conclusions. 

At the same time, it is urgent to solve practical problems in 

regional hydrological and geological analysis using SREs. 
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