www.scichina.com csb.scichina.com

伊犁黄土磁化率的增减及其成因

陈渠¹⁰², 刘秀铭^{314*}, HELLER F², HIRT Ann M², 吕镔¹, 郭雪莲¹, 毛学刚¹, 陈家胜¹, 赵国永¹, 丰华¹, 郭晖¹

① 兰州大学西部环境教育部重点实验室, 兰州 730000;

2 Institute of Geophysics, ETH-Zürich, CH-8092, Switzerland;

③ 福建师范大学地理科学学院, 福州 350007;

论 文

④ Department of Environment and Geography, Macquarie University, Sydney, NSW 2109, Australia

* 联系人, E-mail: xliu@fjnu.edu.cn, xliu@mq.edu.au

2011-11-23 收稿, 2012-03-08 接受 国家自然科学基金(40830105, 40772109, 40721061)和中国留学基金资助

摘要 中国伊犁黄土磁化率一般在 SO 最高,但在其他古土壤层低,磁化率增减机制存在争议.对 尼勒克县的一个剖面进行系统的磁学研究后发现,黄土层含有风成多畴磁铁矿,SO 含有较多成壤 成因的超细粒亚铁磁性矿物,其他古土壤层含有较多过湿条件下形成的非亚铁磁性矿物.非亚铁 磁性矿物高含量、高矫顽力、亚铁磁性矿物低含量与较细的磁颗粒粒径对应于较高的成壤强度,揭 示存在相互竞争的磁化率成壤增强过程和成壤削弱过程,以成壤削弱过程为主,导致磁化率降低. 成壤削弱过程中,磁颗粒粒径发生变化.伊犁黄土磁化率变化成因多样,对磁学参数的解释要全 面考虑磁性矿物的风成输入和成壤成因的磁性增强及磁性削弱作用. **关键词** 磁化率 成壤增强

黄土 伊犁盆地 环境磁学

黄土记录的低频磁化率广泛应用于古环境研究. 黄土磁性矿物来源包括原生风成输入与后期成壤改 造两方面^[1].后期成壤可以导致磁化率增强或减 弱^[1,2].各过程的综合作用因地而异,磁化率与成壤 强度可能是正相关也可能是负相关.研究者提出不 同的磁化率变化模式予以解释.成壤增强模式认为 成壤过程生成的超细粒亚铁磁性物质是古土壤层磁 化率高而黄土层磁化率低的原因,适用于黄土高 原^[3-8].风力模型则认为阿拉斯加与西伯利亚等地黄 土的磁化率主要受控于原生风成输入,磁化率增加 归因于风力增强^[9-15].然而研究表明,成壤作用不但 影响磁性矿物含量,而且影响磁性矿物组成,由此可 见阿拉斯加与西伯利亚等地黄土的磁化率变化部分 是由成壤作用造成的^[16-20].

在中国西北的伊犁盆地,发现有黄土磁化率与 成壤程度呈负相关关系^[21-28].在 S0 与黄土层磁化率 总体较高,变化较小,在 S0 之外的古土壤层某些层 位磁化率剧减.对于磁化率剧减的原因存在争议.在 2007年9月至2010年5月,我们进行了3次伊犁黄 土野外考察与采样.本研究主要基于一个古土壤磁 化率衰减最明显的位于尼勒克县的黄土剖面.

1 研究区与剖面地层

伊犁位于亚洲中部,除西侧外被平均海拔 3500 m 以上的高山围绕.高空全年以西风为主.地面大风以 4~7 月居多,为西风或偏西风.盆地走向平行于盛行 风风向,且该方向上海拔梯度大,因此降水较丰富. 年均降雨量分布不均,盆地东部较西部多.年均降雨 量与海拔高度线性相关.在 1800 m 以下,年均降雨 量的垂直递增率为 40~60 mm/100 m^[29].年均降雨量 在 800 m 大约为 300 mm,在 1000 m 大约为 600 mm, 在 1800 m 大于 900 mm^[28-31].最大降水带介于海拔 1500~1800 m 之间.相反,蒸发量随海拔升高而降低. 伊犁盆地降水的季节分布不同于季风区.以 5 和 11

英文版见: Chen Q, Liu X M, Heller F, et al. Susceptibility variations of multiple origins of loess from the Ily Basin (NW China). Chin Sci Bull, 2012, 57, doi: 10.1007/s11434-012-5131-1

月降水最多,7~9 月则相对干旱.但除山区外,各月 份降雨量相差不大.盆地西部平原区降水季节分布 最为平均,东部平原区次之,山区降水季节分布则变 为单峰模式,5和6月降雨量明显高于其他月份.伊 犁盆地的年气温为2.6~9.2 ,以7月气温最高.水热 不同期.伊犁盆地的地带性植被与土壤为荒漠草原 与灰钙土.随海拔升高与气候条件自西向东改善,荒 漠草原转变为高山草原,灰钙土转变为粟钙土 (1100~1500 m)与黑钙土(1500~1800 m).

盆地内从 800 m 的河流阶地至 2000 m 的山坡均 有黄土分布,厚度一般为 20~60 m,多有古土壤层发 育.研究剖面位于尼勒克县的伊犁河支流巩乃斯河 北面阶地. 剖面厚 29.7 m, 由于修路工程而新鲜出露. 最上面 0.5 m 为 S0. 在此之下, 可观察到 3 层古土壤, 分别位于3.5~6.7, 17.3~18.3 与24~29.7 m. 在3.5~6.7 m, 土壤颜色较红,有蜗牛化石分布.17.3m以下,成壤作 用普遍较强,但仍可辨别出两层古土壤,与邻近层位 比较, 其颜色更深, 粒度更细. 在 27.2~28.5 m 之间 有大量蜗牛化石,土壤最为发育.黄土古土壤序列之 下为砾石层. 据在中国地震局地质研究所完成的光 释光测年结果, 剖面 8.1 m 处的年龄为>100 ka. 因此 顶部之下的三层古土壤层可依黄土高原的地层划分 标记为S1,S2与S3. 这样的话,该剖面年龄与之前报 道的伊犁盆地内一个剖面和天山北麓的鹿角湾剖面 大体一致^[21,32]. 基于野外观察的地层划分与实验结 果基本吻合(图1).

2 方法

以 5 cm 间距采样 594 个. 晾干之后,用 Mastersizer 2000 激光粒度测量仪测量样品粒度.每个样品取样 5 g,进行系统的磁学实验.用 Bartington MS2 磁力仪 测量高低频(分别为 470 与 4700 Hz)低场磁化率.用 DTECH 交变退磁仪与 Molspin 小旋转磁力仪测量无 黏滞剩磁(ARM),所用外加直流磁场为 0.05 mT,交 变磁场为 100 mT,并将无黏滞剩磁转化为无磁滞剩 磁磁化率(χ_{ARM}).用 MMPM10 脉冲磁力仪和 Molspin 小旋转磁力仪测量等温剩磁和饱和等温剩磁.以10 mT 步距测量饱和等温剩磁的反向场等温剩磁曲线,并 用线性插值的方法计算剩磁矫顽力(B_{cr}).对于代表性 样品,再用居里秤(VFTB)测量退磁曲线,热磁曲线 (*J-T*)和磁滞回线,并获取相关磁学参数,包括饱和剩 磁(M_{rs})、饱和磁化强度(M_{s} ,1T 磁场下的亚铁磁性磁 化强度)、剩磁矫顽力(*B*_{cr})、饱和矫顽力(*B*_c)、中值剩 磁矫顽力(*B*_{th})^[33]、*S*₃₀₀与顺磁/抗磁性斜率等^[34].顺磁/ 抗磁性物质相对含量用 1 T 磁场下顺磁/抗磁性磁化 强度与亚铁磁性磁化强度之比来衡量.这些参数的 定义与计算在文献[33,34]中有描述.用 KLY-3 卡巴 桥磁化率仪测量温度-磁化率曲线(*κ*-*T*).选择典型的 黄土与古土壤样品进行 CBD 处理以溶解细粒组分, 再对残余物进行同样的系统磁学测量.上述实验在 兰州大学西部环境教育部重点实验室完成.对于典 型样品,还在苏黎世联邦理工学院古地磁实验室重 复做了实验,包括使用卡巴桥测量温度磁化率曲线, 使用 ASC 磁力仪与 2G Enterprises 低温磁力仪测量 等温剩磁.

3 结果

3.1 室温磁学实验结果

图 1 是尼勒克剖面的地层柱状图和质量磁化率、 频率磁化率、无磁滞剩磁磁化率与代表性粒度参数的 曲线. <10 µm 与>63 µm 组分含量具有很好的反相关 关系,直接指示冰期风力较间冰期风力强盛^[35]. <2 µm 组分含量与成壤程度有关^[36],在剖面下部高于上部, 与野外观察一致. 然而磁学参数与地层并不一致. SO 与 L1 磁化率最大值为 5.3×10⁻⁷~7.9×10⁻⁷ m³kg⁻¹. L1/S1 界线之下,除了 10.5 与 18.7 m 左右的高值之外, χ 一般低于 4.5×10⁻⁷ m³kg⁻¹. χ_{fd} 与 χ_{ARM} 仅在 SO 较高, S0 以下保持低值. 9.8~11.4 m 与 18.7 m 左右的 x 的两 个峰可以和粒度的极值相对应,显示在这些层位风 力增强导致磁化率升高. Xfd与XARM的低值表明 S1, S2 与 S3 的成壤作用并不产生大量的超细粒超顺磁(SP) 与稳定单畴(SSD)亚铁磁性矿物^[37-41]. 但是, 仅以风 力模式无法解释 S0 与其他古土壤层的差别, 也不能 充分说明磁化率的变化.

图 2 所示为对磁性矿物组成变化敏感的参数曲 线. 黄土高原黄土的 *B*_{cr} 一般为 20~50 mT^[42,43], 黄土 高于古土壤. 在尼勒克, S0 的 *B*_{cr} 有别于其他古土壤. S0 的 *B*_{cr} 为全剖面最低(44~54 mT). 黄土层 *B*_{cr} 高于 S0, 这可以用低温氧化作用解释^[44-48]. S1, S2 与 S3 的 *B*_{cr} 为全剖面最高, 一般为 62~69 mT, 反映其矫顽力 高的硬矿物含量高于 S0. *B*_c 曲线类似于 *B*_{cr} 曲线. S₃₀₀ 曲线同样显示 S1, S2 与 S3 有更高含量的较硬磁性矿 物^[49]. 1 T 磁场下顺磁/抗磁性磁化强度与亚铁磁性磁

2311

图 2 指示磁性矿物组成的参数

剩磁矫顽力-a为 MMPM10 脉冲磁力仪与小旋转磁力仪的测量结果, 剩磁矫顽力-b为 VFTB 的测量结果

2312

化强度之比(nonferri/ferri)亦呈现同样变化, 以 S0 最小, 其他古土壤最大. 这主要是由顺磁性矿物含量不同造成的.

图 3 是尼勒克典型黄土样品的磁滞回线.所有样品的曲线都于 300 mT 处闭合.表明磁性矿物以亚铁磁性为主.更高磁场下磁性强度的线性增加反映顺磁性贡献^[5]. S1, S2 与 S3 的曲线在 300 mT 后更陡,反映其顺磁性组分含量更多.

图 4 为典型样品饱和磁化强度的反向场退磁曲 线. S3 因为亚铁磁性矿物含量低,饱和磁化强度低. S0, L2 与 S3 在 0.3 T反向磁场下获得的等温剩磁分别 为原本饱和磁化强度的 96%,87%与 85%.反映矫顽 力低的软矿物为等温剩磁的主要载体.用线性内插 法计算的 S0, L2 与 S3 的 B_{cr}分别为 49.5,63.8 与 74.7 mT.结果表明 S0 软矿物的相对含量高于 L2 与 S3, 与磁滞回线一致.在高于 300 mT 磁场下,S3 的磁化强 度稳定增长,说明样品含有一定量的硬磁性矿物.

3.2 热磁实验结果

高温热磁曲线显示所有样品都在 580 左右有 一显著的居里点(图 5),反映磁铁矿的主导地位. 160 处磁化强度的增强可归因于针铁矿的存在.针 铁矿在 300~400 转化为赤铁矿.所有样品的热磁曲 线都是冷却曲线位于加热曲线之上. 300~400 磁化 强度的减少主要是因为磁赤铁矿转化为赤铁矿. S1, S2 与 S3 在 600 以上的磁化强度较高,指示更高的 顺磁性矿物与赤铁矿含量. S0 与黄土层样品在温度 趋于 580 时磁化强度降低更快,说明其磁铁矿相对 含量高于 S1, S2 与 S3.

低温磁化率曲线可以检测多畴磁铁矿^[40,41]. 在 S0 与黄土层可以观察到-150℃处磁铁矿的 Verwey 转变,但在S1,S2与S3 Verwey转变不明显(图6). 可 见间冰期风力减弱,不足以搬运与沉降粗粒磁铁矿, 风力并不对磁化率变化产生重要影响.

与其他古土壤相比, S0 有更多的粗粒多畴磁铁

矿(图 6)与更多的超细粒超顺磁和稳定单畴组分(图 1). 这难以用磁化率的成壤增强模式或风力模式来解释. 顺磁性矿物导致磁化率-温度曲线呈下凹形态,磁化 率与温度成反比. S1, S2 与 S3 的磁化率降低更快,表明其顺磁性矿物的相对含量更高.

3.3 CBD 实验结果

CBD 方法可以有效溶解细粒铁氧化物,如磁赤 铁矿、磁铁矿和赤铁矿等.如果风成磁颗粒足够粗, 成壤成因磁颗粒足够细,则 CBD 方法可以用以区分 成壤成因组分与初始风成组分^[50,51].黄土高原样品 经 CBD 处理后的残余物的 B_{cr}与 B_c通常高于未经 CBD 处理的全样^[52],这说明能在 CBD 处理中溶解的 主要为细粒成壤成因的磁性矿物的 B_{cr}与 B_c较低.然 而尼勒克黄土的实验结果与此相反.无磁滞剩磁磁 化率、矫顽力比(B_{cr}/B_c)、磁化强度比(M_{rs}/M_s)和中值 剩磁矫顽力与剩磁矫顽力的比值揭示尼勒克黄土样 品 CBD 处理后残余物的磁性颗粒粒度较全样粗,但 B_{cr}与 B_c较全样低(表 1),说明主要为成壤成因细粒磁 性矿物的可溶解组分的 B_{cr}与 B_c较高.我们的实验还 发现西伯利亚典型黄土经 CBD 处理后 B_{cr}与 B_c同样

将室温下磁化强度视为1

论文

表1	尼勒克代表性样品	CBD	处理前后	的磁学	参数 ^{a)}
~~ -		~ ~ ~ ~			

样品	磁化率 (10 ⁻⁷ m ³ kg ⁻¹)	无磁滞剩磁磁化率 (10 ⁻⁷ m ³ kg ⁻¹)	剩磁矫顽力 (mT)	饱和矫顽力 (mT)	矫顽力比	磁化强度比	中值剩磁矫顽力/ 剩磁矫顽力
黄土 CBD 处理前	5.67	12.3	58.29	18.17	3.21	0.18	1.39
黄土 CBD 处理后	5.31	6.7	49.58	12.6	3.94	0.13	1.49
古土壤 CBD 处理前	3.36	11.0	63.65	21.16	3.01	0.2	1.3
古土壤 CBD 处理后	2.95	4.1	55.12	14.32	3.85	0.15	1.45

a) 黄土样品采样深度为 9.95 m, 古土壤样品采样深度为 18.3 m

降低, 表明尼勒克与西伯利亚黄土的磁学性质相似.

3.4 磁颗粒粒径分布

图 7 为磁颗粒粒度指标的变化曲线. S0 的 SIRM/ χ 最低,对应于 χ_{fd} 的最大值. SIRM/ χ 与 χ_{ARM}/χ 相对应, 在黄土层中为低值,古土壤层为高值,说明磁颗粒的 粒径范围主要为稳定单畴至假单畴^[40,41].在 18.3 m 左右与 24~28.5 m 之间,观察到较低的 SIRM/ χ 与较 高的 χ_{ARM}/χ .顺磁性矿物对 χ 有贡献但对 SIRM 无贡 献,很可能是 SIRM/ χ 与 χ_{ARM}/χ 不一致的原因之一. 各指标的曲线都显示大概一致的峰谷分布. 在 19 m 左右与 24 m 以下部分粒径明显变小, 对应于低磁化 率和高含量的硬磁性矿物与顺磁/抗磁性矿物. 在黄 土高原, 成壤成因细颗粒的生成导致高磁化率. 但在 尼勒克, 除 S0 之外, 成壤成因细颗粒的高含量对应 于低磁化率. 这暗示亚铁磁性矿物的绝对含量低, 但 成壤生成的细粒亚铁磁性矿物的相对含量高, 有成 壤增强与成壤削弱两种相互竞争的过程并存.

图 7~10显示 S0 与其他古土壤磁颗粒粒径分布的 区别. S0 与黄土高原黄土一样, XARM, XARM/X, Xfd, Xfd%

图 8 尼勒克 SO(a)和其他古土壤层(b) Xfd 与 XARM 的相关性

与χ两两之间线性相关^[53-59]. 但其他古土壤的χ_{ARM}与 χ负相关而非正相关(图 10), χ_{ARM}与χ_{fd}等两参数间并

无线性相关关系(图 8). χ_{ARM}/χ 与成壤强度相对应,在下部古土壤层较高,峰值与剖面最顶部大致持平.而

图 9 S0 ("•")、L1~S3 高磁化率样品("°")和 L1~S3 低磁化 率样品("+")_{XARM/}X与_X的相关关系

"●"为S0样品,"○"为L1~S3高磁化率样品,"+"为L1~S3低磁化 率样品

 χ_{fd} %则在 S0 以下保持低值(图 7). 这说明剖面各层位 在 SP~SSD 范围内的粒径分布不一致. SSD 颗粒的相 对含量与成壤程度相关. 而无论是 SP 颗粒的绝对含 量还是相对含量在 S0 之下明显较低, 变幅很小(图 1 和 7). 将 L1~S3 样品分为两组, 分别为 χ <4.8×10⁻⁷ m³kg⁻¹ 的低磁化率样品与 χ >4.8×10⁻⁷ m³kg⁻¹ 的高磁 化率样品. 随 χ 增加, 低磁化率样品 χ_{ARM}/χ 的降低率 明显大于高磁化率样品(图 9). 高磁化率样品主要来 自 0.2~2 m 与 9.8~11.4 m(图 1),风成输入对磁化率贡 献大的典型黄土层.由此可见,对_{XARM}/_X变化的解释 应该因地层而异.

χ_{ABM} vs. χ(King 氏图)可用以估算磁颗粒粒度^[49]. 成壤成因与风成成因颗粒具有不同的粒径分布范围. 风成输入存在粒径分布下限,大约为 0.1 µm. 0.1~ 0.3 μm 则为成壤成因与风成成因过渡粒径区间^[54]. 据此, King 氏图可以区分以风成输入为主和以成壤 作用为主的黄土. 尼勒克 S0 样品落在<0.2 μm 区域, 或者位于 0.2~1 µm 之间区域, 但接近 0.2 µm(图 10). 在图上自 L1~S3 的样品同样可清楚分为χ>4.8×10⁻⁷ $m^{3}kg^{-1} 与 \chi < 4.8 \times 10^{-7} m^{3}kg^{-1} 两组. \chi > 4.8 \times 10^{-7} m^{3}kg^{-1}$ 的样品分散分布于>0.2 µm 区域, 表明其主要受风成 输入影响, 这与>0.3 µm 的磁颗粒可视为风成的观点 大概一致^[54]. x<4.8×10⁻⁷ m³kg⁻¹的样品类似于 S0, 位 于或接近<0.2 µm 的区域, 表明其主要受控于成壤作 用. SO 样品_{化ARM} 随_化的增加而迅速增加. 与之不同, 其他样品的XARM 相对稳定. 这说明右侧分散分布样 品的磁化率增加是因为风成的假单畴与多畴颗粒, 而左侧集中分布样品的磁化率减少起码部分是因为 成壤削弱作用, 亚铁磁性的假单畴与超顺磁颗粒转 化为非亚铁磁性.

4 讨论

尼勒克 S0 与黄土层中的多畴磁铁矿可以归因于 风力加强或近源原生磁性矿物输入. 伊犁黄土的源 区为中亚荒漠^[60], 但近来研究显示伊犁盆地表土磁 颗粒粒径变化较大, 在一些地方粒径很粗^[61], 因此 河谷等当地源区可能亦对磁性增强有贡献. 风力与 近源输入是磁性变化的原因之一^[62]. 尽管有原生粗 粒组分存在, S0 的磁学性质主要还是受控于成壤生 成的超细颗粒.

在伊犁盆地不同海拔不同层位都可观察到磁化 率的成壤增强.所有 S0 古土壤的磁学性质都符合成 壤增强模式,尽管沉积速度很不一样,S0 厚度为 0~2 m 不等.有研究认为沿巩乃斯河河谷分布的一些剖 面 S1 的_X降低^[21-28].但是_X高值与低值的急剧转变并 不对应于成壤强度的变化.通常剖面_X的最高值与最 低值都位于 S1. _{X ft}的变化与_X类似.由此可见,起码 部分 S1 有磁化率的成壤增强.在海拔较高地区, _X与 _{X ft}%和成壤强度相关,这表明因为气候湿润,成壤 作用导致磁化率增强.与尼勒克形成鲜明对比的是, 在海拔较高地区观察到全剖面的所有古土壤层都符 合成壤增强模式.

伊犁黄土与黄土高原西缘黄土相似,都含有粗 粒磁颗粒组分,同时又表现出成壤增强的特征.但是 在伊犁盆地, $\chi = \chi_{fi}$ %相对较低. 黄土高原西缘兰州 地区的地带性土壤同为灰钙土, 年均降水量约为 300 mm, 年均温为 11.3 . 兰州九州台剖面 S0 上部包括 表土的 χ 为 9×10⁻⁷ m³kg⁻¹左右, χ_{fd} %为>8^[63]. 伊犁河 谷平原地区(海拔约为 850 m)年均降水量为 350~480 mm, 年均温约为 8 , 表土 χ 为 8×10⁻⁷ m³kg⁻¹, χ_{fd}% 为 2~6, 在 S0 x与x_{fd}%都随深度增加迅速降低^[22~26]. 伊犁盆地χ_{fd}%较低,这可以磁颗粒原生风成输入比 重较大来解释. 在伊犁盆地内海拔较高的地区(海拔 1400~1875 m), 年均降水量大概为 550~900 mm, 年 均温<5 ,表土 χ 与 χ fil%分别为 8×10⁻⁷ m³kg⁻¹ 与 <6^[22~24]. 在 S0, χ与χ_{fd}%也都是随深度增加而迅速降 低^[22~24]. 在尼勒克剖面(海拔 1237 m), 表土 \chi 与 \chi fd % 分别为 8×10⁻⁷ m³ kg⁻¹ 与<4. 在中国西北黄土沉积的 粒度与海拔高度线性相关,海拔越高,粒度越小^[64]. 在海拔较高的地方,黄土中风成粗粒磁颗粒应该更 少. 另外, 更加浓密的植被可能会减少粉尘近源输入. 因此,在海拔更高的地方,初始风成输入很可能更少, 即使磁化率成壤增强作用一样, Xfd%也应该更高. 然 而伊犁盆地黄土的₂与_{2 fd}%并不随海拔升高与降水 量增加而增加.这可能暗示伊犁盆地的气温偏低削 弱了磁化率的成壤增强作用.如果气温不适宜的话, 更多的降水量不一定导致更多成壤成因的超细粒生 成. 伊犁盆地黄土磁性较弱可能是由气温偏低与水 热不同期所造成的.

经典的成壤增强模式认为黄土中的超细粒磁赤 铁居主导地位,是由超细粒磁铁矿转化而来^[65].而 超细粒磁铁矿又是在干湿交替的土壤条件下通过无 机途径^[3]或细菌作用^[66]形成的.成壤成因磁颗粒的 粒径一致分布可能受控于黄土高原的稳定土壤 pH. 因为黄土高原土壤碳酸盐含量高,缓冲能力较强,所 以 pH 稳定.通常认为降水对黄土磁学性质有关键性 影响^[67,68].而气温可能对黄土高原的磁化率成壤增 强不起重要作用^[58].近来有学者提出水铁矿→SP 磁 赤铁矿→SD 磁赤铁矿→SD 赤铁矿的转化可能是磁 化率成壤增强的重要途径^[69-72].磁颗粒粒径分布的 一致性可能是因为同时存在磁赤铁矿的形成与生长 的各种阶段.磁赤铁矿则是由水铁矿在适宜的气温 与湿度条件下持续转化而成. 超细粒磁赤铁矿的形 成率对温度变化敏感. 依此假说, 气温对χ与χ_{fd} 有 重要影响. 这些假说还存在争议. 要了解气温对黄 土磁学性质的影响和伊犁黄土与黄土高原黄土之间 磁化率成壤增强可能存在的细微区别还需要更多的 工作.

在巩乃斯河河谷黄土剖面的下部古土壤层可以 观察到磁化率的剧减[22~26]. χ的最小值一般位于土壤 最为发育的层位. 但可以同时发现古土壤层 X ft 与 χ_{ARM} 相对较高, 说明磁性的土壤增强与削弱作用两 者同时存在,但前者不足以抵消磁化率的降低^[24,26]. 与之不同的是, 尼勒克剖面的 χ , χ_{fd} 与 χ_{ARM} 都很低, 指示更强的成壤削弱作用.沿河谷分布的黄土发现 有被水改造的痕迹. 在野外观察到的铁锈斑和土壤 颜色的突变可以指示黄土曾经遭受水浸.我们发现 水浸的持续时间因剖面而异, 但经受水浸的黄土的 磁学性质都非常相似. 对于尼勒克剖面, 我们认为是 持续的水滞或过湿润条件导致磁性成壤削弱. 在间 冰期, 西风带北移, 控制伊犁盆地, 气候变为温和温 润. 因为降水与融水增多, 河谷平原与凹地易遭受水 浸. 尼勒克剖面位于小山丘之间, 受地形影响, 古土 壤层很可能长期水浸,排水不畅.亚铁磁性矿物的生 成需要间歇性的还原环境. 长期的氧化或还原环境 会导致非亚铁磁性矿物的生成与积累[1,17~20,41,73]. 尼 勒克剖面湿润的还原条件破坏亚铁磁性矿物,并促 使非亚铁磁性矿物生成.

与典型西伯利亚黄土相比, 尼勒克黄土的顺磁 性矿物相对含量较高而高矫顽力的硬矿物相对含量 较低^[15,74]. 在西伯利亚南部, SO 的磁化率一般与其他 古土壤层一样,都比较低.在当地的气候条件下,土 壤长期湿润. 但在冰期, 气候变干, 造成相对的氧化 环境, 亚铁磁性矿物免遭破坏^[20]. 因此西伯利亚南 部黄土的磁化率变化可以大致反映较广区域的气候 变化. 在伊犁盆地, 磁化率变化成因多样, 更加复杂. 对磁化率的解读应该因地、因层位而定. 但是尼勒克 剖面的χ_{ARM}/χ可与粒度及成壤程度对应,能够反映 气候变化. 剖面下部χ_{ARM}/χ波动较大, 而χ_{fd}%保持 低值,说明稳定单畴颗粒保存下来而超顺磁颗粒被 破坏. 这可用两者比表面积不同来解释. 超顺磁颗粒 比粗粒更易溶解. 但据报道, 在一定程度的湿润条件 下成壤作用会导致χ降低与χ_{fd}%升高,直至持续水浸 后χ与χ_{fd}%才同时降低^[73]. 这样的话, 磁化率的成壤

2318

削弱始于粗粒组分被破坏.与之一致,伊犁黄土的一 些剖面可观察到低磁化率对应于χ_{fd}%的峰值^[24,26]. 尼勒克下部古土壤多畴磁颗粒的缺失归因于更少的 粗粒风成输入,还可能跟过湿条件下成壤过程对粗 粒组分的破坏有关.更好了解伊犁黄土的磁性衰减 需要进一步工作. 杂.伊犁黄土磁化率变化成因多样.亚铁磁性与非亚 铁磁性矿物的生成很可能是竞争性的,两者此消彼 长,同时存在,决定磁性的强弱.在过湿条件下,尼 勒克下部古土壤磁化率成壤削弱作用占优,非亚铁 磁性矿物生成,亚铁磁性矿物转化为非亚铁磁性,古 土壤磁化率降低.在此过程中,磁颗粒的粒径发生变 化.要解释磁化率、频率磁化率和无磁滞磁化率等磁 学参数的变化,需要全面考虑磁性矿物的原生输入 和次生成壤增强及成壤削弱作用.

5 结论

当地环境的变化可令黄土磁性增强机制更为复

致谢 俄罗斯科学院西伯利亚分院地质与地球物理及矿物联合研究所的 Alexey Yurievich Kazansky 博士和 Galina Gel'evna Matasova 博士与作者就相关问题作了有益讨论,刘进峰博士完成光释光测年实验,在此谨致谢忱.

参考文献

- Maher B A. Magnetic properties of modern soils and Quaternary loessic paleosols: Paleoclimatic implications. Paleogeogr Paleoclimatol Paleoecol, 1998, 37: 25–54
- 2 Sun J M, Liu T S. Multiple origins and interpretations of the magnetic susceptibility signal in Chinese wind-blown sediments. Earth Planet Sci Lett, 2000, 180: 287–296
- 3 Maher B A, Taylor R M. Formation of ultrafine magnetite in soils. Nature, 1988, 336: 368-370
- 4 Zhou L P, Oldfield F, Wintle A G, et al. Partly pedogenic origin of magnetic variations in Chinese loess. Nature, 1990, 346: 737-739
- 5 Liu X M, Shaw J, Liu T S, et al. Magnetic mineralogy of Chinese loess and its significance. Geophys J Int, 1992, 108: 301-308
- 6 Evans M E, Heller F. Magnetic enhancement and paleoclimate: Study of a loess/paleosol couplet across the Loess Plateau of China. Geophys J Int, 1994, 117: 257–264
- 7 Evans M E, Heller F. Magnetism of loess palaeosol sequence: Recent developments. Earth-Sci Rev, 2001, 54: 129-144
- 8 Liu Q S, Jackson M J, Banerjee S K, et al. Mechanism of magnetic susceptibility enhancements of the Chinese loess. J Geophys Res, 2004, 109: B12107
- 9 Begét J E, Hawkins D B. Influence of orbital parameters on Pleistocene loess deposition in central Alaska. Nature, 1989, 337: 151–153
- 10 Begét J, Stone D, Hawkins D. Paleoclimate forcing of magnetic susceptibility variations in Alaskan loess. Geology, 1990, 18: 40–43
- 11 Begét J. Tephrochronology and paleoclimatology of the last interglacial cycle recorded in Alaska loess deposits. Quat Int, 1996, 34-36: 121-126
- 12 Chlachula J, Evans M E, Rutter N W. A magnetic investigation of a late Quaternary loess/paleosol record in Siberia. Geophys J Int, 1998, 132: 128–132
- 13 Kravchinsky V A, Zykina V S, Zykin V S. Magnetic indicator of global paleoclimate cycles in Siberian loess-paleosol sequences. Earth Planet Sci Lett, 2008, 265: 498–514
- 14 朱日祥, Alexey K, Galina M, 等. 西伯利亚南部黄土沉积物的磁学性质. 科学通报, 2000, 45: 1200-1205
- 15 Matasova G, Petrovský E, Jordanova N, et al. Magnetic study of Late Pleistocene loess/palaeosol sections from Siberia: Palaeoenvironmental implications. Geophys J Int, 2001, 147: 367–380
- 16 Zhu R X, Matasova G, Kazansky A, et al. Rock magnetic record of the last glacial-interglacial cycle from the Kurtak loess section, southern Siberia. Geophys J Int, 2003, 152: 335–343
- 17 Liu X M, Hesse P, Rolph T, et al. Properties of magnetic mineralogy of Alaskan loess: Evidence for pedogenesis. Quat Int, 1999, 62: 93-102
- 18 Liu X M, Hesse P, Rolph T. Pedogenic destruction of ferrimagnetics in Alaskan loess deposits. Austr J Soil Res, 2001, 39: 99-115
- 19 刘秀铭, 夏敦胜, 刘东生, 等. 中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨. 第四纪研究, 2007, 27: 210-220
- 20 Liu X M, Liu T S, Paul H, et al. Two pedogenic models for paleoclimatic records of magnetic susceptibility from Chinese and Siberian loess. Sci China Ser D-Earth Sci, 2008, 51: 284–293
- 21 叶玮.新疆西风区黄土与古土壤磁化率变化特点.中国沙漠, 2001, 21: 380-386

- 22 史正涛, 董铭, 方小敏. 伊犁盆地晚更新世黄土-古土壤磁化率特征. 兰州大学学报(自然科学版), 2007, 43: 7-10
- 23 Song Y G, Shi Z T, Dong H M, et al. Loess magnetic susceptibility in Central Asia and its paleoclimatic significance. Int Geosci Remote Sens Symp, 2008, 2: 1227–1230
- 24 宋友桂, 史正涛, 方小敏, 等. 伊犁黄土的磁学性质及其与黄土高原对比. 中国科学: 地球科学, 2010, 40: 61-72
- 25 夏敦胜,陈发虎,马剑英,等.新疆伊犁地区典型黄土磁学特征及其环境意义初探. 第四纪研究, 2010, 30: 902-909
- 26 Jia J, Xia D S, Wei H T, et al. A magnetic investigation of a loess/paleosol sequences record in Ili area. Front Earth Sci, 2010, 4: 259–268
- 27 李传想, 宋友桂. 新疆伊犁黄土磁化率增强机制差异性分析. 地球学报, 2011, 32: 80-86
- 28 叶佰生, 赖祖铭, 施雅风. 伊犁河流域降水和气温的若干特征. 干旱区地理, 1997, 20: 47-52
- 29 张军民. 伊犁河流域气候资源特点及其时空分布规律研究. 干旱气象, 2006, 24: 1-4
- 30 叶玮. 新疆伊犁地区自然环境特点与黄土形成条件. 干旱区地理, 1999, 22: 9-16
- 31 范丽红. 新疆天山山区与南、北疆气候变化及其影响的比较研究. 硕士学位论文. 乌鲁木齐: 新疆大学, 2006
- 32 吕红华,李有利,南峰,等.天山北麓黄土发育特征及形成年代.地理科学,2008,28:375-379
- 33 Leonhardt R. Analyzing rock magnetic measurements: The RockMagAnalyzer 1.0 software. Comput Geosci-UK, 2006, 32: 1420–1431
- 34 Fabian K. Some additional parameters to estimate domain state from isothermal magnetization measurements. Earth Planet Sci Lett, 2003, 213: 337–345
- 35 鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义.中国科学 D 辑:地球科学,1998,28:278-283
- 36 Hao Q Z, Oldfield F, Bloemendal J, et al. Particle size separation and evidence for pedogenesis in samples from the Chinese Loess Plateau spanning the past 22 m.y. Geology, 2008, 36: 727–730
- 37 Maher B A. Magnetic properties of some synthetic sub-micron magnetites. Geophys J, 1988, 94: 83–96
- 38 Dunlop D J, Argyle K S. Thermoremanence, anhysteretic remanence and susceptibility of submicron magnetites: Nonlinear field dependence and variation with grain size. J Geophys Res, 1997, 102: 20199–20210
- 39 Florindo F, Zhu R X, Guo B, et al. Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese loess plateau. J Geophys Res, 1999, 104: 645–659
- 40 Thompson R, Oldfield F. Environmental Magnetism. London: Allen and Unwin, 1986. 1–227
- 41 Evans M E, Heller F. Environemental Magnetism: Principles and Applications of Environmagnetics. San Diego: Academic Press, 2003. 1-299
- 42 Forster T, Heller F. Magnetic enhancement paths in loess sediments from Tajikistan, China and Hungary. J Geophys Res Lett, 1997, 24: 17–20
- 43 Pan Y X, Zhu R X, Shaw J, et al. Can relative palaeointensities be determined from the normalized magnetisation of the wind-blown loess of China? J Geophys Res, 2001, 106: 19221–19232
- 44 Cui Y L, Verosub K L. The effect of low-temperature oxidation on large mutli-domain magnetite. Geophys Res Lett, 1994, 21: 757–760
- 45 Velzen A J V, Dekkers M J. Low-temperature oxidation of magnetite in loess paleosol sequences: A correction of rock magnetic parameters. Stud Geophys Geod, 1999, 43: 357–375
- 46 刘青松, Banerjee S K, Jackson M J, 等. 低温氧化作用对中国黄土记录剩磁的影响. 科学通报, 2003, 48: 193-198
- 47 Liu Q S, Banerjee S K, Jackson M J, et al. New insights into partial oxidation model of magnetites and thermal alteration of magnetic mineralogy of the Chinese loess in air. Geophys J Int, 2004, 158: 506–514
- 48 Deng C L, Vidic N J, Verosub K L, et al. Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability. J Geophys Res, 2005, 110: B03103, doi: 10.1029/2004JB003451
- 49 Bloemendal J, King J W, Hall F R, et al. Rock magnetism of late Neogene and Pleistocene deep-sea sediments: Relationship of sediment source, diagenetic processes and sediment lithology. J Geophys Res, 1992, 97: 4361–4375
- 50 Hunt C P, Singer M J, Kletetschka G, et al. Effect of citrate-bicarbonate-dithionite treatment on fine-grained magnetite and maghemite. Earth Planet Sci Lett, 1995, 130: 87–94
- 51 Liu X M, Rolph T, Bloemendal J. The Citrate–Bicarbonate–Dithionite (CBD) removable magnetic component of Chinese loess. Quat Proc, 1995, 4: 53–58
- 52 Pinchas F, Kenneth L V, Michael J S. Pedogenic and lithogenic contribution to the magnetic susceptibility record of the Chinese loess/palaeosol sequence. Geophys J Int, 1995, 122: 97–107
- 53 Liu Q S, Banerjee S K, Jackson M J, et al. An integrated study of the grain-size-dependent magnetic mineralogy of the Chinese loess/paleosol and its environmental significance. J Geophys Res, 2003, 108: 2437, doi: 10.1029/2002JB002264
- 54 Liu Q S, Banerjee S K, Michael J, et al. Grain sizes of susceptibility and anhysteretic remanent magnetization carriers in Chinese loess/paleosol sequences. J Geophys Res, 2004, 109: B03101, doi: 10.1029/2003JB002747
- 55 Liu Q S, Jackson M J, Yu Y J, et al. Grain size distribution of pedogenic magnetic particles in Chinese loess/paleosols. Geophys Res Lett, 2004, 31: L22603, doi: 10.1029/2004GL021090

- 56 Liu Q S, Jose T, Barbara A M, et al. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance. J Geophys Res, 2005, 110: B11102, doi: 10.1029/2005JB003726
- 57 Liu Q S, Deng C L, Torrent J, et al. Review of recent developments in mineral magnetism of the Chinese loess. Quat Sci Rev, 2007, 26: 368–385
- 58 Nie J S, Song Y G, John W, et al. Consistent grain size distribution of pedogenic maghemite of surface soils and Miocene loessic soils on the Chinese Loess Plateau. J Quat Sci, 2009, 25: 261–266
- 59 Spassov S, Heller F, Kretzschmar R, et al. Detrital and pedogenic magnetic mineral phases in the loess/palaeosol sequence at Lingtai (Central Chinese Loess Plateau). Phys Earth Planet Int, 2003, 140: 255–275
- 60 Sun J M. Source regions and formation of the Loess sediments on the high mountain regions of northwestern China. Quat Res, 2002, 58: 341-351
- 61 郭雪莲, 刘秀铭, 吕镔, 等. 天山黄土区与黄土高原表土磁性特征对比及环境意义. 地球物理学报, 2011, 54: 1854-1862
- 62 Zan J B, Fang X M, Yang S L, et al. A rock magnetic study of loess from the West Kunlun Mountains. J Geophys Res, 2010, 115: B10101, doi: 10.1029/2009JB007184
- 63 贾佳,夏敦胜,魏海涛,等.黄土高原西部典型古土壤与黄土的磁学特征及其古气候意义.兰州大学学报(自然科学版),2010,46: 26-40
- 64 昝金波, 方小敏, 聂军胜, 等. 塔里木盆地风积物表土磁学特征及其与物源物质、气候条件的关系. 科学通报, 2011, 56: 153-160
- 65 Verosub K, Fine P, Singer M, et al. Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences. Geology, 1993, 21: 1011–1014
- 66 Fassbinder J W E, Stanjek H, Vali H. Occurrence of magnetic bacteria in soil. Nature, 1993, 343: 161-163
- 67 Maher B A, Thompson R, Zhou L P. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: A new mineral magnetic approach. Earth Planet Sci Lett, 1994, 125: 461–471
- 68 Maher B A, Alekseev A, Alekseeva T. Magnetic mineralogy of soils across the Russian Steppe: Climatic dependence of pedogenic magnetite formation. Paleogeogr Paleoclimatol Paleoecol, 2003, 201: 321–341
- 69 Torrent J, Barrón V, Liu Q S. Magnetic enhancement is linked to and precedes hematite formation in aerobic soil. Geophys Res Lett, 2006, 33: L02401, doi: 10.1029/2005GL024818
- 70 Torrent J, Liu Q S, Bloemendal J, et al. Magnetic enhancement and iron oxides in the upper Luochuan loess-paleosol sequence, Chinese Loess Plateau. Soil Sci Soc Am J, 2007, 71: 1570–1578
- 71 Torrent J, Liu Q S, Barrón V. Magnetic minerals in Calcic Luvisols (Chromic) developed in a warm Mediterranean region of Spain: Origin and paleoenvironmental significance. Geoderma, 2010, 154: 465–472
- 72 Liu Q S, Barrón V, Torrent J, et al. The magnetism of intermediate hydromaghemite in the transformation of 2-line ferrihydrite into hematite and its paleoenvironmental implications. J Geophys Res, 2008, 113: B01103, doi: 10.1029/2007JB005207
- 73 Bidegain J C, Rico Y, Bartel A, et al. Magnetic parameters reflecting pedogenesis in Pleistocene loess deposits of Argentina. Quat Int, 2009, 209: 175–186
- 74 Matasova G, Kazansky A. Contribution of paramagnetic minerals to magnetic properties of loess-soil deposits in Siberia and its paleoclimatic implications. Izv Phys Solid Earth, 2005, 41: 81–89