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a b s t r a c t

Streamﬂow forecasts are dynamically updated in real-time, thus facilitating a process of forecast uncertainty evolution. Forecast uncertainty generally decreases over time and as more hydrologic information

becomes available. The process of forecasting and uncertainty updating can be described by the martingale model of forecast evolution (MMFE), which formulates the total forecast uncertainty of a streamﬂow

in one future period as the sum of forecast improvements in the intermediate periods. This study tests the

assumptions, i.e., unbiasedness, Gaussianity, temporal independence, and stationarity, of MMFE using

real-world streamﬂow forecast data. The results show that (1) real-world forecasts can be biased and

tend to underestimate the actual streamﬂow, and (2) real-world forecast uncertainty is non-Gaussian

and heavy-tailed. Based on these statistical tests, this study proposes a generalized martingale model

GMMFE for the simulation of biased and non-Gaussian forecast uncertainties. The new model combines

the normal quantile transform (NQT) with MMFE to formulate the uncertainty evolution of real-world

streamﬂow forecasts. Reservoir operations based on a synthetic forecast by GMMFE illustrates that

applications of streamﬂow forecasting facilitate utility improvements and that special attention should

be focused on the statistical distribution of forecast uncertainty.


 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Streamﬂow forecasts provide useful information about the future. Forecasts are especially important for predicting extreme

hydrologic events and are used to guide management decisions

on water resource systems [3,4,14]. Advances in weather forecasting, hydrologic modeling, and hydro-climatic teleconnections have

improved the ability to forecast streamﬂows [6,23,25]. As a result,

streamﬂow forecasts have been extensively applied in water

resource management. The applications usually take a twocomponent approach. One paper develops innovative models for

streamﬂow forecasting, whereas the other proposes novel optimization models to incorporate the forecast into decision making. For

example, Carpenter and Georgakakos [6] generated an ensemble

streamﬂow forecast that considered both atmospheric forcing

and hydrologic model uncertainty. Yao and Georgakakos [26] then

developed forecast-management schemes with operation rules

and optimization models. Maurer and Lettenmaier [13] assessed

the seasonal streamﬂow predictability of the Mississippi River basin. Based on these data, [14] evaluated the value of seasonal

streamﬂow forecast to guide the Missouri River main-stem

reservoir operation. Ajami et al. [1] proposed an integrated

Bayesian uncertainty estimator to account for input, parameter,

and model structural uncertainty in hydrologic prediction, after

which they demonstrated the importance of considering hydrological uncertainty in sustainable water resource management [2].

Uncertainty is an inherent and important characteristic of

streamﬂow forecasting. In both real-world and hypothetical studies focusing on the applications of streamﬂow forecasting, uncertainty has been identiﬁed as the major inﬂuencing factor of the

value of the forecast [2,16,27]. Real-world studies that aim to develop decision support systems for a targeted river basin generally

address forecast uncertainty using advanced forecast techniques

(e.g., ensemble forecasts) and optimization (or simulation) models

[3,20,26]. Hypothetical studies typically use synthesized forecast

uncertainty based on certain assumptions, e.g., unbiasedness, and

Gaussian distributions [12,24,27]. Testing the validity of these

assumptions is an important issue for this type of hypothetical

study. In this investigation, we use real-world forecast data and

perform statistical tests on assumptions of forecast uncertainty.

Forecast uncertainty evolves in real-time because streamﬂow

forecasts are dynamically updated. On one hand, the uncertainties

of forecasts for future periods become larger as forecast lead-time

increases. On the other hand, the uncertainties of forecasts for a

certain time period decrease over time as more hydrologic

information becomes available. Heath and Jackson [8] proposed a
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uncertainty evolution of demand forecasts in supply chain management. Zhao et al. [27] applied MMFE to model deterministic,

ensemble, and probabilistic streamﬂow forecasts and illustrated

that ensemble and probabilistic forecasts are more effective than

a deterministic forecast. MMFE formulates the total forecast uncertainty of a streamﬂow in one future period as the sum of forecast

improvements in the intermediate periods. This study tests the

assumptions of MMFE, i.e., single-period forecast improvements

are unbiased, Gaussian distributed, temporally independent, and

stationary. Furthermore, this study proposes a generalized martingale model GMMFE to address cases wherein the assumptions are

violated.

The remainder of this paper is organized as follows: Section 2

presents a mathematical formulation of the uncertainty evolution

of real-time streamﬂow forecasts and introduces MMFE and its

assumptions. Section 3 describes the statistical tests of the

assumptions and the results. Section 4 illustrates the GMMFE model used to formulate the evolution of non-Gaussian forecast uncertainties. Section 5 applies the GMMFE in evaluating the effect of

forecast uncertainty distributions on reservoir operations. Finally,

Section 6 contains the discussions and conclusions.

2. Methods

Streamﬂow forecasts are updated in real-time. At the beginning

of one time period, forecasts of streamﬂow in the subsequent time

periods are made based on currently available hydrologic information. As time progresses and as more hydrologic information becomes available, the forecasts are dynamically updated. This

section introduces the MMFE, which describes this dynamic forecast-updating process.

2.1. Mathematical formulation of uncertainty evolution

fs,t

is denoted as the forecast made at period s for the streamﬂow

at period t (s must be less than or equal to t). The forecasts made at

period s form a vector Fs,
 comprising fs,s+i

(i = 0,1,. . .,h; h denotes

the forecast horizon) with lead time ranging from 0 to h periods,

i.e.,

Fs;
 ¼ fs;s

fs;sþ1 . . . fs;sþh


 


ð1Þ

In subsequent periods s + 1, s + 2,. . .,Fs+1,
, Fs+2,
,. . ., are made. A

schematic of the rolling horizon process of a real-time streamﬂow

forecast with a forecast horizon h (h is set as 4 periods for example)

is given at the upper part of Fig. 1.

On one hand, Fs,
 contains multiple forecasts of streamﬂow in

the subsequent h periods. On the other hand, streamﬂow qt at period t corresponds to multiple forecasts made at the precedent periods, as shown in the lower part of Fig. 1. The h + 1 forecasts ft
i,t

(i = h,. . ., 1, 0) corresponding to qt

form a vector F
,t

(F
,t

is differentiated from Fs,
)

F
;t ¼ ft
h;t

ft
hþ1;t

. . . ft;t


 


ð2Þ

The relationship among fs,t

(the estimated value), qt

(the real value), and es,t

(the forecast error) are additive [8,24,27]

es;t ¼ fs;t 
 qt

ð3Þ

The forecast errors of F
,t also form a vector E
,t

E
;t ¼ ½ et
h;t

et
hþ1;t

. . . et;t


 ð4Þ

with es,t

(s = t 
 h, t 
 h + 1,. . .,t), forecast improvement us,t

can be

deﬁned as the difference between the forecast errors of two consecutive periods

us;t ¼ es;t 
 es
1;t

¼ ðfs;t 
 qt

Þ 
 ðfs
1;t 
 qt

Þ
¼ fs;t 
 fs
1;t

ð5Þ

As shown in Eq. (5) and Fig. 1, us,t

represents the improvement

in fs,t

(the period s forecast of qt

) from fs
1,t

(the previous period’s

forecast of qt

). We have a total of h updates of us,t

(s = t 
 h + 1,

t 
 h + 2,. . .,t) for qt

, which correspond to the h + 1 elements in

E
,t and F
,t

.

Assuming that the observation (denoted as ft,t

) at the current

period is perfect,

ft;t ¼ qt

ð6Þ

The relationship between es,t and us,t

can be formulated as follows:

et;t ¼ 0

et
1;t ¼ et;t 
 ut;t ¼ 
ut;t

et
2;t ¼ et
1;t 
 ut
1;t ¼ 
ut;t 
 ut
1;t

. . .

et
hþ1;t ¼ et
hþ2;t 
 ut
hþ2;t ¼ 


Xh
2

i¼0

ut
i;t

et
h;t ¼ et
hþ1;t 
 ut
hþ1;t ¼ 


Xh
1

i¼0

ut
i;t

8

<

:

ð7Þ

By incorporating Eq. (7) into Eq. (3), forecast fs,t

can be formulated

with qt and us,t

(s = t 
 h + 1, t 
 h + 2,. . .,0)

ft;t ¼ qt

ft
1;t ¼ qt 
 ut;t

ft
2;t ¼ qt 
 ut;t 
 ut
1;t

. . .

ft
hþ1;t ¼ qt 


Xh
2

i¼0

ut
i;t

ft
h;t ¼ qt 


Xh
1

i¼0

ut
i;t

8

<

:

ð8Þ

The equation also indicates that

ft;t ¼ ft
1;t þ ut;t

ft
1;t ¼ ft
2;t þ ut
1;t

. . .

ft
hþ1;t ¼ ft
h;t þ ut
hþ1;t

8

<

:

ð9Þ

which implies that fs,t

continues to be improved by us,t as s increases

from t 
 h to t, as shown in Fig. 1.

Time
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Fig. 1. Schematic of uncertainty evolution in real-time streamﬂow forecasting.
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Eqs. (1)–(9) present a decomposition approach for modeling the

evolution of forecast uncertainty. The total forecast uncertainty,

represented by the forecast error, is formulated by single-period

forecast improvements. To characterize us,t

(t = 1,2,. . .,T;

t 
 h < s 6 t), Heath and Jackson [8] proposed MMFE to describe

the sequence Us,
 (s = 1,2,. . .T), i.e.,

Us;
¼ ½ us;s us;sþ1 . . . us;sþh
1 
 ð10Þ

In Eq. (10), Us;
 comprises h elements, whereas Fs;
 in Eq. (1)

comprises h + 1 elements because fs,s+h is a new forecast with the

largest lead-time but without the corresponding forecast

improvement.

MMFE makes the following four assumptions for Us,
: (1) the

mean values of us,s+i
1 (i = 1,2,. . .,h) are zero (unbiasedness); (2)

us,s+i
1 (i = 1,2,. . .,h) are Gaussian distributed (Gaussianity); (3)

us1,s1+i
1 (i = 1,2,. . .,h) and us2,s2+j
1 (j = 1,2,. . .,h) (s1 and s2 indicate two different periods) are independent (temporal independence); and (4) the distributions of us,s+i
1 (i = 1,2,. . .,h) do not

change with the value of s (stationarity). With these four assumptions, us,s+i
1 (s = 1,2,. . .,T; i = 1,2,. . .,h) can be described by the

variance–covariance matrix of Us;


VCV ¼

var1 cov1;2 
 
 
 cov1;h

cov2;1 var2 
 
 
 cov2;h

.

.

.

.

.

.

.

.

.

.

.

.

covh;1 covh;2 
 
 
 varh

2

4

3

5

ð11Þ

where vari denotes the variance of us,s+i
1, i.e., the magnitude of the

uncertainty of a single improvement, and covi,j

represents the

covariance of us,s+i
1 and us,s+j
1. Considering the stationarity

assumption, vari and covi,j are identical for all s, i.e., non-timevarying.

Based on the assumptions of unbiasedness and Gaussianity, the

uncertainty of ft
i,t

can be represented by the variance of the forecast error, i.e., et
i;t ¼ ft
i;t 
 qt

(Eq. (3)) and et
i;t ¼ 


Pi
1

j¼0

ut
j;t

(Eq.

(7)). Furthermore, based on the assumptions of temporal independence and stationarity, the variance of et
i;t

can be calculated by

varðet
i;t

Þ ¼

Xi

j¼1

varj

ð12Þ

Eq. (12) indicates that a longer lead-time i results in greater

forecast uncertainty. Moreover, the equation also implies that, as

time progresses towards t, the uncertainty of ft
i,t decreases.

The MMFE approach was developed and applied to the simulation of demand forecast in supply chain management [8]. Zhao

et al. [27] applied MMFE to simulate deterministic, ensemble,

and probabilistic streamﬂow forecasts. Although not a forecast

model, MMFE remains a useful statistical model that can simulate

the uncertainty evolution of streamﬂow forecasts. In certain applications, MMFE can generate synthetic forecasts based on stream-

ﬂow data and the variance–covariance matrix, thus presenting

possible forecast scenarios of the future [8,27]. The applications

of MMFE basically include two steps. The ﬁrst step is the speciﬁcation of the variance–covariance matrix VCV (Eq. (11)), followed by

a synthetic generation of us,s+i
1 (i = 1,2,. . .,h) through the Cholesky

decomposition of VCV. By assembling us,s+i
1, U
;t can be obtained

as

U
;t ¼ ½ ut
hþ1;t ut
hþ2;t

. . . ut;t


 ð13Þ

Furthermore, with U
;t and the given qt

(t = 1,2,. . .,T), E
,t

(Eqs.

(4) and (7)) and F
,t

(Eqs. (2) and (8)) can be synthetically

generated.

Fig. 2. Daily updated streamﬂow forecasts of TGR in 2008.
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MMFE provides an effective decomposition approach for modeling the stochastic process of forecast uncertainty evolution based

on the four assumptions. When applying the MMFE model to

real-world studies, the validity of the assumptions must be veri-

ﬁed. This section applies real-world forecast data on the Three

Gorges Reservoir (TGR) to test the assumptions.

3.1. Description of data and statistical tests

TGR controls ﬂooding events in the upper Yangtze River and

plays a key role in the ﬂood protection of the middle and the lower reaches of this river [5,12,22]. To aid in the operation of the

TGR, inﬂow forecasts are made based on the main upstream ﬂow,

the tributary ﬂow from the Wu River, and the ﬂow from the TGR

intervening basin [12]. The intervening basin has a catchment

area of 55,907 km2

(approximately 5.6% of the drainage area of

TGR) but contributes to 20% of the ﬂood peaks of TGR inﬂow on

average [12,22]. The complex terrain of the intervening basin

makes the prediction of TGR inﬂow reliably at a long lead time

difﬁcult. The current inﬂow forecast of TGR is updated daily with

a forecast horizon of 4 d. This study applies the forecast data of

the TGR from May to September in 2004–2009 to test the

assumptions of MMFE. Fig. 2 presents an example of the rolling-horizon forecast of the largest ﬂood in 2008. For the ﬂood

peak occurring around August 16th (DOY 229), the forecast improved as time progressed toward August 16th, ﬁnally ending

at zero at the time of observation.

To test the four assumptions of MMFE, the data processing procedure was employed as follows: First, the forecast error sequence

E
,t was calculated with the rolling horizon forecast Fs,
 (Eqs. (3)

and (4)). The forecast update us,t was then calculated based on

the forecast error sequence (Eq. (5)). Finally, the forecast updates

were arranged as Us,
 and U
,t

(Eqs. (10) and (13)). Us,
 and U
,t

in May/June (MJ, the pre-ﬂood season) and July/August/September

(JAS, the main ﬂood season) were separated and tested independently. The statistical tests of the assumptions and the dataset

are summarized in Table 1.

(1) Test of unbiasedness: The null hypothesis is that the mean

value of us,s+i
1 (i = 1,2,. . .,4) in Us,
 is zero. The test applies

the bootstrap method to draw the N independent random

sample sets with replacements from the sample population

[7]. The conﬁdence interval of the mean value of us,s+i
1 is

estimated based on the mean values of N random sample

sets. If the conﬁdence interval contains zero, the null

hypothesis is accepted; otherwise, the null hypothesis is

rejected.

(2) Test of Gaussianity: The null hypothesis is that the us,s+i
1

(i = 1,2,. . ., 4) ﬁts Gaussian distribution. The Shapiro–

Wilk test investigates the null hypothesis that the samples

came from a normally distributed population. If us,s+i
1 does

not ﬁt Gaussian distribution, the test rejects the null

hypothesis.

(3) Test of temporal independence: The null hypothesis is that

U
,t = [ut
3,t

, ut
2,t

, ut
1,t

, ut,t

] (the improvements of forecast

of qt at different periods) are independent. The correlation

assesses the linear dependence relationship between two

random variables. If no dependence relationship exists, the

correlation is zero. As a comparison, this study also tests

the cross-correlation among Us,
 = [us,s

, us,s+1, us,s+2, us,s+3]

(the updates made at the same period). Considering that

us,t

can be non-Gaussian, the non-parametric Spearman correlation is used, and the corresponding p-value (i.e., the

probability of obtaining a test statistic at least as extreme

as the one that was actually observed) indicates statistical

signiﬁcance.

(4) Test of stationarity: The null hypothesis is that us,s+i
1

(i = 1,2,. . ., 4) in MJ and us,s+i
1 (i = 1,2,. . ., 4) in JAS have the

same distribution. The two-sample Kolmogrov–Smirnov test

is applied to compare the cumulative distribution functions

(CDF) of us,s+i
1 in MJ (the pre-ﬂood season) and JAS (the

main ﬂood season). If the two CDFs are different, the test

rejects the null hypothesis; otherwise, the null hypothesis

is accepted.

The tests are conducted using the Hypothesis Test Toolbox of

Matlab 2010a.

3.2. Test of unbiasedness

Table 3 presents the mean values of the sample and the 95%

conﬁdence intervals derived by the bootstrap test. All mean values

are positive, which implies that the forecast of TGR is biased and

tends to underestimate the actual streamﬂow. The null hypotheses

for us,s

(MJ), us,s+2 (MJ), us,s+3 (MJ), us,s+2 (JAS), and us,s+3 (JAS) are rejected. Although the conﬁdence intervals of us,s+1 (MJ), us,s

(JAS),

and us,s+1 (JAS) include the zero value, they are near the lower

bound. Based on Table 2, the null hypothesis that the mean value

of us,s+i
1 (i = 1,2,. . ., 4) is zero is generally rejected. The mean values of [us,s

, us,s+1, us,s+2, us,s+3] are positive, and their conﬁdence

intervals also tend to be positive. Therefore, the forecasts of TGR

in both the pre- and main ﬂood seasons tend to be underestimations of the actual streamﬂow.

3.3. Test of Gaussian distribution

In the test for Gaussianity, the Shapiro–Wilk test rejects the null

hypothesis when the signiﬁcance level is set at 1%, which means

that the distribution of us,s+i
1 (i = 1,2,. . .,4) is unlikely (the probability is less than 1%) to be Gaussian. To illustrate the non-Gaussian

distribution, the quantiles of the samples [us,s

, us,s+1, us,s+2, us,s+3] are

plotted against the theoretical quantiles from the Gaussian ﬁts in

Fig. 3. If the two distributions being compared are similar, there

would have been a linear relationship between the quantiles.

However, the quantile–quantile plot shows no linear relationship

between the quantiles. Moreover, the positive and negative extreme values of the samples have a wider range than the Gaussians.

Table 1

Statistical tests and datasets applied to testing the assumptions of the MMFE.

Assumptions Statistical tests Datasets

Unbiasedness Bootstrap based test Us,
 in MJ and

JAS

Gaussianity Shapiro–Wilk test Us,
 in MJ and

JAS

Temporal

independence

Spearman correlation U
,t and Us,
 in

JAS

Stationarity Two-sample Kolmogrov–Smirnov

test

Us,
 in MJ and

JAS

Table 2

Sample means and 95% conﬁdence intervals for MJ and JAS.

The pre-ﬂood season (MJ) The main ﬂood season (JAS)

Sample

mean (m3

/s)

95% conﬁdence

interval (m3

/s)

Sample

mean (m3

/s)

95% conﬁdence

interval (m3

/s)

us,s 119.0 [2.7, 265.0] 16.5 [
79.1,131.7]

us,s+1 137.1 [
2,317.3] 82.9 [
41.8,243.8]

us,s+2 306.3 [144.2, 497.1] 336.4 [162.3, 536.6]

us,s+3 368.5 [194.0, 591.0] 693.2 [466.0, 953.7]
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approximation of forecast improvements by Gaussian distributions

results in the loss of information on extreme values [19].

3.4. Test of temporal independence

U
,t = [ut
3,t

, ut
2,t

, ut
1,t

, ut,t

] represents the forecast improvements targeted at the same qt

. The time periods when the forecast

improvements were made are different. The scatter plots of U
,t are

presented in Fig. 4. The corresponding p-values for the cross correlations of U
,t are greater than 5%, which suggests an acceptance of

the null hypothesis of temporal independence, i.e., forecast

improvements made at different periods are independent. Furthermore, the scatter plots of Us,
 = [us,s

, us,s+1, us,s+2, us,s+3] (forecast

improvements made at the same period s) are presented as a comparison. Fig. 5 shows that Us,
 exhibits strong cross correlations,

with the p-values of the correlations being less than 1%.

The forecast improvements can generally be attributed to the

updates of hydrological information, e.g., watershed initial

conditions and weather forecasts [10,16,20]. The progression

U
,t = [ut
3,t

, ut
2,t

, ut
1,t

, ut,t

] results from updates of hydrologic

information at different periods, whereas the collection Us,
 = [us,s

,

us,s+1, us,s+2, us,s+3] can be attributed to the update of hydrologic

information at the same period. The independence of U
,t and the

dependence of Us,
 implies that the update of hydrologic information can exhibit temporal independence relationships. Otherwise,

more information could be inferred from the currently available

hydrologic information.

3.5. Test of stationarity

The two-sample Kolmogrov–Smirnov test examines the similarity of the CDF of us,s+i
1 (i = 1,2,. . ., 4) in MJ and JAS. The test also

compares us,s+i
1 (i = 1,2,. . .,4) in July with August, August with

September, and September with July. The p-values, i.e., the probability of obtaining a test statistic that is at least as extreme as the

observed one, of the tests are listed in Table 3. The p-values in the

case MJ vs. JAS are lower than 0.100, which indicates that the probability that the distributions of us,s+i
1 (i = 1,2,. . ., 4) in the pre- and

the main ﬂood seasons are the same is less than 10%. Moreover, the

p-values of the other three cases (July vs. August, August vs. September, and September vs. July) are larger than 0.100, implying

that the distributions of us,s+i
1 (i = 1,2,. . ., 4) in July, August, and

September are likely to be the same. The results shown in Table 3

generally suggest that us,s+i
1 (i = 1,2,. . .,4) is non-stationary in the

pre- and main ﬂood seasons, but us,s+i
1 can be stationary during

the main ﬂood season.

3.6. Implications from statistical tests

The results of the statistical tests based on streamﬂow forecast

records of TGR illustrate that: (1) real-world forecasts are biased

and tend to underestimate the actual streamﬂow; (2) the forecast

improvements do not follow a Gaussian distribution, and their distributions are heavy-tailed; (3) forecast improvements made at different periods are independent, but those made at the same period

are dependent; and (4) forecast improvements are not stationary.

The four assumptions of MMFE enable applications of the variance–covariance matrix to simulate the evolution of forecast

uncertainty [8,27]. The rejections of unbiasedness and Gaussianity

indicate that variance–covariance is insufﬁcient to simulate the

evolution of real-world forecast uncertainty and that more information about statistical distribution is needed. The rejection of stationarity indicates that different distributions should be speciﬁed

for forecast improvements in different seasons. Nevertheless, the

acceptance of temporal independence enables the period-by-period independent simulation of Us;
 (s = 1,2,. . .,T).

In the following section, we focus on the handling of biased

non-Gaussian forecast uncertainty during the main ﬂood season.

4. Accounting for non-Gaussian forecast uncertainties

This section proposes a generalized martingale model called

GMMFE to deal with biased, non-Gaussian forecast improvements.

The new model incorporates the normal quantile transform (NQT)

method into MMFE. This section demonstrates the applications of

Table 3

p-values of the two-sample Kolmogrov–Smirnov test of the distributions of forecast

improvements.

us,s us,s+1 us,s+2 us,s+3

MJ vs. JAS 0.078 0.020 0.055 0.051

July vs. August 0.892 0.175 0.219 0.402

August vs. September 0.893 0.829 0.342 0.123

September vs. July 0.924 0.591 0.479 0.362

Fig. 3. Quantile–quantile plot of the sample quantiles of forecast improvements against the theoretical quantiles from the Gaussian ﬁts.
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TGR.

4.1. Generalized martingale model

The MMFE model deals with unbiased Gaussian samples and

synthesizes the unbiased Gaussian forecast improvements based

on the variance–covariance matrix [8,27]. However, the nonGaussian properties of forecast improvements hinder the application of MMFE in real-world studies. To bridge this gap, this study

integrates the NQT method, which can convert biased non-Gaussian distributed variables into unbiased Gaussian variables [11,15],

with the conventional MMFE model. This new model GMMFE comprises three steps: NQT, MMFE, and inverse-NQT, as shown in

Fig. 6.

(1) Step 1 is the transformation of variables by NQT. us,s+i
1

(i = 1,2,. . .,h) are converted into standard Gaussian random

variables u

0

s,s+i
1 (i = 1,2,. . .,h) based on

u

0

s;sþi
1

¼ CDF


1

Gaussian

ðCDFi

ðus;sþi
1ÞÞ ð14Þ

where CDFi

ðÞ is the CDF of us,s+i
1, and CDF


1

Gaussian

ðÞ is the inverse of

the CDF of standard Gaussian distribution. Eq. (14) comprises two

sub-steps. First, CDFi

ðÞ transforms us,s+i
1 into the corresponding

cumulative probability, which is uniformly distributed between 0

and 1. Thereafter, CDF


1

Gaussian

ðÞ converts the cumulative probabilities

into the standard Gaussian random u

0

s;sþi
1

. The principle behind

NQT is similar to that of the quantile–quantile plot [19] in that

the two random variables are matched based on the values of their

cumulative probability.

(2) Step 2 is the application of MMFE to the transformed variables. The variance–covariance of u

0

s,s+i
1 (i = 1,2,. . .,h) is calculated, after which u

0

i

(i = 1,2,. . .,h) is generated based on

the Cholesky decomposition of the variance–covariance

matrix. Both u

0

i

(i = 1,2,. . .,h) and u

0

s,s+i
1 (i = 1,2,. . .,h) are

standard Gaussian random variables that have the same

cross correlation relationships.

(3) Step 3 is the inverse transformation of the variables by NQT.

u

0

i

(i = 1,2,. . .,h) and forecast improvements ui

(i = 1,2,. . .,h)

are generated with the inverse application of NQT

ui ¼ CDF


1

i

ðCDFGaussianðu

0

i

ÞÞ ð15Þ

In Eq. (15), CDFGaussianðÞ converts u

0

i

into the corresponding

cumulative probability, whereas CDF


1

i

ðÞ converts the cumulative

probabilities into new forecast updates ui

(i = 1,2,. . .,h). Notably,

CDF


1

i

ðÞ plays an important role in determining the statistical distribution of ui

(i = 1,2,. . .,h). For example, the substitution of

CDF


1

i

ðÞ with the inverse of the CDFs of other distributions, e.g.,

Nðli

; r

2

i

Þ, enables ui

to ﬁt the Gaussian distribution with mean li

and standard deviation ri

.

When applying GMMFE to real-world cases, these three steps

are needed, and special attention should be focused on ﬁtting the

CDF for the given samples of us,s+i
1 (i = 1,2,. . .,h). However, the

ﬁrst step of NQT for handling given samples is unnecessary for

hypothetical studies. On the other hand, the two steps of MMFE

and inverse-NQT are needed. The variance–covariance matrix

should be set for Step 2 to account for the dependence relationships [8,9]. CDF


1

i

ðÞ (i = 1,2,. . .,h) should be speciﬁed for Step 3 to

determine the statistical distribution of forecast improvements.

Fig. 4. Scatter plots and Spearman cross correlations of U
,t

in the main ﬂood season.
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(Eq. (10)) are assumed to be independent, only Step 3 is needed,

and ui

(i = 1,2,. . .,h) can be individually simulated. The streamﬂow

forecast can then be synthesized based on Eqs. (1)–(9).

4.2. Simulation of streamﬂow forecast

The GMMFE model is applied to generate synthetic streamﬂow

forecast improvements for the TGR during the main ﬂood season of

2008 (Fig. 2). The CDF of us,s+i
1 (i = 1,2,. . .,h) samples are estimated by the non-parametric kernel density function [17]. To

examine the effects of the assumptions of unbiasedness and Gaussianity, three cases are designed:

(1) In the case UG, CDF


1

i

ðÞ in Eq. (15) is substituted by the

inverse of the CDF of Nð0; r

2

i

Þ, and ui ﬁts unbiased Gaussian

distribution;

(2) In the case BG, CDF


1

i

ðÞis substituted by the inverse of the CDF

of Nðli

; r

2

i

Þ, and ui ﬁts the biased Gaussian distribution; and

(3) In the case NG, CDF


1

i

ðÞ is represented by the inverse of the

kernel cumulative density function, and ui ﬁts the nonGaussian distribution. In the cases of UG and BG, li

and ri

denote the mean and the standard deviation of the us,s+i
1

(i = 1,2,. . .,h; h = 4) samples of the main ﬂood season in

2008, respectively.

The GMMFE model generates forecast improvements at each

period (Eq. (10)) and simulates streamﬂow forecast (Eqs. (7) and

(8)). We run 100 Monte-Carlo simulations with GMMFE and derive

the forecast errors of synthetic forecast with a lead-time of 1 d to

4 d for the three cases. The mean, standard deviation (stdev), and

the coefﬁcient of skewness (Cs

) of the forecast errors are presented

by boxplots, as shown in Fig. 7. The boxplots illustrate the median

as a central mark, the 25th and 75th percentiles as edges, the range

of data points as whiskers, and the outliers as plus signs. For comparison, the statistics of the forecast errors of the TGR streamﬂow

forecast records are represented by the circles linked by a line in

Fig. 7.

Fig. 5. Scatter plots and Spearman cross correlations of Us,
 in the main ﬂood season.

NQT

Non-Gaussian 

samples of forecast 

improvements

Unbiased 

Gaussian 

random samples

Synthetic 

unbiased Gaussian  

random numbers

MMFE

Synthetic  

Non-Gaussian  

forecast improvements

Inverse-NQT

Fig. 6. Flowchart of the generalized martingale model of forecast evolution (GMMFE).
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assumption results in the underestimation of the forecast error

by approximately 1000 m3

/s when the lead time is 4 d. The effect

of the violation of the Gaussianity assumption is illustrated by

the Cs values in the cases of UG and BG, which indicates that this

assumption results in the underestimation of the skewness of the

forecast errors because Gaussian distribution is symmetric. The

case of NG considers both unbiased and non-Gaussian forecast

uncertainty, which results in statistics of synthetic forecast errors

similar to actual values. In summary, the three cases demonstrate

the effectiveness and generality of the GMMFE model in simulating

evolution of forecast uncertainties.

5. Effect of forecast uncertainty distribution on reservoir

operation

This study examines the non-Gaussian forecast uncertainties

for the TGR. Notably, real-world forecast uncertainties are complex

and are dependent on forecast models and hydrological characteristics. Thus, such uncertainties can be Gaussian, biased Gaussian, or

non-Gaussian. Simply assuming a Gaussian distribution for the

streamﬂow forecast may set incorrect expectations on the operation results in some cases. The GMMFE model is capable of simulating forecast uncertainties with different statistical

distributions. Therefore, this section evaluates the effects of unbiased Gaussian, biased Gaussian, and non-Gaussian forecast uncertainties on reservoir operation using streamﬂow forecasts

generated by GMMFE.

5.1. Rolling-horizon reservoir operation

Reservoir operation utilizes a rolling-horizon process to incorporate the dynamically updated streamﬂow forecast into decisionmaking [3,18,28]. This study employs a hypothetical reservoir and

synthesizes streamﬂow forecasts for reservoir operation. The reservoir operation model aims to maximize total utility, i.e.,

max

Xn

i¼1

gi

ðri

Þ
s:t:

si þ xi 
 ri ¼ siþ1 ði ¼ 1; . . . ; nÞ

smin 6 si 6 smax ði ¼ 1; . . . ; nÞ

s1 ¼ sini

snþ1 ¼ send

ri P rmin

8

<

:

ð16Þ

where i is the index of time periods ranging from 1 (the current period) to n (the operation horizon); si denotes the reservoir storage at

the beginning of period i; xi and ri

represent the period i’s stream-

ﬂow forecast and release decision respectively; smin and smax are

the minimum and the maximum of reservoir storage, respectively;

sini and send denote initial and ending storage, respectively; and rmin

is the lower bound of reservoir release.

In the reservoir operation with a study horizon of T periods, the

rolling-horizon process comprises the following steps:

(1) Release decisions are made based on the forecasts made at

the current period s

½ x1 x2 . . . xn 
 ¼ ½ fs;s

fs;sþ1 . . . fs;T 
 ð17Þ

(2) The current release decision r1 is implemented, and r1 is

saved as rs

.

(3) The next period s + 1 is considered, and the initial storage

and streamﬂow forecast are updated:

sini ¼ s1 þ qs 
 rs

ð18Þ

½ x1 x2 . . . xn 
 ¼ ½ fsþ1;sþ1 fsþ1;sþ2 . . . fsþ1;T 
 ð19Þ

Fig. 7. Distribution of the means, standard deviations, and coefﬁcients of skewness of the observed and simulated forecast errors (circles linked by a line represent observed

statistics, whereas boxplots are for simulated statistics).

48 T. Zhao et al. / Advances in Water Resources 57 (2013) 41–51These three steps are repeated until the end of the study horizon T. The operation horizon n in Eq. (16) notably reduces from T

to 1 as s progresses from 1 to T. In each period, the current release

decision is saved, and the single-period utility is evaluated. The total utility is the sum of all single-period utilities. Finally, the total

utility of the rolling-horizon reservoir operation can be compared

with that of the baseline scenario, which is deﬁned as a case without any reservoir regulation. The utility improvement indicates the

value of forecast-based reservoir operation.

5.2. Experiment setting

The experiment is set up based on the reservoir operation model given by Zhao et al. [27]. The reservoir takes a concave utility

function, i.e., ri exhibits a diminishing marginal utility (for instance,

the case of water supply operation)

gi

ðri

Þ ¼

ﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃ
r

i
rmin

rmax
rmin

q

ðrmax P ri P rminÞ

1 ðri > rmaxÞ

(

ð20Þ

The parameters of the reservoir are as follows: smin ¼ 0,

rmin = 0.2, rmax = 1.2, and sini ¼ send ¼

smax

2

. The study horizon T is

set as six periods. Two scenarios are set for smax, i.e., 0.5 and 2.0,

examining the effects of reservoir storage capacity [21,28].

The reservoir inﬂow is generated using a simpliﬁed Thomas–

Fiering model, i.e.,

qtþ1 ¼ l þ qflow

ðqt 
 lÞ þ

ﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃ
1 
 q2

flow

q

ðlCv Þd ð21Þ

where qt denotes streamﬂow in period t; d is a standard Gaussian

random number for Monte-Carlo simulation; and the parameters

are set as l = 1, qflow

= 0.4, and Cv = 0.3.

The streamﬂow forecast is generated by GMMFE. To simplify

the formulation, us,t

(t = s,. . .,T) are treated as independent and

identically distributed random variables, and us,t

is simulated individually. The skewedness in forecast errors (Fig. 7) is considered by

setting the positively and negatively skewed distributions for nonGaussian forecast uncertainty.

Four cases are designed:

(1) In the case of UG, us,t

is from an unbiased Gaussian distribution with a mean of 0 and a stdev of r

us;t ¼ rd; d 
 Nð0; 1

2

Þ ð22Þ

(2) In the case of BG, us,t

is from a biased and Gaussian distribution with a mean of D and a stdev of r

us;t ¼ D þ rd; d 
 Nð0; 1

2

Þ ð23Þ

(3) In the case of NGn, us,t

is from a negatively-skewed log-normal distribution with a mean of D and a stdev of r

us;t ¼ D þ rð2 
 dÞ; d 
 Lognð2; 1

2

Þ ð24Þ

(4) In the case of NGp, us,t

is from a positively-skewed log-normal distribution with a mean of D and a stdev of r

us;t ¼ D þ rðd 
 2Þ; d 
 Lognð2; 1

2

Þ ð25Þ

In Eqs. (24) and (25), d is from the log-normal distribution with

a mean of 2 and a stdev of 1.

By ﬁxing D as 0.05 and varying r from 0.02 to 0.20, this study

generates streamﬂow forecasts for the four deﬁned uncertainty

distributions using GMMFE. The forecasts are incorporated into

the rolling horizon reservoir operation. The reservoir optimization

model (Eq. 16) is solved by improved dynamic programming (IDP,

[29]), which takes advantage of concavity of objective function and

improves computational efﬁciency of conventional dynamic programming. The effects of forecast uncertainty distribution on reservoir operation among the four cases are analyzed by comparing

the utility improvements from the baseline case without any reservoir regulation.

5.3. Result analysis

This study conducts 100 Monte–Carlo experiments for each r

value and evaluates the utility improvements for the four cases

of forecast uncertainty. Fig. 8 presents the utility improvements

when reservoir capacity smax is 0.50. The applications of stream-

ﬂow facilitate utility improvements in comparison with the baseline case. The mean of the utility improvements decreases, and

the stdev of utility improvements tends to slightly increase with

increasing r. Comparing the UG case with the three other cases,

the presence of D in the BG, NGn, and NGp cases reduces the mean

utility improvements and contributes to the increase in standard

deviation.

Fig. 9 further presents the utility improvements when reservoir

capacity smax = 2.0. Compared with Fig. 8, the applications of

streamﬂow forecast bring about greater but also more variable

utility improvements. In the BG, NGn and NGp cases, there are

marginal differences in terms of the mean of utility improvements.

Moreover, there are minimal differences in the stdev of the utility

improvements when r is small, but major differences in stdev are

observed as r increases. The stdev of the utility improvements

exhibits the most rapid increase in the NGp case (biased and positively-skewed forecast uncertainty distribution), followed by BG

(biased and Gaussian distribution), NGn (biased and negativelyskewed distribution), and UG (unbiased and Gaussian distribution)

cases. A larger reservoir can regulate streamﬂow at a longer timeframe and exploit forecasts with a longer lead time [21]. However,

a streamﬂow forecast with a longer lead time involves greater

uncertainty (Eq. (12)). The effects of the non-Gaussian forecast

uncertainty on the reservoir operation are greater in Fig. 9 than

in Fig. 8. This ﬁnding implies that more attention should be focused

on the non-Gaussian characteristics of forecast uncertainty in the

operation of larger reservoirs. Given that unbiased-Gaussian distributions are often simply assumed for forecast uncertainties in real

cases, Figs. 8 and 9 suggest that this assumption results in the overestimation of the utilities from the applications of the streamﬂow

forecast if the actual uncertainties are not unbiased-Gaussian distributed. Therefore, more attention should be paid to evaluating

Fig. 8. Relationship of forecast uncertainty with the mean and standard deviation

of utility improvements (smax = 0.50).
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streamﬂow forecasts.

Furthermore, the beneﬁt from streamﬂow forecasts in reservoir

operations may vary considerably because of the dependence on a

number of factors, e.g., hydrological characteristics, objective

functions, and physical constraints [14,21,27]. Thus, the effect of

forecast uncertainty distribution on reservoir operations may also

vary on a case-by-case basis. However, properly estimating the

forecast uncertainty distribution is evidently necessary before

utilization, and the GMMFE model provides a general tool to

address this issue.

6. Discussions and conclusions

Streamﬂow forecasts are dynamically updated in real-time,

resulting in a process of forecast evolution. The martingale model

of forecast evolution (MMFE) provides a conceptual statistical

approach for modeling this process. The applicability of MMFE to

real-world data depends on four assumptions, i.e., unbiasedness,

Gaussianity, temporal independence, and stationarity. This study

conducts statistical tests on these four assumptions using stream-

ﬂow forecast data on the Three Gorges Reservoir (TGR) from 2004

to 2009. The results illustrate that (1) streamﬂow forecasts are

negatively biased; (2) forecast uncertainties are non-Gaussian

and heavy-tailed; (3) forecast improvements made at different

periods exhibit temporal independence, whereas those made at

the same period are dependent; and (4) forecast improvements

are non-stationary, and their distributions can vary based on the

different seasons of the year.

To address the challenges raised by the statistical tests, this

study proposes a new model GMMFE to deal with biased nonGaussian forecast uncertainties by combining the normal quantile

transform (NQT) method with the MMFE model. The GMMFE model comprises three steps. First, the samples of forecast improvement are converted into Gaussian random numbers by NQT to

obtain the variance–covariance matrix (VCV). Second, new Gaussian random numbers are generated by MMFE with the VCV. Finally,

new samples of forecast improvements are generated through the

inverse application of NQT. We present a study that synthesizes

the streamﬂow forecasts with the GMMFE model, which illustrates

the effectiveness and generalizability of the GMMFE.

Based on the characteristics of generality, the GMMFE model is

capable of simulating forecast uncertainties with different statistical distributions. Therefore, this paper evaluates the effect of

unbiased Gaussian, biased Gaussian, and non-Gaussian forecast

uncertainties on reservoir operations, which shows that incorrect

assumptions on uncertainty distribution can results in the overestimation of reservoir operation utility. Thus, special attention

should be paid to the characteristics of uncertainty distribution

when employing forecasts in real-time operations. The proposed

GMMFE model provides an effective and generalized tool for

addressing this issue.
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