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In this paper, we propose an experimental scheme for unambiguous quantum state comparison assisted by linear

optical manipulations, twin-photons produced from parametric down-conversion, and postselection from the coincidence

measurement. In this scheme the preparation of the general two mixed qubit states with arbitrary prior probabilities

and the realization of the optimal POVMs for unambiguous quantum state comparison are presented. This proposal is

feasible by current experimental technology, and may be used in single-qubit quantum fingerprinting.
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In quantum communications and quantum com-
putation, quantum states are used to transmit infor-
mation, and how to discriminate the received quan-
tum states is a basic problem. However, quan-
tum no-cloning theorem makes a restriction that
only a set of orthogonal states can be discriminated
determinately.[1] In other words, a set of nonorthog-
onal quantum states can not be discriminated per-
fectly, whether the states are pure or mixed. There-
fore, how to discriminate the quantum states more
efficiently may be an important question. Recently,
much effort has been devoted to this question, and
then many schemes of discrimination have been pro-
posed, for example, the minimum error discrimina-
tion (MED),[2] unambiguous discrimination (UD),[3,4]

maximum confidence discrimination (MCD),[5] mini-
mum disturbance discrimination (MDD),[6] and max-
imum mutual information discrimination associated
with the capacity of the quantum channel,[7] etc.

In this paper, we limit our attention to MED and
UD. The MED means that, for a set of input states
{ρ1, . . . , ρn} with the corresponding prior probabili-
ties {p1, . . . , pn} which satisfy

∑
pi = 1, one wants

to look for a set of measurements which are gener-
ally described by positive operator-valued measures
(POVM)[8] {Π 1, . . . ,Πn} which satisfy

∑
Πi = I

to achieve the maximum average success probabil-
ity P s

MED =
∑n

i=1 piTr(Πiρi) or the minimum aver-
age failure probability P f

MED = 1 −∑n
i=1 piTr(Πiρi).

It is clear that for any set of input states, POVMs

always exist for MED, i.e. there is no constrains in
the measurements of MED. Compared to MED, it re-
quires that the measurements are error-free in UD,
i.e. if the measurements are successful, they are al-
ways true, which are denoted by Tr(Πiρj) = 0 for
i 6= j. The cost of error-free is that we will have
to accept an inconclusive result giving no informa-
tion. Let Π? denote the POVM element correspond-
ing to this inconclusive result, and then the problem
of UD is to look for the optimal POVMs to achieve
the minimum probability of inconclusive result de-
noted by P ?

UD =
∑n

i=1 piTr(Π?ρi) under the con-
strains Tr(Πiρj) = 0 for i 6= j. Different to MED,
only the set of input states which satisfies certain con-
ditions (for pure states, see Ref.[9]; for mixed states,
see Ref.[10]) can be discriminated unambiguously un-
der the requirement of error-free.

Quantum state comparison is a special case of
quantum state discrimination, and it was first consid-
ered by Barnett et al.[11] Recently it was widely ap-
plied in quantum communications, for example, quan-
tum cryptography,[11,12] quantum fingerprinting[13]

and quantum digital signatures,[14] etc. Therefore it
is worth discussing the realization of quantum state
comparison, and in Ref.[12], the realization of quan-
tum comparison of coherent states has been reported.
Moreover, Horn et al used the minimum-error quan-
tum state comparison to realize the single-qubit op-
tical quantum fingerprinting in experiment.[15] Com-
pared to their experiment, in this paper we consider
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the realization of unambiguous quantum state com-
parison in linear optics. The paper is organized as fol-
lows. Firstly, we review the problem of quantum state
comparison briefly. Secondly, we present a scheme
to prepare the two mixed qubit states with arbitrary
prior probabilities. Thirdly, the realization of unam-
biguous quantum state comparison, i.e., the realiza-
tion of the optimal POVMs with only linear optical
elements is discussed. Fourthly, we show our scheme
can be used in quantum fingerprinting and compare
our scheme with the experimental one.[15] We end with
concluding remarks.

Suppose that there are two identical quantum
particles which are each prepared either in the state
|ψ1〉, or in the state |ψ2〉, with prior probabilities q1

and q2, respectively, and then we wish to determine
whether the two states are equal or different. This
problem is called quantum state comparison and it
is related to the discrimination of the following two
density matrices:

ρ1 =
1
η1

(
q2
1 |ψ1, ψ1〉〈ψ1, ψ1|+ q2

2 |ψ2, ψ2〉〈ψ2, ψ2|
)
,

ρ2 =
1
2

(|ψ1, ψ2〉〈ψ1, ψ2|+ |ψ2, ψ1〉〈ψ2, ψ1|) , (1)

with prior probabilities η1 = q2
1 + q2

2 and η2 = 2q1q2.
In Ref.[11], Barnett et al considered the following spe-
cial case:

|ψ1〉 = cos θ|0〉+ sin θ|1〉,
|ψ2〉 = cos θ|0〉 − sin θ|1〉, (2)

with equal prior probabilities q1 = q2 = 1/2, where
θ ∈ [0, π/4], and they obtained the optimal solu-
tions of MED and UD of quantum state comparison.
For MED the optimal measurements are the sepa-
rate measurements of the single qubit, with the min-

imum error probability P f
MED =

1
2

cos2(2θ), while for

UD, the minimum probability of inconclusive result
is P ?

UD = cos(2θ). Then the case that the two states
{|ψ1〉, |ψ2〉} are arbitrary qubit-states with equal prior
probabilities 1/2 was considered by Rudolph et al
in Ref.[16], and they provided a way to construct
the optimal POVMs with the minimum probability
of inconclusive result P ?

UD = 1 − F (ρ1, ρ2), where

F (ρ1, ρ2) = Tr
[(√

ρ1ρ2
√

ρ1

)1/2
]

is the fidelity.[8] This
case was also considered in Ref.[17], and the analytical
expression of optimal POVMs with minimum proba-
bility of inconclusive result was given. The general
case of Eq.(1) has been solved by Kleinmann et al

in Ref.[18], and they also discussed the more gen-
eral case that the two states may be N -dimensional
chosen from a set of linearly independent pure states
{|ψ1〉, |ψ2〉, . . . , |ψN 〉} associated with the prior proba-
bilities {q1, q2, . . . , qN}, i.e., the discrimination of the
following two density matrices,

ρN
1 =

1
η1

N∑

i

q2
i |ψi, ψi〉〈ψi, ψi|,

ρN
2 =

1
η2

N∑

i 6=j

qiqj |ψi, ψj〉〈ψi, ψj |, (3)

with prior probabilities ηN
1 =

∑
i

q2
i and ηN

2 =
∑
i 6=j

qiqj . Unfortunately, they did not provide the op-

timal POVMs and the minimum probability of incon-
clusive result. In this paper, we only consider the
realization of the comparison of the two qubit states
ρ1 and ρ2.

First of all, we consider the preparation of the two
mixed states ρ1 and ρ2. Our scheme is shown in Fig.1.
In this scheme we use the polarization of photons as
qubit and denote the horizontally linear polarization
|H〉 as qubit |0〉 and the vertical linear polarization
|V 〉 qubit |1〉. Using a Type-I BBO (β−BaB2O4) crys-
tal and two polarizers, a photon pair in the product
state |H〉|H〉 can be generated through the process of
parametric down-conversion, and then the two pho-
tons are injected into two unbalanced Mach–Zehnder
interferometers consisting of two variable beam split-
ters (VBS) and two symmetric beam splitters (BS).
Denote L1(2)

(
S1(2)

)
as the optical length of the long

(short) paths 1 (2) (from the crystal to the output),
and the following two conditions are required for the
preparation of the two mixed states:

∆1(2) = |L1(2) − S1(2)| À cτ, (4)

L1 = L2; S1 = S2; ∆1(2) > cTD, (5)

where c is the velocity of light, τ is the coherent time
of the photon, and TD is the time resolution of the de-
tectors. The condition (4) guarantees that there is no
interference at the BS1 (BS2), i.e. the location modes
will be traced out and then a mixed state will be ob-
tained. The condition (5) guarantees that only pairs of
photons transmitted through paths of the same length
contribute to the following coincidence detection.
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Fig.1. Schematic diagram of the preparation of two mixed

qubit states with arbitrary prior probabilities. A photon

pair is prepared through the process of parametric down-

conversion at a Type-I BBO crystal, and then two mixed

states are prepared by introducing time delay using two

unbalanced Mach–Zehnder interferometers.

Denote the transmittivity of the two VBS as T1

and T2, respectively, and let U1 (U2) denote the single-
photon unitary transformation U1(2)|H〉 = |ψ1(2)〉.
Suppose the experimental setups are arranged as
Fig.1, then if the two photons are transmitted through
the two short paths S1(2), one gets the state |ψ1, ψ1〉
with the probability

1
4
T1T2; while if the two pho-

tons are transmitted through the two long paths
L1(2), one get the state |ψ2, ψ2〉 with the probabil-

ity
1
4

(1− T1) (1− T2) . Through the following coinci-
dence detection to which only the two photons trans-
mitted through the paths of the same length con-
tribute, we can obtain the following mixed state (un-
normalized) in the output port:

ρ′1 =
1
4
[T1T2|ψ1, ψ1〉〈ψ1, ψ1|

+(1− T1) (1− T2) |ψ2, ψ2〉〈ψ2, ψ2|]. (6)

Alternatively, if we exchange the VBS1 (VBS2) with
the BS1 (BS2) and exchange U1 with U2 in path 2 si-
multaneously, we can obtain the following mixed state
(unnormalized):

ρ′2 =
1
4
[T1 (1− T2) |ψ1, ψ2〉〈ψ1, ψ2|

+(1− T1) T2|ψ2, ψ1〉〈ψ2, ψ1|]. (7)

Select T1 = T2 = q1, then (1− T1) = (1− T2) = q2.
After normalization, the above two mixed states are
the desired mixed states ρ1 and ρ2 with the success

probability
1
4

(
q2
1 + q2

2

)
and

1
2
q1q2, respectively. In

this scheme, the prior probabilities q1 and q2 can be
adjusted by the transmittivity of the two VBS.

In addition, the method of introducing the time
delay to generate mixed state has been usually used

in linear optics, for example, in the Refs.[19–21]. In
Ref.[20], Kwiat group presented two schemes to pre-
pare arbitrary two-photon polarization mixed states.
They used the method of Schmidt decomposition and
then prepared the desired mixed states by mixing
its eigenstates with probabilities proportional to their
eigenvalues. It looks like that their schemes are more
efficient, however, the mixed states prepared through
their schemes are the same as the mixed states of
Eq.(1) just only in density matrices, but the prepa-
rations can not show the original problem of quantum
state comparison, i.e. two photons are each prepared
either in the same state or in different states.

Next we consider the realization of the compari-
son, i.e., the realization of the optimal POVM for un-
ambiguous discrimination. The optimal POVM was
given in Ref.[17, 18], and a scheme of the realization of
all possible bipartite POVMs of two-photon polariza-
tion states was proposed in Ref.[22]. However, for the
reason that the generation of the ancilla three-photon
entangled state and the realization of five-photon tele-
portation are too complicated to be realized in lab
with current experimental technology, their scheme
may not be applicable in a real experiment. In this
letter, we first propose a feasible scheme of the re-
alization of quantum state comparison of the special
case of Eq.(2), and then show that this proposal is also
available for the general case of Eq.(1). Through some
calculation based on the Ref.[17], the optimal POVMs
for the states given in Eq.(2) can be described as fol-
lows,

Π1 = |r+〉〈r+|+ |ψ+〉〈ψ+|,
Π2 = |r−〉〈r−|+ |ψ−〉〈ψ−|,
Π? = I −Π1 −Π2, (8)

where |r±〉 =
√

2
2

(
tan2 θ|00〉 ± |11〉), and |ψ±〉 =

√
2

2
(|01〉 ± |10〉), with I as the identity matrix. It

is clear that the optimal operators Π1 and Π2 can

be regarded as projection onto the subspaces spanned
by the basis states {|00〉, |11〉} and {|01〉, |10〉}, respec-
tively, associated with UD of two linearly independent
pure states in each subspace. In the first subspace,
the projector is P1 = |00〉〈00| + |11〉〈11| and the cor-
responding optimal POVMs of two pure states are,

A1
1 =

1
2


 tan4 θ tan2 θ

tan2 θ 1


 ,
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A1
2 =

1
2


 tan4 θ − tan2 θ

− tan2 θ 1


 ,

A1
? =


 1− tan4 θ

0


 . (9)

While in the second subspace, the projector is P2 =
|01〉〈01| + |10〉〈10|, and then the remaining two pure
states are orthogonal to each other which can be dis-
criminated determinately by Von Neumann measure-

ment with two elements A2
± =

√
2

2
(|01〉 ± |10〉).

In our previous work, the projector and the corre-
sponding UD of two linearly independent pure states
can be realized by current experimental technology.[23]

The scheme is shown in Fig.2. Unfortunately, deter-
minate Bell state analysis is impossible with linear op-
tical elements, while two of them can be distinguished
perfectly.[24,25] Also we can not realize the optimal
POVMs {Π1,Π2,Π?} determinately, but with some
probability. The detailed process of the realization is
the following. Firstly, by interference at a polarizing
beam splitters (PBS1) and the following coincidence
detection, the mixed states can be projected onto the
subspace spanned by the basis states {|00〉, |11〉} with

the success probability 1 − 1
2

sin2(2θ). Secondly, the

following M–Z interferometer is the realization of UD
of two linearly independent pure states, and we set a
half wave plate (HWP) at cos(2δ) = tan2 θ. The click
on detector D3 corresponds to the inconclusive result

with the probability cos(2θ)/
(

1− 1
2

sin2(2θ)
)

, and

the coincidence between detectors D1 and D5 (or D2
and D4) corresponds to the POVM element A1, which
means that the mixed state is ρ1, i.e. the two states
are the same. Otherwise the coincidence between de-
tectors D1 and D4 (or D2 and D5) corresponds to the
comparison result that the two states are different.
Alternatively, if a σx operation is made on one of the
photons before PBS1, the first process is the realiza-
tion of the projector P2 with the success probability
1
2

sin2(2θ). Now the following von Neumann measure-

ment A2
± can be realized by the M–Z interferometer

too, or simplified to a Hadamard operation followed
by a PBS with two detectors. The sum of the success
probabilities of two projectors associated with UD of
two pure states is equal to the optimal one, but it is
evident that the two projectors can not be realized si-
multaneously, so we can only demonstrate the scheme
of optimal unambiguous quantum state comparison in

principle.

Fig.2. Schematic diagram of the realization of the optimal

POVMs for the unambiguous quantum state comparison.

A projection is realized by the interference in PBS1 and

the following coincidence detection. The Mach–Zehnder

interferometer is used for the realization of unambiguous

discrimination of two linearly independent pure states.

Next, we show that if the two mixed states are in
the forms of Eq.(1), our scheme is also available. Let
H denotes the Hilbert space spanned by the two mixed
states ρ1 and ρ2, i.e., H = Sρ1

⊕
Sρ2 , where Sρ1 (Sρ2)

is the support of ρ1 (ρ2). Then, an orthonormal basis
of H is given by

|e1,2〉 =
1√
2n±

(|ψ1ψ1〉 ± |ψ2ψ2〉) ,

|e3,4〉 =
1√
2n±

(|ψ1ψ2〉 ± |ψ2ψ1〉
)
, (10)

with n± =
√

1± |〈ψ1|ψ2〉|2, where |ψ̄1〉, |ψ̄2〉 ∈
span(|ψ1〉, |ψ2〉) and |ψ̄1〉 ⊥ |ψ1〉, |ψ̄2〉 ⊥ |ψ2〉. The
optimal POVMs for the general case are given as
follows:[18]

Π1 = Π ′
1 + |e2〉〈e2| and Π2 = Π ′

2 + |e4〉〈e4|, (11)

where Π ′
1 and Π ′

2 are constructed from |e1〉 and |e3〉.
From Eq.(11), one will find that the two POVM ele-
ments can also be firstly regarded as projection onto
two subspaces associated with the projectors P1 =
|e1〉〈e1|+ |e3〉〈e3| and P2 = |e2〉〈e2|+ |e4〉〈e4|, respec-
tively, and then in the first subspace, the remaining
problem is the UD of two linearly independent pure
states for Tr(Π ′

1 ·Π ′
2) 6= 0, while in the second sub-

space, that is the UD of two orthogonal pure states
for 〈e2|e4〉 = 0. Therefore, the unambiguous compar-
ison of the general two qubit states can be realized in
principle using our scheme also.



No. 1 Linear optical realization of unambiguous quantum state comparison 55

Quantum state comparison can be used in quan-
tum fingerprinting. The basis of quantum fingerprint-
ing is the comparison of two states chosen from a
set S according to two long messages. The compari-
son result that the two states are identical or not in-
fers the original two long messages being identical or
not. Single-qubit optical quantum fingerprinting with
|S| = 4 has been demonstrated by Horn et al in exper-
iment in 2005.[15] In their experiment they compared
the two states with minimum-error, for which the mea-
surement is simplified to a projection onto symmetric
or antisymmetric subspace, and this projection can be
realized just by a BS. Because their comparison has
minimum-error, the error is inevitable, i.e., the one-
side error is larger than zero,[26] and then one has to
repeat the comparison several times to guarantee the
error rate to be less than a small value ε > 0. If
one uses the above unambiguous comparison scheme
in quantum fingerprinting, sometimes one can not get
any information because of the existence of inconclu-
sive result, but if one gets a result, the result is error-
free, i.e. there is no one-side error, which is the main
advantage with respect to the minimum-error one.
Unfortunately, since only linearly independent pure
states can be discriminated unambiguously[9] and the
number of linearly independent pure states of qubit is

only two, our scheme can only be applied to the trivial
case |S| = 2. However, if the unambiguous quantum
state comparison with the more general case of Eq.(3),
i.e., the two states are N -dimensional, can be realized,
then the unambiguous quantum state comparison may
be applied to quantum fingerprinting with no one-side
error more efficiently, which may be considered in the
future.

In conclusion, we first propose a scheme to pre-
pare two mixed qubit states with arbitrary prior prob-
abilities and then propose a scheme to realize the opti-
mal POVMs for unambiguous quantum state compar-
ison in principle. Our scheme is available even for the
general case that the two states have arbitrary prior
probabilities. Recently, ultrabright resource of pho-
ton pairs generated through the process of parametric
down-conversion of a BBO crystal has been widely
used in linear optics quantum computation, for ex-
ample, the Ref.[27], and if we carefully arrange the
optical elements for the conditions (4) and (5), we
think our preparation scheme is feasible by current
experimental technology. In addition, the realization
of the optimal POVMs was proved to be feasible in
our previous work,[23] so we think our scheme of un-
ambiguous quantum state comparison is feasible in a
real experiment.
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