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Qutrits, the triple level quantum systems in various forms, have been proposed for quantum information
processing recently. By the methods presented in this paper, a biphotonic qutrit, which is encoded with the
polarizations of two photons in the same spatial-temporal mode, can be mapped to a single-photon qutrit in
spatial modes. It will make arbitrary unitary operation on such biphotonic qutrit possible if we can also realize
the inverse map to polarization space. Among the two schemes proposed in this paper, the one based only on
linear optics realizes an arbitrary U�3� operation with a very small success probability. However, if added with
weak nonlinearity, the success probability can be greatly improved. These schemes are feasible with the current
experimental technology.
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I. INTRODUCTION

Quantum communications and quantum computation ap-
ply quantum states to store and transmit information. The
capacity of a state for the purpose is dependent on its dimen-
sion, so the higher dimension of a state means the higher
capacity to carry information. In addition, the use of higher-
dimensional quantum states, e.g., qudits and entangled qu-
dits, enjoys many advantages such as enhanced security in
quantum cryptography �1�, more efficient quantum logic gate
�2�, and others. Qudits and entangled qudits therefore attract
many researches recently. The proposals for generating qu-
dits and entangled qudits include orbital angular-momentum-
entangled qutrits �3�, pixel-entangled qudits �4�, energy-time-
entangled and time-bin-entangled qudits �5�, and biphotonic
qutrits encoded with polarization degree of freedom �6–8�.
In this paper, we will focus on biphotonic qutrits which are
represented with the polarizations of two photons in the same
spatial-temporal mode �9�—�0�3��HH�, �1�3��HV�, and
�2�3��VV�, where H and V denote the horizontal and vertical
polarizations, respectively. The generation of such qutrits in-
cluding the entangled ones has been demonstrated �6,8�. In
an recent work by Lanyon et al. �8�, with an ancilla qubit and
a Fock state filter associated with some wave plates, a bipho-
tonic state as the linear combination of ��0�3 , �1�3 , �2�3	 is
generated from the logic state �0�3. To manipulate a biphoto-
nic qutrit in this form, one should know how to implement a
unitary operation on such qutrits. However, due to the indis-
tinguishableness of two photons in the same spatial-temporal
mode, it is very difficult to realize a simple unitary operation
on such biphotonic qutrit �10�. Here we present two schemes
realizing the transformation from a biphotonic qutrit to any
other biphotonic qutrit, i.e., arbitrary unitary operations U�3�
on biphotonic qutrits. The schemes work with transforming
the input biphotonic qutrits to the corresponding single-
photon qutrits in spatial modes and then mapping the single-
photon qutrits back to the original polarization modes of two
photons.

The rest of the paper is organized as follows. In Sec. II,
we present a purely linear optical scheme of the transforma-
tion and inverse transformation from a biphotonic qutrit in
the same spatial-temporal mode to the corresponding single-
photon qutrit. In Sec. III, we improve on the linear optical
scheme with weak cross-Kerr nonlinearity, making the real-
ization of bi-directional mapping much more efficient. Sec-
tion IV concludes the work with a brief discussion.

II. BI-DIRECTIONAL MAPPING WITH LINEAR
OPTICAL ELEMENTS

Any unitary operation on a single-photon qudits in spatial
modes can be performed by a linear optical multiport inter-
ferometer �LOMI� �11�. It is therefore possible to manipulate
biphotonic qutrits following such strategy: first, transform a
biphotonic qutrit to a single-photon qutrit, then perform the
desired operations on this single-photon qutrit, and finally
transform the single-photon qutrit back to a biphotonic qutrit.
In what follows, we present the details of the procedure,
which is realized only with linear optical elements.

A. Transforming biphoton qutrit to single-photon qutrit

Suppose a biphotonic qutrit is initially prepared as

���in = ��0�3 + ��1�3 + ��2�3, �1�

where ���2+ ���2+ ���2=1. The operations shown in Fig. 1
implement the map

���in → ��0�S + ��1�S + ��2�S = ���S, �2�

where ���S is a single-photon qutrit encoded with the spatial
modes �i�S �i=0,1 ,2� of the single photon. Here we first
apply a variable beam splitter �VBS� to the input biphotonic
qutrit, realizing the following transformation:
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 �

�2
aH

†2 + �aH
† aV

† +
�

�2
aV

†2��vac�

→ 
 �

�2
�raH1

† + taH2
† �2 + ��raH1

† + taH2
† ��raV1

† + taV2
† �

+
�

�2
�raV1

† + taV2
† �2��vac� , �3�

where 1 and 2 denote the different paths and t �r� is the
transmissivity �reflectivity� of the VBS.

Next, in order to project out the proper components, we
introduce two single photons �H� and �V� as the ancilla and
make them interfere with the output modes of the polarizing
beam splitters �PBS1� on two 50:50 beam splitters �BS�, re-
spectively. Due to the Hong-Ou-Mandal interference effect
�12�, two indistinguishable photons will be bunching to the
same output mode of BS and then we can use the proper post
selection to get the desired components. To see the details,
we show the evolution of each input mode of two photons as
follows:

aH1
† → aH3

† ,aH2
† →

1

�2
�aH4

† + aHD1

† � ,

aV1
† → aVP1

† ,aV2
† →

1

�2
�aV5

† + aVD2

† � , �4�

where the subscripts D1 ,D2 denote the modes going to pho-
ton number nonresolving detectors. Meanwhile, for the an-
cilla photons, the evolutions are

aH
† →

1
�2

�aH4
† − aHD1

† � ,

aV
† →

1
�2

�aV5
† − aVD2

† � . �5�

The 50:50 BS placed on path 4 �5� is to split the mode 4 �5�
into two output modes 6 , P2 �7, P3�, making the transforma-
tions

aH4
† →

1

�2
�aH6

† + aHP2

† � →
1

�2
�aH6

† + aVP2

† � ,

aV5
† →

1
�2

�aV7
† + aVP3

† � →
1
�2

�aH7
† + aVP3

† � . �6�

After that, one obtains the following state:


−
�

4�2
t2aH6

† aVP2

† +
�

2
r2aH3

† aVP1

†

−
�

4�2
t2aV7

† aVP3

† �aHD1

† aVD2

† �vac� + C , �7�

where C denotes the components of two photons appearing in
the same spatial mode. If we discard the modes P1 , P2 , P3
without changing anything else, i.e., erase the path informa-
tion of P1 , P2 , P3, the first three terms in Eq. �7� will be just
the desired single-photon qutrit, which carries the same co-
efficients of the input biphoton qutrit. Since there is only one
photon in the modes P1 , P2 , P3, we will use a quantum Fou-
rier transform �QFT� �j ,k� denote the spatial modes� �13�,

aVj
† �vac� =

1
�3

�
k�=0

2

e2�ijk/3aVk�
† �vac� , �8�

to do it. The QFT is an unitary operation for a single photon
in three spatial modes, so we can use an LOMI shown in the
dashed line of Fig. 1 to implement it. Just like the setups in
the dash-dotted line, three photon number nonresolving de-
tectors are used and the detection results are to control the
conditional phase shift �PS� through classical feed forward.
The relations between the detection results and the corre-
sponding PS operations are summarized in Table I. After
that, with the coincident measurements of the detectors
D1 ,D2, and one of the detectors D3 ,D4 ,D5, the state


 �

4�2
t2aH6

† +
�

2
r2aH3

† +
�

4�2
t2aV7

† ��vac� �9�

will be projected out by the post selection. We can rewrite it
as

FIG. 1. Schematic setup for the transformation from a biphoto-
nic qutrit to the corresponding single-photon qutrit. At first, the
input qutrit is transmitted through a VBS and then the two output
modes are transmitted through a PBS, respectively. Two single pho-
tons are used as the ancillas, which will interfere with the output
modes of PBS1. The part in dashed line is used to erase the path
information of the modes P1 , P2 , P3, which are all in the state �V�.
The detection results are used as control signals of the conditional
phase shift summarized in Table I through the classical feed for-
ward. By the proper post selection, the biphotonic qutrit can be
transformed to the corresponding single-photon qutrit as in Eq. �2�.
For details, see the text.
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�

4�2
t2�H�6 +

�

2
r2�H�3 +

�

4�2
t2�V�7. �10�

It is straightforward that the state will be ���S, given that t2

=2�2r2 or t2= 2�2
1+2�2

. The corresponding success probability
of the process is � t2

4�2
�2=1.71�10−2.

B. Transformation back to biphotonic qutrit

After the desired operations performed on the single-
photon qutirt, we should transform the single-photon qutrit
����S=���0��S+���1��S+���2��S back to a biphotonic qutrit.
The inverse transformation is shown in Fig. 2. Three VBSs
�VBS1,VBS2,VBS3� with the transmissivities �reflectivities�
t1, t2, t3 �r1 ,r2 ,r3�, two PSs, and �x operations are applied to
perform the transformation

���aH0�
† + ��aH1�

† + ��aH2�
† ��vac� → ����r2 − ��t1t2�aH1

†

+ ��r1aH2
† + ��t3aV3

† ��vac� . �11�

In order to select out the desired components, we introduce a
single photon �H� as an ancilla, which will interfere with the
mode 1 through a 50:50 BS and meanwhile combine the
modes 2 and 3 by a PBS into the mode 5, which will then
interfere with another ancilla single photon �V� through a
50:50 BS. The total state will be then transformed to

� 1

2�2
���r2 − ��t1t2��aH4

†2 − aHP1

†2 ��aV7
† − aV6

† �

+
1

2�2
��r1�aH4

† − aHP1

† ��aH7
† + aH6

† ��aV7
† − aV6

† �

+
1

2�2
��t3�aH4

† − aHP1

† ��aV7
†2 − aV6

†2���vac� . �12�

The �V� mode on path 6 will be reflected to mode P2. Now,
the following state can be achieved:

−
1

2�2
����r2 − ��t1t2�aH4

†2 aVP2

†

+ ��r1�aH7
† aV7

† aHP1

† + aH4
† aH7

† aVP2

† �

+ ��t3aV7
†2aHP1

† ��vac� + C . �13�

The left work will be the erasure of the path information of
the modes P1 , P2 by the detection similar to that in Sec. II A.
Because there are only two spatial modes, the realization of
the QFT will be simplified with just one 50:50 BS as shown
in dashed line. Now, the state

−
1

4
����r2 − ��t1t2�aH4

†2 + ��r1�aH7
† aV7

† + aH4
† aH7

† �

+ ��t3aV7
†2�aVD1

† �vac� + C �14�

can be achieved, where we only keep the terms with the
photonic modes on P1 , P2 being detected by the detector D1.
In the other case, when the photon is detected by the detector
D2, there will be an additional phase shift � to the compo-
nents including aVP2

† and it seems difficult to remove it by a
simple operation.

After the erasure of P1 and P2 modes, the modes 4 and 7
will interfere with each other through a 50:50 BS. If there are
two photons in the final output �which can be realized by
common biphotonic qutrit tomograph �8�� and a click on one
of the two detectors D1 ,D2, we will project out the state

−
1

8
����r2 − ��t1t2�aH out

†2 + ��r1�aH out
† aV out

† + aH out
†2 �

+ ��t3aV out
†2 ��vac�

= −
1

8
����r2 − ��t1t2 + ��r1�aH out

†2 + ��r1aH out
† aV out

†

+ ��t3aV out
†2 ��vac� �15�

by post selection. Choosing t1t2=r1 and �2r2=r1, i.e., t1
2

=
�17−3

2 �r1
2= 5−�17

2 �, associated with t3
2= 5−�17

4 , we can achieve
the final state

r1

8 
 ��
�2

aH out
†2 + ��aH out

† aV out
† +

��
�2

aV out
†2 ��vac� , �16�

which is the target biphotonic qutrit ���0�3+���1�3+���2�3.
The corresponding success probability is �

r1

8 �2=6.85�10−3.
Associated with the above transformation, we could manipu-

TABLE I. The relations between the detections and the corre-
sponding phase shifters on paths 3, 6, and 7.

D3 D4 D5

3 0 0 0

6 0 2�
3

4�
3

7 0 4�
3

8�
3

FIG. 2. Schematic setup for the inverse transformation from a
single-photon qutrit back to a biphoton qutrit. Two VBSs are ap-
plied and two extra single photons work as the ancilla. The single-
photon qutrit can be transformed back to a biphotonic qutrit by post
selection. For details, see the text.
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late the biphotonic qutrits, such as perform an arbitrary uni-
tary operation U�3� on them, with a success probability
1.71�6.85�10−5=1.17�10−4. The scheme succeeds with a
very small probability, but in principle, it can realize any
unitary operation on a biphoton qutrit.

In summary, with four ancilla single photons, we could
realize arbitrary manipulation with linear optical elements
and coincidence measurements. Since only two cases—no
photon or any number of photons—should be discriminated,
the common photon number nonresolving detector, e.g., sili-
con avalanche photodiodes �APDs� will be necessary for the
scheme.

III. BI-DIRECTIONAL MAPPING WITH WEAK
CROSS-KERR NONLINEARITY

The success probability of the above scheme with only
linear optical elements could be too small for practical appli-
cation. This success probability, however, can be greatly in-
creased if we apply some weak nonlinearity in the circuit.
The application of weak cross-Kerr nonlinearity has been
proposed in various fields of quantum information science. It
was first applied to realize parity projector �14� and deter-
ministic CNOT gate �15� and then in some quantum compu-
tation and communication schemes �see, e.g., �16–18��. The
effective Hamiltonian for cross-Kerr nonlinearity is
H=−�	n̂in̂j �	 is the nonlinear intensity and n̂i/j the number
operator of the interacting modes�. The cross-phase-
modulation �XPM� process caused by such interaction be-
tween a Fock state �n� and a coherent state ��� gives rise to
the transformation, �n����→ �n���ei
�, where 
=	t induced
during the interaction time t could be small with weak non-
linearity. Another useful technique to our scheme is
homodyne-heterodyne measurement for the quadratures of
coherent state. A statelike �k�k���eik
� can be projected to a
definite Fock state or a superposition of some Fock states by
such measurement, which can be performed with high fidel-
ity.

A. Transformation with XPM process

With weak cross-Kerr nonlinearity, we implement the
transformation from a biphotonic qutrit to a single-photon
qutrit as shown in Fig. 3. An initial biphotonic qutrit in the
state ���in of Eq. �1� is first sent to a 50:50 BS, making the
following transformation:


 �

�2
aH

†2 + �aH
† aV

† +
�

�2
aV

†2��vac� → 
 �

2�2
�aH1

† + aH2
† �2

+
�

2
�aH1

† + aH2
† ��aV1

† + aV2
† � +

�

2�2
�aV1

† + aV2
† �2��vac� .

�17�

Next a VBS is placed on path 2 such that

aH2
† → raH3

† + taH4
† ,

aV2
† → raV3

† + taV4
† . �18�

Then, after three PBSs change the spatial modes as 1
→1,1�, 3→5,6, and 4→7, two qubus beams �i.e., coherent

states� ��1���2� will be coupled to the corresponding photo-
nic modes through the XPM processes in two quantum non-
demolition detection �QND� modules, which are shown in
dashed line of Fig. 3. The result will be the following trans-
formation of the total system:


 �

�2
raH1

† aH5
† +

�

2
raH1

† aV6
† +

�

�2
taV1�

† aV7
† ��vac���1���2� + C ,

�19�

where we only give the terms that two qubus beams pick no
phase shift. These terms can be separated from the others by
the quadrature measurement �X��X�, which is implementable
with homodyne-heterodyne measurement �15,16�, to obtain
the following state:


 �

�2
raH1

† aH5
† +

�

2
raH1

† aV6
† +

�

�2
taV1�

† aV7
† ��vac�

=
�

�2
r�H�1�H�5 +

�

2
r�H�1�V�6 +

�

�2
t�V�1�V�7. �20�

This state can be expressed as

�

2
r��+ �1 + �− �1��H�5 +

�

2�2
r��+ �1 + �− �1��V�6

+
�

2
t��+ �1 − �− �1��V�7, �21�

where �� �= 1
�2

��H�+ �V��. Now, we use a PBS� which trans-
mits �+� and reflects �−� and the following two photon num-
ber nonresolving detectors. If the detection is �+�, the state

FIG. 3. Schematic setup for the transformation with XPM pro-
cess. Two QND modules working with XPM process are used here.
The transformation is realized under the condition that the two qu-
bus beams pick no phase shift, with the corresponding success
probability 1/6. For the details, see text.
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�

�2
r�H�5 +

�

2
r�V�6 +

�

�2
t�V�7 �22�

will be projected out; on the other hand, if the detection is
�−�, what is realized is

�

�2
r�H�5 +

�

2
r�V�6 −

�

�2
t�V�7, �23�

which can be transform to the state in Eq. �22� by the con-
ditional phase shifter � on path 7. By selecting r

2 = t
�2

, i.e.,
t= 1

�3
, and using a 50:50 BS for the mode 5 and two �x

operations for modes 6, 7, we can achieve the following
state:

1
�6

���H�5 + ��H�6 + ��H�7� , �24�

which is the single-photon qutrit ���S in Eq. �2�. The success
probability is 1

6 , which is much higher than that of the linear
optical scheme. Moreover, no ancilla single photon is neces-
sary here.

The scheme is based on quadrature projection after XPM
process, so it does not require any post selection by coinci-
dence measurement. But it needs an XPM phase shift of −
,
which is only possible with the equivalent phase shift 2�
−
 and could be impractical �19�. The XPM phase shift 

�10−2 is possible with, for example, electromagnetically in-
duced transparencies �EITs� �20�, whispering-gallery mi-
croresonators �21�, optical fibers �22�, or cavity QED sys-
tems �23�, but the corresponding 2�−
 will be too large to
realize by the available techniques. To avoid the XPM phase
shift of −
, we propose a different design of the transforma-
tion shown in Fig. 4. Here we use the double XPM method
in �18� to replace the two XPM processes without changing
anything else.

We describe it briefly as the process is similar. In the
double XPM process, two qubus beams ������ will be
coupled to the corresponding photonic modes as shown in

Fig. 4. The XPM pattern in Fig. 4 is that the first beam being
coupled to the �H� mode on path 1 and the �V� mode on path
4, while the second beam to �V� mode on path 1� and the
modes on path 3. Suppose the XPM phase shifts induced by
the couplings are all 
. After that, the total system will be
transformed to


 �

�2
raH1

† aH3
† +

�

2
aH1

† aV1�
† +

�

2
raH1

† aV3
† +

�

2
rtaH3

† aV4
†

+
�

2�2
taV1

† aV4
† +

�

2�2
rtaV3

† aV4
† ��vac���ei
���ei
�

+
�

2�2
t2aH4

†2 �vac������� + C , �25�

where C denotes the terms that the two qubus beams pick up
the different phase shifts. A phase shifter of −
 is, respec-
tively, applied to two qubus beams and then one more 50:50
BS implements the transformation ��1���2�→ �

�1−�2
�2

��
�1+�2

�2
� of

the coherent-state components. The above state will be there-
fore transformed to


 �

�2
raH1

† aH3
† +

�

2
aH1

† aV1�
† +

�

2
raH1

† aV3
†

+
�

2
rtaH3

† aV4
† +

�

2�2
taV1

† aV4
† +

�

2�2
rtaV3

† aV4
† ��vac��0���2��

+
�

2�2
t2aH4

†2 �vac��0���2�� + C . �26�

Then, we could use the projections �n��n� on the first qubus
beam to get the proper output. If n=0 and by the post selec-
tion that one photon will appear on the output �5, 6, 7� while
a click on one of the two detectors after the PBS�, the state
in Eq. �20� can be therefore projected out. Similar to the
process in Fig. 3, we can achieve the final single-photon
qutrit ���S with the success probability 1

6 . Though this design
requires the post selection, it dispenses with the XPM phase
shift of −
, so it could be more experimentally feasible.

B. Inverse transformation with XPM process

Now we should transform the output single-photon qutrit
back to a biphotonic qutrit. We apply the inverse transforma-
tion procedure shown in Fig. 5 and will show that it can be
realized with a success probability as high as 1

2 .
At first, we apply a setup called entangler shown in

dashed line to the transformed single-photon qutrit ����S
=���H�0+���H�1+���H�2 with an ancilla single photon in the
state �� �a, after a �x operation performed on the spatial
modes 1 and 2, respectively. The entangler is to implement
the transformation

����S�+ �a → ���HH�0,a + ���VV�1,a + ���VV�2,a, �27�

where the polarization of the ancilla single photon will be the
same as that of the single-photon qutrit. In the entangler, two
qubus beams ������ are introduced and then coupled to the

FIG. 4. Schematic setup for the transformation from biphoton
qutrits to the corresponding single-photon qutrits with double XPM
method. The only difference from Fig. 3 is that the two separate
XPM processes are replaced by a double XPM process of two iden-
tical qubus beams. In the design, no XPM phase shift of −
 will be
necessary and it makes the scheme more feasible.
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corresponding photonic modes through the XPM processes.
The XPM pattern in Fig. 5 is that the first beam being
coupled to �V� modes on paths 1 and 2 and the �H� mode of
the ancilla photon, while the second beam to �H� mode on
path 0 and the �V� mode of the ancilla photon. Suppose the
XPM phase shifts induced by the couplings are all 
. As the
result, we will transform the total system to

1
�2

����HH�0,a + ���VV�1,a

+ ���VV�2,a���ei
���ei
� +
1
�2

���HV�0,a�����ei2
�

+
1
�2

����VH�1,a + ���VH�2,a���ei2
���� . �28�

After that, a phase shifter of −
 is, respectively, applied to
two qubus beams and then one more 50:50 BS implements
the transformation ��1���2�→ �

�1−�2
�2

��
�1+�2

�2
� of the coherent-

state components. The state of the total system will be there-
fore transformed to

1
�2

����HH�0,a + ���VV�1,a + ���VV�2,a��0���2��

+
1
�2

���HV�0,a�− i�2� sin 
���2� cos 
� +
1
�2

����VH�1,a

+ ���VH�2,a��i�2� sin 
���2� cos 
� . �29�

The first coherent-state component in Eq. �29� is either
vacuum or a cat state �the superposition of ��i�2� sin 
� in
the second piece�. The target output could be therefore ob-
tained by the projection �n��n� on the first qubus beam. If n
=0, we will obtain

���HH�0,a + ���VV�1,a + ���VV�2,a, �30�

with the polarization of ancilla photon the same to the single-
photon qutrit. If n�0, on the other hand, there will be the
output

e−in�/2���HV�0,a + ein�/2����VV�1,a + ���VV�2,a� , �31�

which can be transformed to the form in Eq. �30� by a phase
shift � following the classically feed-forwarded measure-
ment result n and a �x operation on the ancilla photon.

Next, the second entangler will be applied to the above
output and another ancilla single photon �� �b, after a �x
operation is performed on spatial mode 1. In this entangler,
the transmitted path for mode 1 is now active while the re-
flected port is only active in the first entangler. Similar to the
first entangler, the second implements the transformation

����HH�0,a + ���HV�1,a + ���VV�2,a��+ �b → ���HHH�0,a,b

+ ���HVH�1,a,b + ���VVV�2,a,b. �32�

Also, we need to erase the path information of the first pho-
ton. We first combine the modes 1 and 2 by a PBS and then
make them interfere with the mode 0 through a 50:50 BS to
achieve the following state:

��
�2

��H�3 + �H�4��HH�a,b +
��
�2

��H�3 − �H�4��VH�a,b

+
��
�2

��V�3 − �V�4��VV�a,b. �33�

By two PBS�, the state

1

2
����HH�a,b + ���VH�a,b + ���VV�a,b��+ �5 +

1

2
����HH�a,b

+ ���VH�a,b − ���VV�a,b��− �6 +
1

2
����HH�a,b − ���VH�a,b

− ���VV�a,b��+ �7 +
1

2
����HH�a,b − ���VH�a,b

+ ���VV�a,b��− �8 �34�

will be then obtained. With four detectors on paths 5, 6, 7,
and 8, as well as the classical feed forward, the state

���HH�a,b + ���VH�a,b + ���VV�a,b �35�

will be finally realized. The above processes could be deter-
ministic.

The final step is to merge the two photons into the same
spatial mode, which could be simply realized by a BS and
the following QND module. In this QND module, a qubus
beam ��� will be coupled to one of the output modes of BS1.
After that, the state in Eq. �35� plus the qubus beam will
evolve to

FIG. 5. �Color online� Schematic setup for the inverse transfor-
mation with XPM process. The part called entangler shown in
dashed line entangles the single-photon qutrit and the ancilla single
photon. Out of the entangler, the polarization of the ancilla photon
will be the same as those of the single-photon qutrit. This inverse
transformation can be implemented with a success probability 1/2.
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1

�2

���HH�1,1 +

1

�2
���VH�1,1 + ���VV�1,1���ei2
�

+
1

�2
����VH�1,2 + �VH�2,1���ei
� +

1

�2

���HH�2,2

+
1

�2
���VH�2,2 + ���VV�2,2���� . �36�

Through the quadrature measurement �X��X�, the following
state:

���HH�1,1 +
1
�2

���VH�1,1 + ���VV�1,1 �37�

or

���HH�2,2 +
1
�2

���VH�2,2 + ���VV�2,2 �38�

can be selected out and the output with only one photon at
each output port, which picks up the phase shift 
 in the
XPM process, will be discarded. The different coefficients
between the midterm and the other two terms in Eqs. �37�
and �38� are caused by the Hong-Ou-Mandal �HOM� inter-
ference effect on BS1. In order to balance the coefficients, we
should use a 50:50 BS, respectively, on paths 0 and 2 �see
Fig. 5�. After that, we could achieve the biphotonic qutrit
���0�3+���1�3+���2�3 with the success probability 1

2 and
then the total success probability for an arbitrary unitary op-
eration on biphoton qutrits will be 1

6 �
1
2 = 1

12.

IV. DISCUSSION

We have presented two schemes for unitary operations on
biphoton qutrits, which are realized through bi-directional
mapping between polarization and spatially encoded photo-
nic qutrits. Through the bi-directional mapping, any unitary
operation U�3� on biphotonic qutrits can be reduced to that
on single-photon qutrits. The linear optical scheme succeeds
with a small probability 1.17�10−4, but it can be increased
to 1/12 with weak cross-Kerr nonlinearity. The probabilistic
nature of the schemes is due to the two indistinguishable
photons in the same spatial-temporal modes. For example, at
the last merging step in Fig. 5, the probability to get the
proper output state will be lowered by 1/2 because of the
HOM interference.

Finally, we look at the feasibility of the schemes. The first
scheme applies common experimental tools such as linear
optical circuits, coincidence measurements, and detection
with APDs. The difficulty in the implementation is the accu-
racy for the numerous interferences between the photonic
modes. The additional requirement in the second scheme is
the good performance of weak cross-Kerr nonlinearity. The
error in each XPM process can be effectively eliminated un-
der the condition �
�1 �16�, which means that the small
XPM phase 
 can be compensated by the large amplitude ���
of the qubus or communication beams. The other advantage
of the scheme based on weak nonlinearity is the fewer ancilla
photons—the ancilla photons are only required in the inverse
transformation. This could make the experimental implemen-
tation more simplified.
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