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The irrigated areas in the northern region of China are important food production areas. Therefore, studies on the variability of 

the carbon balance in these agro-ecosystems are fundamental for the management of carbon sequestration. This paper simulated the long-term variability of the carbon balance in a typical irrigated area along the lower Yellow River from 1984 to 2006, 

using a process-based ecosystem model called the Simple Biosphere Model, version 2. The mean annual gross primary production (GPP), mean annual net assimilation rate (NAR), mean annual soil respiration (Rs

), and mean annual net ecosystem 

exchange (NEE) were 1733, 1642, 1304, and 338 g C m

2

 a

1

, respectively. A significant increasing trend in the seasonal total 

NAR during the wheat growing season, and a significant decreasing trend in the seasonal total NAR during the maize growing 

season were detected. However, no significant trend was found in the annual NAR, Rs

, and NEE. The average carbon sequestration was 1.93 Tg C a

1

 when the grain harvest was not taken into account, and the carbon sequestration amount during the 

maize season was higher than that during the wheat season. However, the agro-ecosystem was a weak carbon source with a 

value of 0.23 Tg C a

1

, when the carbon in the grain was assumed emitted into the atmosphere. 
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Croplands are important to the global and regional carbon 

cycles, and are an important ecosystem that affects climate 

change [1]. The cropland in China is 1411000 km

2

, accounting for approximately 18.6% of the national land area 

[2]. It is smaller than the grassland (31.3%) and forest 

(23.9%) areas, and is the third largest vegetation ecosystem 

[3]. The agro-ecosystem is greatly affected by human activities; hence, exploring the variability of the carbon balance 

in agro-ecosystems would be beneficial for the control of 

carbon dioxide emission. In water-limited areas, crop 

growth is maintained by irrigation. At the end of 2009, the 

effective irrigated area in China was 592610 km

2

, which is 

42% of the total cultivated area (Statistic Bulletin on China 

Water Activities, 2009). The Huang-Huai-Hai plain is the 

main food production area in China, mainly including Henan and Shandong provinces with an irrigated area of 22230 

km

2

 (1995–1999) [4]. Crop yields under sufficient irrigation 

condition are significantly higher than those under rain-fed 

conditions [5], indicating that the carbon balance between 

the irrigated and non-irrigated areas is different. At present, 

studies on the carbon cycles in China are mainly on the 

large scale, aiming to examine the variability of the carbon 

cycle across different ecosystems [6–9]. These studies focus 

mainly on the net primary production (NPP), but few focus 

on the net ecosystem exchange (NEE) [10]. Moreover, 672 Lei H M, et al.    Sci China Earth Sci   April (2013) Vol.56 No.4 

studies on the regional carbon balance of croplands were 

rarely reported. 

The methods used to study the carbon cycle are classified 

into two groups: model and observation. Ecosystem models 

can be classified into two categories, canopy photosynthesis 

models and production efficiency models, according to the 

way they model the absorption of solar radiation and its 

conversion into dry matter [11]. In the canopy photosynthesis models, gross primary production (GPP) is first computed at the leaf level with a mechanistic model coupling 

the exchanges of CO2 and water, and is then integrated 

through the canopy. In the production efficiency models, the 

fraction of solar radiation absorbed by vegetation is calculated from remote sensing data (such as the Normalized 

Difference Vegetation Index (NDVI)), and is then converted 

into dry matter using empirical coefficients. On the other 

hand, ecosystem models can be classified into three categories based on whether the models use a prescribed seasonal 

behavior of light interception by the canopy and/or a prescribed vegetation distribution [12]. The first category uses 

prescribed spatial and temporal distributions of vegetation; 

the second category only uses prescribed spatial distributions and vegetation types; and the third one does not use 

any prescribed vegetation information that was simulated by 

the models. In the first two categories, the vegetation information is usually provided by the remote sensing data. In 

the studies based on observation data, the observed data are 

obtained mainly from forest and grassland inventories, or 

crop statistical yield [13–15], and are converted into the 

cumulated carbon flux through empirical relationships. In 

summary, the present studies  on carbon cycles mainly use 

the canopy photosynthesis and production efficiency models 

based on remote sensing data, because these data can reflect 

the real spatiotemporal variations in vegetation growth. 

There are great uncertainties  in carbon cycle modeling 

[16]. Different models can give significantly different results even in the same area [17–19]. The uncertainties in the 

simulated results mainly arise from the uncertainties in the 

model structure and model parameters [12, 20]. Generally, 

most of the models are calibrated based on limited observation sites, which may cause relatively large errors when the 

models are applied to other regions or other ecosystems. 

Ciais et al. [19] suggest that the accuracy of the model could 

be improved by integrating the eddy covariance flux observation, soil respiration observation, soil organic data, and 

crop yield data with the model. To date, flux observations 

based on the eddy covariance technique have been widely 

conducted across various ecosystems, to observe the variations in the water and carbon  fluxes [21]. Therefore, the 

integration of the flux data with the ecosystem model will 

contribute to the improvement of the accuracy of carbon 

cycle simulations. 

The current study selected the Weishan Irrigation District 

(WID) along the lower Yellow River as a typical area and 

used a canopy photosynthesis model (SiB2, Simple Biosphere Model, version 2) [22, 23] to simulate the carbon 

balance from 1984 to 2006. Unlike previous large-scale 

studies, the current study analyzed the long-term variability 

of the carbon balance in the WID and its control factors 

based on the comprehensive evaluation of the model with 

the observed flux data. 

1  Study area 

The WID (36.14°–37.01°N and 115.43°–116.51°E) is located in Liaocheng City, Shandong Province, which is along 

the lower Yellow River. Its area is approximately 5711 km

2

and is the fifth largest irrigated area in China. The climate is 

semi-humid and warm temperate. The mean annual precipitation and mean annual irrigation are 534 and 196 mm, respectively (1984–2006). The mean air temperature is 

13.8°C (1984–2006). In most of the croplands in the WID, 

winter wheat and summer maize are cultivated in rotation, 

with an average cropping index of 1.7. Winter wheat is usually planted in mid-October and harvested in June of the 

following year, whereas summer maize is usually planted in 

mid or late June and harvested in October. According to the 

observation of the Weishan flux site in 2008 [24], the topsoil (0–20 cm) organic matter was 14.5 g kg

1

 (equivalent to 

38 Mg ha

1

 in terms of soil organic carbon density, according to [25]). This value is higher than the average value of 

croplands in northern China (9.29 g kg

1

) but similar to the 

average value (13.65 g kg

1

) of croplands in the whole 

country [26]. The land is deeply plowed after maize harvesting and is not plowed after the harvesting of wheat. 

The precipitation in the eastern and southeastern parts of 

the WID is 50 mm greater than that in the western and 

northwestern parts. The average air temperature increases 

from north to southeast, ranging from 13.3 to 13.9°C. Since 

the 1980s, the percentage of croplands in the entire WID is 

81%, whereas the percentage of urban areas is 16%. The 

land use ratio is almost constant during the past 20 years. 

The elevation within the WID decreases from southwest to 

northeast, ranging from 13 to 58 m. The average slope is 

1/7500. The soil is composed of the Yellow River sediments, 

resulting in a relatively homogenous soil type distribution. 

The soil types are fluvo-aquic soil (70%) and saline fluvo-      

aquic soil (26%), and their soil water characteristics are 

similar. Saline fluvo-aquic soil is distributed in the northwest and southeast of the WID. In general, the meteorological elements, soil type, and  crop type are homogenously 

distributed in the WID. 

2  Data and methods 

2.1  Data acquisition and processing 

The NDVI data from 1984 to 2006 were obtained from the 

GIMMS global data product [27]. The spatial resolution of  Lei H M, et al.    Sci China Earth Sci   April (2013) Vol.56 No.4  673

the product is 8 km, and the temporal resolution is half-      

month. The product has been post-processed through radiometric and geometric calibrations, as well as scanning bad 

lines, cloud screening, and so on. The high-resolution (250 

m, 8-d average) NDVI value was calculated from the 

MODIS/Terra reflectance product (MOD09Q1) with quality 

control. The measured leaf area index (LAI) was from the 

Weishan flux site, which is located at the center of the WID 

[24]. Meteorological data were obtained from 19 national 

meteorological stations distributed in or outside the WID. 

These data include daily precipitation, daily average, maximum, and minimum air temperature, daily average relative 

humidity, daily sunshine duration, and daily average wind 

speed (Figure 1). Daily flow data (stating from 1984) in the 

channels were obtained from the Management Office of the 

WID (Figure 1, the start and end dates of irrigation can be 

deduced from the flow data). Annual crop yield (including 

wheat and maize yields) data from 1984 to 2006 were obtained from the statistical yearbooks of Liaocheng (2001) 

and Shandong province (http://www.stats-sd.gov.cn). The 

annual air CO2 concentration during the study period was 

approximately represented by  the observed data from the 

Mauna Loa site in Hawaii, USA (http://www.esrl.noaa.gov/ 

gmd/ccgg/trends/). Land use data (1:1000000) in 1985, 

1995, and 2000 were obtained from the Environmental and 

Ecological Science Data Center for West China (http:// 

westdc.westgis.ac.cn) [28]. Soil type data (1:1000000) were 

obtained from the China Soil Scientific Database. 

The meteorological data from the meteorological stations 

were on the plot-scale; thus, spatial interpolation was required to generate the spatial distribution of meteorological 

forcing in the WID. The study used the angular distance 

weighting method, which can result in a relatively smooth 

spatial distribution of the meteorological elements, thereby 

representing their gradient characteristics in space [29]. 

Moreover, the model required meteorological data with an 

hourly step as the input. Thus, the daily observed data had 

to be downscaled to the hourly step. Precipitation, air temperature, and solar radiation are the fundamental factors that 

control the ecological and hydrological processes, and have 

a significant influence on the simulated results. However, 

the influence of the relative humidity and wind speed on 

these processes are relatively small, and the downscaling of 

them was impossible using the current limited dataset. 

Therefore, the study only conducted the downscaling analyses of precipitation, air temperature, and solar radiation, 

while substituted the daily average relative humidity and 

daily average wind speed for their hourly values. In the 

downscaling analysis of precipitation, the rainfall duration 

was determined by the amount of daily precipitation (the 

relationship between the amount of daily precipitation and 

rainfall duration was derived from the observed hourly data); 

the daily precipitation was then distributed to the hourly 

data using the normal distribution (the start time of rainfall 

was randomly generated). Although this method cannot 

generate accurate hourly precipitation values, it can obtain 

the correct pattern of hourly rainfall as well as correct hydrological responses. In the downscaling analysis of the air 

temperature, the hourly temperature was calculated using 

the sinusoid which was fitted by the daily maximum and 

minimum temperature by assuming that the maximum and 

minimum temperature appeared at 13:00 and 1:00, respectively [29]. The downscaling analysis of the daily solar radiation used the model proposed by Yang and Koike [30] to 

calculate the hourly solar radiation from the daily sunshine 

duration. Previous work showed that the above-mentioned 

downscaling methods for temperature and solar radiation 

had high accuracy [31]. 

The Management Office of the WID considers the county-    

level administrative divisions as the basic unit of irrigation 

water management. Therefore, the WID in the model was 

divided into several irrigation units (Figure 1), according to  

Figure 1  Location of the study sites. (a) Meteorological stations (the grid size in the figure is 20 km); (b) irrigation flow stations and irrigation units. 674 Lei H M, et al.    Sci China Earth Sci   April (2013) Vol.56 No.4 

the topological relationships among the distribution of the 

irrigation flow stations, the county boundaries, and the 

channels. The study assumed that the irrigation water 

amount in the grids of an irrigation unit was the same, as 

that the irrigation water amount in each grid was unavailable. The irrigation water amount for an irrigation unit was 

calculated as the difference between the irrigation flow 

flowing into the irrigation unit and that flowing out of the 

corresponding irrigation unit. During one water diversion 

period, the date of the irrigation event was randomly generated by assuming that the irrigation event occurred at 10:00 

and lasted for one hour. Moreover, the half-monthly NDVI 

value was interpolated into the daily values in order to 

match the model input. 

2.2  Model description 

The SiB2 is a widely used canopy photosynthesis model. 

The model consists of a set of physically-based equations, 

coupling water balance, energy balance, and vegetation biochemical processes. It is  used for simulating the energy 

fluxes (including the net radiation and sensible and latent 

heat fluxes), as well as the  water and carbon dioxide exchanges between land and atmosphere, and has been validated in a number of ecosystems such as forest, grassland, 

and cropland [32–34]. The model divides the ground into 

two parts: bare soil and vegetated land. The sensible heat, 

latent heat, and CO2 fluxes are calculated by multiplying the 

temperature, water vapor, and CO2 concentration gradients 

by their corresponding conductances which mainly include 

aerodynamic, canopy boundary-layer, and stomatal conductances. The stomatal conductance links the processes of 

latent heat flux and CO2 flux, and is linked to the net assimilation rate through the Ball-Berry model [35]. GPP is estimated by a widely used biochemical model [36, 37], and 

canopy autotrophic respiration (RA) is a function of GPP, 

the air temperature, and the  soil water content [22]. The 

aerodynamic and boundary-layer conductances are calculated according to the aerodynamic theory, and are influenced mainly by the wind speed and canopy structure (see 

ref. [22] for details).  

The model input included LAI and meteorological data 

such as precipitation (and irrigation), air temperature, relative humidity, and solar radiation. The simulation step was 

one hour, and the grid size was 2 km. The model parameters 

consist of vegetation and soil parameters. The vegetation 

parameters include the morphological, leaf optical and 

physiological properties. The SiB2 has nine vegetation 

types in the SiB2, and the vegetation parameters of each 

type were determined from a number of ecological experiments, and thus have a solid physiological basis. Particularly, the vegetation parameters of type 6 were directly obtained from experiments on maize. In the study, the vegetation parameters of wheat and other crops were from type 9 

(i.e. agriculture/C3 grassland), whereas those of maize were  

from type 6 (i.e. short vegetation/C4 grassland). The soil 

parameters are related to the soil thermal conductivity 

which was calculated by the SiB2, and the soil moisture 

characteristics which were from the in situ measurements. 

We modified the soil into ten layers instead of three layers 

in the original model, and used Richards equation to simulate the water exchange among the soil layers [38]. We 

re-parameterized the soil evaporation modeling and calibrated the Ball-Berry model in the SiB2, based on the 

measurements conducted in the winter wheat-summer maize 

double-cropping cropland in the North China Plain [38]. 

Moreover, we introduced a parameterization scheme (which 

is a function of the soil temperature and soil water content) 

of soil respiration (Rs

) to calculate NEE, because the SiB2 

did not simulate Rs

 (including the autotrophic respiration of 

roots and heterotrophic respiration of soil microorganisms). 

The parameters in the soil respiration equation were determined by the observed data at the Weishan flux site [38]. 

For the model validation, we comprehensively evaluated 

the model using the flux data, soil water content, and surface temperature data from the Weishan flux site in the 

WID and the Luancheng site in the North China Plain [38]. 

For the two sites, the coefficients of determination (R

2

) for 

the NEE simulation during the wheat and maize seasons 

were all above 0.8, and the values were above 0.9 for the 

GPP simulation. Moreover, the accuracy in simulating the 

latent heat, sensible heat, and soil heat fluxes, as well as soil 

water content, and surface temperature was also relatively 

high. These evaluation results showed that the model could 

accurately simulate the carbon cycle processes in the 

wheat-maize double-cropping field on the plot-scale. 

LAI is an important factor that influences the simulation 

of carbon flux, and was derived from the remotely-sensed 

NDVI. Although NDVI can effectively reflect the seasonal 

and interannual variations in vegetation growth, and yet 

there is high uncertainty in the derivation of LAI from 

NDVI, which thereby affected the accuracy of the carbon 

flux simulation [1]. The biggest problem in the derivation of 

LAI from NDVI is that NDVI will be saturated when the 

LAI value is greater than 3–4 m

2

 m

2

 [39], which leads to a 

poor estimation of LAI. Currently, there are three commonly used methods of deriving LAI from NDVI: 

Method 1 uses the fraction of photosynthetically active 

radiation (PAR) absorbed by  the green canopy (FPAR) to 

calculate LAI (this method was used by the SiB2) [23]. The 

equations are 

1 NDVI

SR ,

1 NDVI







 (1) 

min max min

min

max min

(SR SR )(FPAR FPAR )

FPAR FPAR ,

(SR SR )

 

 


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max

max

ln(1 FPAR)

LAI LAI ,

ln(1 FPAR )







 (3) 

where SRmin and SRmax are the minimum and maximum 

values of SR, respectively, and were calculated from the 

minimum and maximum values of NDVI, respectively; 

FPARmax=0.950, FPARmin=0.001 [23], and LAImax is the 

maximum value of LAI. The values of the parameters are 

listed in Table 1. 

Method 2 uses the NDVI value to directly calculate LAI 

[40]. The equation is given by 

min

max

max min

NDVI NDVI

LAI LAI ,

NDVI NDVI







 (4) 

where NDVImax 

and NDVImin are the maximum and minimum values of NDVI, respectively. Their values are listed 

in Table 1.  

Table 1  Maximum and minimum values of NDVI and LAI of wheat and 

maize 

Crop LAImax NDVImax NDVImin

Winter wheat 6.5 0.8523 0.1111 

Summer maize 5.0 0.9493 0.1111 

Method 3 uses the Wide Dynamic Range Vegetation Index (WDRVI) to calculate LAI. Gitelson et al. [41] proposed the concept of WDRVI for calculating the LAI values 

of crops, to compensate for the deficiency that LAI cannot 

be estimated accurately when NDVI is saturated. There was 

a good linear relationship between WDRVI and LAI, which 

was validated by the observed LAI data of wheat, maize, 

and soybean. The equations of the method are 

WDRVI [( 1)NDVI ( 1)] / [( 1)NDVI ( 1)],           

 (5) 

min

max

max min

WDRVI WDRVI

LAI LAI ,

WDRVI WDRVI







 (6) 

where WDRVImax and WDRVImin are the maximum and 

minimum values of WDRVI,  respectively, and are calculated from the maximum and minimum values of NDVI, 

respectively; α is a parameter set to be 0.2 [41]. 

In our study, the values of LAImax, NDVImax, and NDVImin were determined by the observed LAI data of wheat and 

maize and high-resolution NDVI data (250 m, 8-d average) 

observed by MODIS/Terra, in order to eliminate the influence of the low temporal resolution of GIMMS-NDVI on 

the determination of the peak value of NDVI. The results 

are listed in Table 1. 

2.3  Trend detection test 

The study used the Mann-Kendall non-parametric test [42] 

for the trend detection on a time series. The test statistic is 

given by 

1

1 1

sgn( ),

n n

j i

i j i

S x x



  

    (7) 

where xj

 and xi

 are the sequential data values, n is the data 

set record length, and 

1,    > 0,

sgn 0,         0,

1,   0.











  



 



 (8) 

The Mann-Kendall test has two important parameters for 

trend detection. One is the significance level   (=0.05 in 

this study) which indicates the strength of the trend, and the 

other is the slope   (i.e. change rate) which indicates the 

direction and magnitude of the trend. It indicates an increasing trend when  > 0, and is given by 

 

Median  , (1 ).

j i

x x

i j i j n

j i



  

       



 

 (9) 

2.4  Definition and calculation of the elements in the 

carbon balance  

The study analyzed the variations in the canopy net assimilation rate (NAR),  Rs

, NEE, and net biome production 

(NBP). NAR is the net CO2 absorbed by the canopy, and is 

expressed by 

NAR GPP .   RA

 (10) 

NEE is the net carbon uptake (or loss) by ecosystem (a negative sign denotes net carbon uptake by ecosystem), and is 

given by 

NEE NAR .   Rs

 (11) 

NBP is the net gain or loss of carbon from a given area at 

the biome level (a negative sign denotes the net gain of 

carbon), and is equal to the change in the soil organic carbon [43]. Therefore, the magnitude of NBP can be used for 

indicating the strength of the carbon sink/source. In the 

cropland, NBP is usually expressed by [19] 

NBP NEE+ VOC+SE ,  C F I

gr

   (12) 

where Cgr

 is the carbon loss by yield harvest, F is the carbon 

loss to atmosphere by straw extraction (for burning or feeding), VOC is the NPP component emitted as biogenic volatile compounds emissions to the atmosphere, SE is the flux 

of carbon exported from the cropland by erosion, and I is 

the carbon input to the soil (via manure applications). 

By assuming that the carbon in the crop yield is completely emitted to atmosphere, this carbon loss can be calculated by crop yield (Y) 676 Lei H M, et al.    Sci China Earth Sci   April (2013) Vol.56 No.4 

gr gr c

C W f Y   (1 ) , (13) 

where Wgr

 is the water content in the yield (=0.15), and fc

 is 

the carbon fraction of the yield (=0.45). 

By assuming that the carbon loss in eq. (12) only included the carbon loss by yield harvest and that the straw was 

returned to the field, the NBP for the cropland can be simplified into 

NBP NEE+ .  Cgr

 (14) 

3  Results and discussion 

3.1  Comparison of the calculated LAI from different 

methods 

Figure 2 showed the variations in the LAI values, which 

were calculated by the three methods. LAI was significantly 

underestimated using method 1 (through FPAR), and thus 

the method was not suitable for calculating LAI of wheat 

and maize in the region. Method 3 (through WDRVI) 

slightly underestimated the peak of LAI, but could accurately estimate the dynamics of LAI at the early and end 

stages of the crop season; method 2 (through NDVI) could 

accurately estimate the peak of LAI, but significantly overestimated the LAI value at the early and end stage of the 

crop season. Generally, the values of R

2

 for the wheat and 

maize seasons were 0.7325 and 0.8974, respectively, using 

method 3; whereas the values of R

2

 0.5665 and 0.7571, respectively, using method 2. Therefore, the study used 

method 3 to derive the seasonal course of LAI, and to replace the method used in the original SiB2. 

3.2  Validation of the model on the regional scale 

For the typical cropland in the WID, although the evaluation 

using the flux data has shown that the SiB2 was relatively 

accurate in simulating the carbon cycle on the plot-scale, yet 

it is necessary to validate the model on the regional scale 

when the model was applied to a region. Using the method 

provided by Huang et al. [44], we can calculate the regional 

NPP based on the crop yield statistics of the WID. On the 

other hand, the SiB2 cannot directly simulate NPP; however, 

many studies found that the ratio of NPP to GPP (NPP/GPP) 

was relatively constant [45]. Therefore, GPP can be calculated by NPP (which was calculated by crop yield statistics) 

based on the NPP/GPP value of the cropland (=0.58 [46]), 

and be further compared with the GPP simulated by the 

SiB2 (Figure 3). The simulated mean annual GPP by the 

SiB2 was 1733 g C m

2

 a

1

, while the calculated mean annual GPP was 1709 g C m

2

 a

1

. The relative error between 

the simulated and calculated GPP values was 1.4%, indicating that the model was also accurate at the regional scale, 

and can be used to simulate the carbon balance in the WID. 

It is noted that the calculated GPP by crop yield significantly increased, while the simulated GPP had no significant temporal trend. The reason was that the harvest index 

was assumed to be constant in Huang’s method [44]. In fact, 

the harvest indices of both wheat and maize have greatly 

increased by the improvement  in the crop varieties [47]. 

Using the annual harvest index data provided by Xue [47], 

we re-calculated the GPP based on the crop yield statistics 

(Figure 3). The new comparison showed that both the 

re-calculated and simulated GPP had no significant temporal trend, and the relative error was 2.5%. 

3.3  Interannual variations in the elements of the carbon balance 

The spatial variability of the carbon balance was shown to 

be relatively small according the simulated spatial distribution of the carbon balance, because the area of WID and the 

spatial variability of the meteorological, soil, and crop factors were mall. Therefore,  the paper focused on the temporal variability of the carbon balance. The  mean annual 

NAR, Rs

, and NEE were 1642, 1304, and 338 g C m

2

 a

1

, 

respectively, and the ratio of Rs

 to NAR was 40%. As Figure 4 showed, NAR, Rs

, and NEE exhibited no significant 

Figure 2   Variations in the calculated leaf area index (LAI) in the winter wheat (a) and summer maize seasons (b).  Lei H M, et al.    Sci China Earth Sci   April (2013) Vol.56 No.4  677

Figure 3   Comparison of the simulated and calculated gross primary production (GPP). “GPP_Huang” refers to the results using Huang’s method [44]; 

“GPP_Xue” refers to the results using the Xue’s method [47]. 

Figure 4  Interannual variations in the elements of the carbon balance in the Weishan Irrigation District (unit: g C m

2

 a

1

). (a) Net assimilation rate (NAR); 

(b) soil respiration (Rs

); (c) net ecosystem exchange (NEE). 

trend at the significance level of  = 0.05. However, NAR 

and Rs

 slightly increased, and their annual growth rates were 

0.7 and 2.33 g C m

2

 a

2

, respectively. 

The mean annual NAR, Rs

, and NEE in the wheat season 

were 787, 737, and 50 g C m

2

, respectively, and the ratio 

of Rs

 to NAR was 94%. As Figure 5 showed, NAR significantly increased (significance level of  = 0.05) at a growth 

rate of 6.21 g C m

2

; Rs

 showed no significant trend, and 

NEE significantly decreased at a change rate of  5.71         

g C m

2

. The mean annual NAR, Rs

, and NEE in the maize 

season were 857, 564, and 293 g C m

2

, respectively, and 

the ratio of Rs

 to NAR was 66%. As Figure 6 showed, NAR 

significantly decreased (significance level of  = 0.05) at a 

change rate of  7.84 g C m

2

;  Rs

 showed no significant 

trend, and NEE significantly increased at a rate of 11.15   

g C m

2

. 

Although the trends of NAR and NEE in the wheat and 

maize seasons were significant, their opposite trends resulted that the trends of annual NAR and NEE were not significant. NAR in the wheat season was 92% lower than that in 

the maize season; while Rs

 in the maize season was significantly lower than that in the wheat season. Thus, NEE in the 

maize season was significantly higher than that in the wheat 

season. 

3.4  Possible reasons for the changes in the elements of 

carbon balance 

The major factors that possibly affected NAR were precipitation, irrigation, air temperature, solar radiation, fertilization, and variety (the last two factors were called non-        

meteorological factors), and the major factors that affected 

Rs

 were precipitation and air temperature. NEE was dependent on the relationship between NAR and Rs

. Therefore, the study tested the temporal trends in the factors. The 

daily sunshine duration was selected as an agent of solar 

radiation because the solar radiation data were unavailable. 

Table 2 lists the change trends in precipitation, air temperature, and sunshine duration in the wheat and maize seasons. 

At the significance level of  = 0.05, only the air temperature in the wheat season significantly increased, and others 

factors showed no significant trend. In the wheat season, the 

daily sunshine duration slightly increased, while in the 

maize season, the daily sunshine duration greatly decreased 

before and after the anthesis stages; the air temperature also  678 Lei H M, et al.    Sci China Earth Sci   April (2013) Vol.56 No.4 

Figure 5  Interannual variations in the elements of the carbon balance in the wheat season in the Weishan Irrigation District (unit: g C m

2

 a

1

). The others 

are the same as in Figure 4.  

Figure 6  Interannual variations in the elements of the carbon balance in the maize season in the Weishan Irrigation District (unit: g C m

2

 a

1

). The others 

are the same as in Figure 4. 

Table 2   Trends in the meteorological variables (daily average air temperature, sunshine duration, and precipitation) from 1984 to 2006

a)

Crop Growth stage Meteorological variables Unit Trend 

Winter wheat 

Sowing to anthesis (10.16–4.26) 

Average air temperature °C/10 a 0.61

*

Sunshine duration h/10 a 0.04 

Precipitation mm/10 a  6.5 

Anthesis to maturity (4.26–6.15) 

Average air temperature °C/10 a 0.46

*

Sunshine duration h/10 a 0.11 

Precipitation mm/10 a  11.67 

Summer maize 

Sowing to anthesis (6.16–8.01) 

Average air temperature °C/10 a 0.35 

Sunshine duration h/10 a  0.56 

Precipitation mm/10 a  1.00 

Anthesis to maturity (8.01–10.15)

Average air temperature °C/10 a 0.23 

Sunshine duration h/10 a  0.52 

Precipitation mm/10 a  12.0 

a) * At the significance level  = 0.05. 

slightly increased. Although precipitation greatly decreased 

after the anthesis stages of wheat and maize, yet the influence of precipitation can be ignored because of the sufficient irrigation. Moreover, the irrigation amount in the 

wheat and maize seasons changed insignificantly (Figure 7). 

The long-term trends in the fertilizing amount and variety 

were unknown because the data about this information were 

insufficient. However, the remotely sensed NDVI data can  Lei H M, et al.    Sci China Earth Sci   April (2013) Vol.56 No.4  679

comprehensively reflect the influences of meteorological 

and non-meteorological factors on crop growth [48]. The 

interannual variations in NDVI (Figure 8) showed that 

NDVI in the wheat season significantly increased (change 

rate was 0.00407 a

1

); while NDVI in the maize season significantly decreased (change rate was  0.00305 a

1

). The 

trends of NDVI in the wheat and maize seasons were consistent with the trends of the corresponding NAR. 

The simulated results of the SiB2 were the integration of 

the influences of meteorological and non-meteoroidal factors. Thus, we used a model which coupled the SiB2 with a 

crop growth model [49] to partition the influences of these 

factors. In the coupled model, the SiB2-based daily GPP, 

daily average soil water content, and air temperature are 

used within the crop growth  model to calculate the daily 

LAI which was an input for simulating energy, water, and 

carbon dioxide exchange in the next day. The evaluation has 

shown that the coupled model could accurately simulate the 

crop growth and land surface flux in the region [49]. Unlike 

the SiB2, the coupled model only considered the influence 

of meteorological factors on  carbon cycle, and did not include the influence of variety improvement and fertilization. 

Driven by the same data as the SiB2, the coupled model 

showed that NAR in the wheat season significantly decreased (significance level of  = 0.05), which was a result 

of changes of meteorological factors (including the significant increase in atmospheric CO2 concentration, at 16.6 

ppm/10 years). NAR in the maize season changed with no 

significant trend ( = 0.05, but significantly decreased at the 

level of  = 0.16). These results were similar to those of 

other studies. Liu et al. [50] examined the respective influences of climate change and crop varieties on dry biomass 

(the change in dry biomass is  positively correlated to the  

Figure 7  Interannual variation in irrigation water amount. 

Figure 8  Interannual variation in the seasonally-averaged Normalized 

Difference Vegetation Index (NDVI) in the wheat and maize seasons. 

change in NAR) during 1981–2005 at three typical sites in 

the North China Plain. His research pointed out that dry 

biomass of winter wheat and summer maize all decreased 

under climate change (including the air temperature and 

sunshine duration). The main reasons for the decrease were 

that the increased temperature shortened the crop growth 

period and the decreased solar radiation reduced the photosynthate. On the other hand, the improvement in crop variety can compensate for the negative influence of climate 

change on dry biomass. Meanwhile, NAR was closely related to the fertilizing amount. Since the 1970s, the fertilizing amount of nitrogen has greatly increased, and the crop 

yield was positively correlated to the fertilizing amount [51]. 

Therefore, dry biomass may either increase or decrease, 

which depended on the trade-off between climate change 

and the variety improvement and increased fertilizing 

amount. In our study, the trends in the meteorological factors were consistent with those of Liu et al. [50], resulting in 

that NAR in the wheat season increased and NAR in the 

maize season decreased. The difference between the wheat 

and maize seasons may be due to the different degrees of 

variety improvement or the different rates of change in the 

fertilizing amount (the increase in the fertilizing amount for 

wheat may be higher than that for maize because fertilizing 

is easier with irrigation in the wheat season). 

Although Rs

 in the wheat and maize seasons exhibited no 

significant trends, yet it slightly increased as a result of increased air temperature. Precipitation slightly decreased in 

the wheat season (Table 2), but the soil water content did 

not limit  Rs

 because of the supplement of irrigation. Because Rs

 in the wheat and maize seasons showed no significant trend, NEE in the corresponding seasons depended on 

the changes in NAR. The correlation analysis also showed 

that the annual NAR was not correlated to either the annual 

precipitation or annual water supply (i.e. sum of precipitation and irrigation). Particularly, the annual precipitation in 

1992, 2001, and 2002 was 269, 256, and 296 mm, respectively. The three years were the driest years in the study 

period. However, NAR in the years (1589, 1683, and 1596  

g C m

2

 a

1

, respectively) did not reach the minimum, indicating that the annual NAR was not affected by precipitation under sufficient irrigation. 

3.5  Carbon balance in the WID 

Table 3 lists the average values of the carbon balance in the 

WID. The mean annual GPP absorbed by crops in the WID 

was 9.91 Tg C a

1

  (1  Tg  =  10

12

 g), and the mean annual 

carbon emitted through canopy autotrophic respiration and 

soil respiration was 7.98 Tg C a

1

. The net carbon absorption in the WID was 1.93 Tg C a

1

 when the straw was assumed to return to the fields and the yield harvest was not 

considered. The carbon sink in the wheat season was weaker than that in the maize season. If the carbon in the yield 

was assumed to emit to atmosphere, the carbon loss by crop  680 Lei H M, et al.    Sci China Earth Sci   April (2013) Vol.56 No.4 

yield was 2.16 Tg C a

1

, leading to that the mean annul 

carbon loss was 0.23 Tg C a

1

 in the WID. 

Figure 9 shows the interannual variation in NBP in the 

WID. At the significance level of   = 0.05, NBP significantly increased at a rate of 11.2 g C m

2

 a

2

. The mean annual NBP was  22, 14, and 134 g C m

2

  a

1

 during the 

1980s, 1990s, and after 2000, respectively, which indicated 

that the WID gradually changed from a carbon sink to a 

carbon source. The simulated results on the carbon 

sink/source were consistent with the observations [52, 53]. 

From 1984 to 2006, the crop yield in the WID significantly 

increased at a rate of 20 g m

2

 a

2

. Therefore, the reason for 

the increased NBP was the increase in the crop yield when 

the annual NEE showed no significant trend. Chen et al. [54] 

reported that the harvest index of wheat in northern China 

increased from 0.28 in the 1950s to 0.39 in the 1980s to 

1990s, due to the improvement in the crop variety. Although the relative increment  of the harvest index was 

7.86%, the crop biomass showed no significant difference, 

indicating that the increase in the crop yield of the new crop 

variety was due to the increase in the harvest index. 

3.6  Comparisons with other studies 

A number of studies have reported on the carbon cycle of 

Chinese croplands on the large scale (Table 4), however; 

most of them focused on the simulation of NPP. Using the 

aforementioned NPP/GPP value, we calculated the NPP 

based on the GPP simulated by the SiB2. The comparison 

showed that the results of the different studies were greatly 

different. The average NPP in the WID was greatly higher 

than the national average value, and was close to the values 

in other irrigated areas along the lower Yellow River [57, 

58]. Full irrigation and relatively high cropping index may 

be the reasons for this result [44], and  the high fertilizing 

amount of nitrogen may also lead to high NPP. The statistics in 2000 showed that the fertilizing amount in Shandong 

province where the WID is located ranked the fifth in China 

(after Shanghai, Beijing, Jiangsu, and Fujian) and was 

higher than those of other food production regions [59]. 

Table 3  Mean annual carbon balance in the Weishan Irrigation District 

Period  GPP (Tg C a

1

)  NAR (Tg C a

1

)  Rs

 (Tg C a

1

) NEE (Tg C a

1

)  Cgr

 (Tg C a

1

) NBP (Tg C a

1

) 

Winter wheat season  4.78  4.49 4.23  0.26   

Summer maize season  5.13  4.89 3.22  1.67   

One year  9.91  9.38 7.45  1.93  2.16 0.23 

Figure 9  Interannual variations in the net biome production (NBP) in the Weishan Irrigation District. 

Table 4  Comparison of the net primary production (NPP) in Chinese croplands

a)

Study area Period Method  Average NPP (g C m

2

 a

1

) Source 

Cropland in China 1982–1999 CASA model 171 [7] 

Cropland in China 1981–1999 CEVSA model 606 [55] 

Cropland in China 1971–2000 AVIM model 481 [56] 

Cropland in China 1980–2000 Statistical yield 541 [44] 

Yucheng, Shandong (Panzhuang Irrigation District 

along the lower Yellow River) 

1980–2000 Crop-C model 1360 [57] 

Areas along the lower Yellow River 2000–2009 

Remotely sensed evapotranspiration and

vegetation production model 

870* [58] 

Liaocheng, Shandong (Weishan Irrigation District  

along the lower Yellow River) 

1984–2006 SiB2 model 1005 This study

a) * Calculated from GPP (1500 g C m

2

 a

1

) with NPP/GPP = 0.58. Lei H M, et al.    Sci China Earth Sci   April (2013) Vol.56 No.4  681

For the temporal trend in  NPP, most of the studies 

showed that there was a significant increasing trend in the 

average NPP over Chinese croplands [6, 7, 44, 57], while 

some other studies showed that the increasing trend in NPP 

in Chinese cropland was not significant [56]. For the spatial 

and seasonal distributions of the trends in NPP, Piao et al. 

[7] reported that NPP in the North China Plain showed a 

significant increasing trend in the spring, but significantly 

decreased in the summer, and the maximum increasing rate 

of NPP occurred in the spring. These results are similar with 

ours (i.e. at the significance level of  = 0.05, NPP in the 

winter wheat season significantly increased, while NPP in 

the summer maize season significantly decreased). 

For the studies on the carbon balance in the cropland, if 

the carbon loss by the crop harvest was not included, Tao et 

al. [10] estimated that the  Chinese cropland was a strong 

carbon sink during 1981–2000 using the CEVSA model, 

and Cao et al. [6] estimated that the cropland in the Huang-    

Huai-Hai plain was a strong carbon sink during 1981–1998 

using the same model. For the studies on soil carbon pools, 

Huang and Sun [60], Sun et al. [25], and Pan et al. [26] reported that the soil organic carbon significantly increased in 

the croplands in northern China, which  indicated that the 

cropland was a carbon sink.  However, some researchers 

pointed out that the soil organic carbon in Chinese croplands 

was decreasing [61], which indicated that the cropland was a 

carbon source. In addition, some researchers believed that the 

cropland was approximately carbon-neutral [15]. Although 

the change in the soil carbon storage may be the best indicator of the carbon source or sink, the measurements on soil 

carbon had problems on temporal and spatial representatives. Sun et al. [25] pointed  out that the heterogeneity of 

the spatial distribution of the sampling points could lead to a 

high uncertainty in the estimate of soil organic carbon. For 

example, in the studies of refs. [25, 26, 60], the sampling 

points in the Shandong province along the lower Yellow 

River were all scarce. 

The reasons for the high uncertainties in the simulated 

results were difficult to identify. They may be from the difference in the model structures. For example, the vegetation 

dynamics in the CASA model was represented by the 

changes in the remotely sensed NDVI [7]. The kind of 

model can accurately describe the vegetation dynamic, but 

simplified the effects of soil water stress [7]. Lobell et al. 

[62] pointed out that the light use efficiency (LUE) in the 

CASA model was closely dependent on irrigation. Other 

kinds of model did not require the remotely sensed vegetation index as the input, such as, CEVSA [55], AVIM [56], 

Crop-C [57], and so on. The models can simulate the vegetation dynamics; however, they only considered the effects 

of climate factors, and did not comprehensively consider the 

effects of irrigation, fertilization, and crop management on 

crop growth. A comparison of the two kinds of models 

showed that large differences were found between the simulated results [6]. Moreover, the validation data in the studies on the large scale were scarce [7, 10, 63] due to the limited ground measurements in China, which led to that the 

parameterizations of the models were highly uncertain. NPP 

in the North China Plain was influenced mainly by precipitation [6]. Irrigation was an important component of the 

water supply to the  croplands in the non-humid regions in 

northern China. Therefore, the uncertainties in the irrigation 

water amount input of the model may also lead to large difference in the simulated results. 

4  Conclusions and prospect 

The study simulated the carbon cycle in a typical irrigated 

area along the lower Yellow River from 1984 to 2006 using 

an ecosystem process model with the remote sensing and 

ground measurement data. The  analysis showed that the 

remotely sensed WDRVI could accurately calculate the LAI 

of crops. The mean annual GPP, NAR, Rs

, and NEE in the 

WID were 1733, 1642, 1304, and 338 g C m

2

 a

1

, respectively. At the significance level of   = 0.05, the annual 

NAR, Rs

, and NEE showed no significant trend. However, 

the total NAR in the wheat season significantly increased at 

a rate of 6.21 g C m

2

  a

2

, and the seasonal total NEE of 

wheat significantly decreased at a rate of 5.71 g C m

2

 a

2

. 

The total NAR in the maize season significantly decreased 

at a rate of  7.84 g C m

2

  a

2

, and the total NEE in the 

maize season significantly increased at a rate of 11.15     

g C m

2

 a

2

. If the carbon loss by crop harvest was not included and the straws were assumed to return to the fields, 

the mean annual carbon absorption in the WID was 1.93  

Tg C a

1

. By assuming that the carbon in the crop yield was 

lost to atmosphere, the carbon loss by crop yield was 2.16 

Tg C a

1

 which resulted in a net carbon loss of 0.23 Tg C a

1

, 

indicating that the WID was a weak carbon source. 

It is noted that the study also had some limitations. First, 

we made some simplifications when we calculated the NBP 

in the WID. Second, the influence of soil organic matter on 

the soil respiration modeling was not considered. Soil respiration was positively correlated to organic matter content 

in the topsoil [64]. The organic matter content in the topsoil 

of Chinese croplands increased during the past decades [65]; 

however, the soil respiration model in the SiB2 was parameterized based on the measurements in 2008–2009. Therefore, the model may over-estimate the soil respiration, and 

thus over-estimate NEE and NBP in the past. Third, the 

accuracy of the statistical crop yield may be low, which 

may lead to a large uncertainty in the estimate of NBP. 

Leifeld et al. [66] pointed out that the carbon source/sink 

should be determined by means of various methods (including measurements of NBP  and soil organic carbon). 

Therefore, an accurate estimate of the carbon balance in the 

WID requires further long-term and various measurements 

including the soil organic content. 682 Lei H M, et al.    Sci China Earth Sci   April (2013) Vol.56 No.4 
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