文章编号:1671-7554(2013)08-0038-07

DOI:10.6040/j.issn.1671-7554.2013.08.008

磷酸酶 STEP 的 Q-loop 中 T541 参与 催化反应的机制

谢迪东^{1,2*},龚正^{3*},李容²,李慧²,刘宏达²,孙金鹏^{1,2},庞琦¹

(1.山东大学附属省立医院神经外科,济南 250021;2.山东大学医学院生物化学与分子生物学研究所,济南 250012;3.山东大学威海分校,山东 威海 264209)

摘要:目的研究纹状体蛋白质酪氨酸磷酸酶(STEP)pY-loop结构上第 330 位的苏氨酸(T330)和Q-loop结构上 第 541 位的苏氨酸(T541)参与催化反应的作用机制。方法 构建 STEP 野生型(STEP-WT)及其突变体(STEP-T₃₃₀D/T₅₄₁A)的表达质粒;表达并纯化 STEP-WT 及其突变体蛋白,体外检测这些蛋白对小分子底物4-硝基苯磷酸 二钠(pNPP)的催化活力,分析 NaVO₃ 对 STEP-WT 及其突变体酶活性的抑制作用;检测 STEP-WT 及其突变体催 化反应的 pH 依赖性和对解离基团 pK_a 的依赖性。结果 体外催化 pNPP 水解的过程中,STEP-T₃₃₀D 的催化性质较 STEP-WT 无明显变化,STEP-T₅₄₁A 的 K_m 略有增加,k_{cat}下降至 STEP-WT 的 1/3 以下。NaVO₃ 对于 STEP-WT 及 其突变体的抑制常数 K_i 无明显变化。在 STEP 的 pH 依赖性研究中,STEP-T₅₄₁A 的 pK₂^{app}显著增加且它的 (k_{cat})^{tim}下降至野生型 1/10 以下。在 STEP 催化底物反应过程对底物解离基团 pK_a 依赖性的研究中,STEP-T₅₄₁A 的 β_{1g}(k_{cat})较 STEP-WT 明显增大。结论 T541 参与了 STEP 催化反应中从产物生成到磷酸根释放这一过程,靶 向 STEP 治疗神经系统疾病的药物可以考虑通过与 T541 相互作用进行设计。

关键词:蛋白质酪氨酸磷酸酶;纹状体蛋白质酪氨酸磷酸酶;纹状体;中枢神经系统;蛋白磷酸化

中图分类号:R34 文献标志码:A

T541 in Q-loop of STEP plays a key role in the catalytical activity

XIE Di-dong^{1,2*}, GONG Zheng^{3*}, LI Rong², LI Hui², LIU Hong-da², SUN Jin-peng^{1,2}, PANG Qi¹ (1. Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China;

Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan 250012, China;
 Weihai Campus, Shandong University, Weihai 264209, Shandong, China)

Abstract: Objective To explore the essential role of Threonine at position 541 and 330(T541,T330) in the intrinsic phosphatase activity of striatal-enriched protein tyrosine phosphatase(STEP). **Methods** STEP wild type(STEP-WT) and its mutants STEP-T₃₃₀D/T₅₄₁A were sub-cloned into the PET15b vector. Expression and purification of STEP-WT and its mutants were performed by affinity column and liquid chromatography. The phosphatase activity was measured in vitro with 4-nitrophenyl phosphate (pNPP) as substrate. The inhibition by NaVO₃ was measured to monitor the effects of mutants on protein folding. The pH-dependence and leaving-group pK_a dependence of STEP catalysis were carried out to dissect the underlying molecular mechanism. **Results** STEP-WT and STEP-T₃₃₀D displayed similar catalytic ability toward pNPP at pH 7.0. The k_{cat} of STEP-T₅₄₁A decreased 3 folds compared to STEP-WT. STEP-WT and the two mutants had similar K_i for NaVO₃. Examination of the k_{cat} versus pH curve revealed that pK_2^{app} of STEP-T₅₄₁A significantly increased and the (k_{cat})^{lim} dropped by at least 10 folds. In consistent with these observations, $\beta_{1g}(k_{cat})$ of STEP-T₅₄₁A increased significantly. **Conclusion** T541 plays an important role in STEP catalysis, by participating the

收稿日期:2013-03-11

基金项目:国家自然科学基金(81171062;31271505);国家自然科学基金青年项目(31100580);山东大学自主创新基金(2012TS114)。

通讯作者:孙金鹏, E-mail:sunjinpeng@sdu.edu.cn; 庞琦, E-mail:pangqi@sdu.edu.cn

^{*}两位作者对本研究有同等贡献。

Key words: Prtotein tyrosine phosphatase; Striatal-enriched protein tyrosine phosphatase; Striatal; Central nervous system; Protein phosphorylation

蛋白质的酪氨酸磷酸化修饰是多细胞生物中目 前已知的最重要的转录后修饰之一,调节许多重要 的生理过程,如细胞的新陈代谢、组织的分化和生 长、基因的转录与调控、神经可塑性和免疫应答 等^[1-2]。在人体内,蛋白质酪氨酸激酶(protein tyrosine kinase,PTK)将磷酸基团共价转移到酪氨酸的 苯环羟基上,蛋白质酪氨酸磷酸酶(protein tyrosine phosphatase,PTP)催化磷酸根的水解,二者共同调 节酪氨酸上的磷酸化可逆修饰,精确地控制体内酪 氨酸的磷酸化水平^[34]。酪氨酸磷酸酶在生理过程 和病理过程中的重要作用,已成为国内外的研究热 点^[1,56]。

纹状体蛋白质酪氨酸磷酸酶(striatal-enriched protein tyrosine phosphatase, STEP/PTPN5) 是一种 经典的 PTP, 特异性地表达于中枢神经系统中。 STEP 调控其在神经组织中的磷酸酶底物,如细胞 外调节蛋白激酶(ERK)、P38、蛋白质酪氨酸激酶2 (PYK2),以及 N-甲基-D-天冬氨酸受体 (NMDAR) 的酪氨酸磷酸化水平。STEP 功能失调将导致包括 老年痴呆在内的多种神经系统功能性疾病^[7-8]。因 此,STEP 成为近年来重要的治疗神经类疾病的潜 在药物靶点。晶体结构显示,与其他经典 PTP 相 同, STEP 包含保守的、约含 280 个氨基酸的催化结 构域,由5个平行的β折叠构成中心,两侧被α螺 旋所围绕^[9-12]。为容纳其特异性底物——磷酸化酪 氨酸,所有经典 PTP 的活性中心,都由一些保守的 loop 所围绕,包括 P-loop (PTP-loop)、WPD loop、 Q-loop和 pY-loop。其中, P-loop 包含 C-(Xaa)₅-R 特征序列,在与底物的结合中起重要作用。STEP 的 WPD loop 包含酸碱催化所必需的 461 位天冬氨 酸(D461),Q-loop包含最后一步催化反应中帮助释 放磷酸根的保守残基——540 位谷氨酰胺(Q540), 而 pY-loop 中的 328 位酪氨酸(Y328) 在识别磷酸 酪氨酸残基中起重要作用^[13]。

许多决定 PTP 活性的重要氨基酸参与催化反应的机制还未阐明。本文应用酶学分析手段和定点突变技术,对 STEP 中 330 位的苏氨酸(T330)和541 位的苏氨酸(T541)在催化中所起的作用进行研究。

1 材料与方法

1.1 主要试剂 人源 PTPN5 cDNA (GenBank: BC039897.1)购自美国 Thermo 公司,表达载体 PET-15b^[14]由本实验室保存。限制性内切酶、T4 DNA 连接酶及 PfuDNA 聚合酶购自美国 Thermo 公司。小分子磷酸根化合物包括 β-萘基磷酸($pK_a = 9.38$)、4-甲基伞形酮磷酸酯($pK_a = 7.80$)、4-硝基苯 磷酸二钠($pNPP, pK_a = 7.14$)均购自上海生工生物 工程有限公司, O-磷酸-L-酪氨酸($pK_a = 10.07$)购 自美国 Sigma-Aldrich 公司。

1.2 实验仪器 分子克隆采用美国 Thermo Fisher Scientific Piko 快速 PCR 仪;蛋白纯化使用购自美国 GE Healthcare 公司的 ÄKTAFPLC 蛋白纯化仪。 Ni-NTA resin 及强阴离子交换柱分别购自上海生工 生物工程有限公司及美国 GE Healthcare 公司。

1.3 方法

1.3.1 重组表达载体的构建 通过 PCR 及双酶切 的方法,将人源 PTPN5 cDNA 表达序列(STEP231-563 Swiss-Prot 蛋白序列数据库,编号 P54829)亚克 隆到带有 His 标签的 PET-15b 表达载体,构建重组 的 STEP 野生型(STEP-WT)表达载体^[14]。在此基础 上,使用 Quick-change 方法构建突变体 STEP-T₃₃₀ D 及 STEP-T₅₄₁A。

1.3.2 蛋白表达和纯化 将重组质粒转化至 E. coli BL21 (DE3)中,挑取单个菌落接种于含 0.1 mg/mL氨苄西林的LB培养基中,37℃培养过 夜,按照1:100的比例接种,并在37℃继续培养至 A₆₀₀达0.4~0.6,加入IPTG后18℃诱导过夜。离 心收集菌体,并用高压细胞破碎仪破碎。离心后将 上清加入Ni-NTA resin,垂直混匀1h,收集 beads 后 用咪唑(20 mmol/L Tris, pH 8.0; 300 mmol/L NaCl; 5~500 mmol/L 咪唑)梯度洗脱蛋白。将洗 脱蛋白上样到强阴离子交换柱,NaCl 线性梯度洗脱 蛋白。根据 A₂₈₀吸收峰收集蛋白,采用 15% SDS-PAGE 进行蛋白纯度分析。

1.3.3 酶活性测定 STEP 催化小分子底物的反应均在 37 ℃进行,反应 buffer 为:50 mmol/L 琥珀酸(pH5.0~6.0),50 mmol/L DMG(pH6.0~7.3),

50 mmol/L Tris(pH7.5~9.0),1 mmol/L EDTA, 1 mmol/L DTT,加入 NaCl 调整离子强度 I = 0.15 mol/L。底物浓度在 1/5~5 K_m 之间,加酶混匀并 启动反应。将数据拟合到米氏方程,得到相应的 K_m 及 k_{cat} 。pH 依赖性的数据拟合到公式(1)和公式 (2)中。

$$k_{cat} = (k_{cat})^{lim} / (1 + H/K_1^{app} + K_2^{app}/H)$$
(1)

$$k_{cat}/K_m = (k_{cat}/K_m)^{lim} / [(1 + H/K_{S2})$$
(1 + H/K_{E1} + K_{E2}/H)] (2)

其中, $(k_{cat})^{lim}$ 和 $(k_{cat}/K_m)^{lim}$ 为独立于 pH 的最大反应 常数,H 为氢离子浓度, K_1^{app} 和 K_2^{app} 分别为限速反应 步骤中酶的表观酸碱解离常数, K_{s2} 为催化中底物的 酸碱解离常数, K_{El} 和 K_{E2} 反映酶的酸碱解离常数^[15-16]。 STEP 结构模型的生成 在最近解析的
 STEP 结构(PDB 2CJZ)的基础上,使用 PyMOL V1.5
 (美国 DeLano Scientific 软件公司)生成 STEP-T541
 结构模型。

2 结 果

2.1 经典 PTP pY-loop 和 Q-loop 的序列比对 如 图 1 所示, STEP 在其 pY-loop 区有 Y328XT330 特 征性序列, 与大部分 PTP 家族成员的保守 YXD 序 列不同。而在 Q-loop 保守的 Q540 之后, 有保守的 T541。在 37 个经典的 PTP 中, 有 33 个磷酸酶中 T541 的对应位置为 T。

	pY-loop	Q-loop		pY-loop	Q-loop
STEP	³²³ VRKNRYKTILP ³³³	⁴⁹⁵ RGGMIQTCEQYQ ⁵⁰⁶	MEG2	³²⁸ LEKNRYGDVPC ³³⁸	554 RAFSIQTPEQYY565
HEPTP	²²⁵ ASKDRYKTILP ²³⁵	435 RGGMIQTAEQYQ446	PTPIA2	735 IKKNRHPDFLP745	949 RPGLVRSKDQFE960
PCPTP1	⁴¹⁶ GTKNRYKTILP ⁴²⁶	627 RGGMVQTSEQYE638	SAP1	845 NAKNR YRNVLP855	¹⁰⁵⁹ RPLMVQTEAQYV ¹⁰⁷⁰
ΡΤΡα	²⁶⁶ KEKNRY VNILP ²⁷⁶	⁴⁸¹ RCQMVQTDMQYV ⁴⁹²	HDPTP	1218 SLKNRHQDVMP1228	¹⁴⁵⁰ VRHVEQVLQRHG ¹⁴⁶¹
ΡΤΡβ	1648 RGKNRYNNILP1658	¹⁹⁴³ RVHMVQTECQYV ¹⁹⁵⁴	PTP1B	⁴¹ KNRNR YRDVSP ⁵¹	257 RMGLIQTADQLR268
РТРб	⁹⁶⁵ KPKNRYANVIA ⁹⁷⁵	¹⁵⁹² RNYMVQTEDQYI ¹⁶⁰³	PTPBAS	2159 LAKNRYKNILP2169	²⁴²⁸ RHGMVQTEDQYI ²⁴³⁹
ΡΤΡγ	875 KHKNR YINILA885	¹⁰⁹⁹ RNYLVQTEEQYI ¹¹¹⁰	PTPIA2	771 VPKNRSLAVLT781	985 RPGMVQTKEQFE996
PTP_{ε}	¹⁶⁰ REKNRYPNILP ¹⁷⁰	³⁷⁴ RPQMVQTDMQYT ³⁸⁵	MEG1	680 ISKNRYRDISP690	891 RAMMIQTPSQYR902
ΡΤΡζ	¹⁷⁵¹ KHKNR YINIVA ¹⁷⁶²	¹⁹⁷² RNYLVQTEEQYV ¹⁹⁸³	PTPH1	671 LDKNRYKDVLP681	⁸⁸¹ RAMMVQTSSQYK ⁸⁹²
РТРк	928 RAKNRYGNIIA938	¹²²² RINMVQTEEQYI ¹²³³	PTPTYP	¹⁸⁴ REKNRYRDILP ¹⁹⁴	³⁸³ RSGMVQTKEQYH ³⁹⁴
ΡΤΡλ	914 VKGSRQEPMPA924	¹¹²⁴ RVNMIQTEEQYI ¹¹³⁵	DEP1	¹⁰⁶⁶ RGKNR YNNVLP ¹⁰⁷⁶	1278 RPLMVQTEDQYV1289
ΡΤΡρ	913 RNKNRYGNIIS923	¹¹²³ RVNLVQTEEQYV ¹¹³⁴	SHP1	²⁷¹ KGKNRYKNILP ²⁸¹	495 RSGMVQTEAQYK506
ΡΤΡσ	¹⁴¹⁷ KPKNRYANVIA ¹⁴²⁷	¹⁶²⁸ RNYMVQTEDQYS ¹⁶³⁹	GLEEP1	963 RCKNRYTNILP973	¹¹⁷⁵ RMSMVQTEEQYI ¹¹⁸⁸⁶
ΡΤΡμ	923 RMKNRYGNIIA933	¹¹³⁴ RVNMVQTEEQYV ¹¹⁴⁵	PCPTP1	⁴¹⁶ GTKNRYKTILP ⁴²⁶	⁶²⁷ RGGMVQTSEQYE ⁶³⁸
LYP	55 IKKNRYKDILP65	²⁶⁹ RPSLVQTQEQYE ²⁸⁰	PTPS31	²⁰⁶¹ RAKNRFPNIKP ²⁰⁷¹	²²⁷¹ RMCMVQNLAQYI ²²⁸²
PEST	59 VKKNRYKDILP69	²⁷³ RHSAVQTKEQYE ²⁸⁴	SHP2	²⁷³ KNKNR YKNILP ²⁸³	⁵⁰¹ RSGMVQTEAQY ⁵¹²
BDP1	57 VRKNRYKDVLP67	²⁷¹ RPAAVQTEEQYR ²⁸²	PTPD1	923 ERNRFQDVILP933	1147 RMMLVQTLCQYT ¹¹⁵⁸
LAR	¹³⁷⁶ KPKNRYANVIA ¹³⁸⁶	¹⁸⁷⁸ RPAMVQTEDQYQ ¹⁸⁸⁹	PTPD2	934 AERSRIREVVP944	¹¹⁶⁰ RMFMIQTIAQYK ¹¹⁷¹
CD45	678 QNKNR YVDILP688	897 RCLMVQVEAQYI909			

图 1 37 种经典 PTP 的 pY-loop 和 Q-loop 的序列比对 红色标记为保守序列。

Fig. 1 Sequence alignment of pY-loop and Q-loop from 37 classical PTPs The conserved sequences are marked in red.

2.2 STEP-T₃₃₀ D/T₅₄₁ A 对小分子底物 pNPP 催化 的稳态动力学研究

2.2.1 蛋白的表达和纯化 为研究 STEP 的 T330 和 T541 在催化过程中所起的作用,我们将 T330 突 变为在大部分其他 PTP 酶中保守的 D,将 T541 突 变为没有侧链的氨基酸 A,并研究它们与 STEP-WT 在催化小分子底物 pNPP 过程中的差异。通过质粒 测序确认 STEP 突变体构建成功后,我们在大肠杆 菌中表达了 STEP-WT 及 STEP-T₃₃₀ D/T₅₄₁ A 的蛋 白,并通过 Ni-NTA 亲和层析柱和强阴离子交换柱

(Mono-Q)纯化蛋白,蛋白纯度达到 95% 以上(图 2A~2C)。

2.2.2 基本酶学常数的测定 利用纯化的重组蛋 白,我们检测了 STEP-WT、STEP-T₃₃₀D 和 STEP-T₅₄₁ A 催化人工合成的小分子 pNPP 水解的稳态动力 学。如图 2D 所示,将实验结果与米氏曲线拟合后,与 STEP-WT 相比, STEP-T₃₃₀D 的磷酸酶活性无明 显改变,而 STEP-T₅₄₁A 的活性出现了明显降低。表1列出了 STEP-WT 及 STEP-T₃₃₀D/T₅₄₁A 催化的 基本酶学常数。与 SETP-WT 相比, SETP-T₃₃₀D 的

 $K_{\rm m}$ 值无明显变化,约为0.3 mmol/L;SETP-T₅₄₁A的

K_m 仅轻微增加。

图 2 STEP 的表达纯化和酶稳态动力学研究

A:STEP 重组蛋白的表达和纯化流程图; B:强阴离子交换柱(Mono-Q)纯化 STEP 的连续梯度洗脱层析图; C:纯化的 STEP 重组蛋白的电泳图; D:STEP 催化 pNPP 水解的米氏曲线。

Fig. 2 Expression, purification and steady-kinetics study of STEP

A: Procedure of expression and purification of recombinant STEP; B: Continuous gradient elution chromatography figure of STEP purification by Mono-Q column; C: SDS-PAGE analysis of purified STEP -WT and its mutants; D: Michaelis-Menten curve of STEP catalyzing hydrolysis of pNPP.

表1 STEP 水解 pNPP 的稳态动力学常数

STEP	$K_{\rm m}$ (mmol/L)	$k_{\rm cat}({\rm s}^{-1})$	$k_{\rm cat}/K_{\rm m}$ [10 ³ (mol/L) ⁻¹ s ⁻¹]
WT	0.31 ± 0.05	0.66 ± 0.12	2. 13 ±0. 44
T ₃₃₀ D	0.32 ± 0.04	0.52 ± 0.08	1.64 ± 0.65
T ₅₄₁ A	0.40 ± 0.09	0.20 ± 0.09	0.49 ± 0.18

注:STEP 的稳态动力学研究均在 50 mmol/L DMG, pH = 7.0,1 mmol/L EDTA, I = 0.15 mol/L, 1 mmol/L DTT, 37 ℃的条件下进行。

2.3 NaVO₃ 对 STEP-WT 及 STEP-T₃₃₀ D/T₅₄₁ A 的抑制作用 对 NaVO₃ 抑制 STEP-WT 进行 Lineweaver-Burk 双倒数作图法分析,如图 3 所示, NaVO₃ 对 STEP-WT 的抑制力竞争性抑制,与 NaVO₃ 对 PTP1B 的抑制相同^[17]; NaVO₃ 抑制 STEP-WT 及 STEP-T₃₃₀ D/T₅₄₁ A 的 K_i 分别为(1.26 ± 0.12)、(0.98 ± 0.25)和(1.19 ± 0.19) μ mol/L,均在 1 μ mol/L左右,互相间无显著差异。

- 图 3 NaVO₃ 抑制 STEP-WT 的 Lineweaver-Burk 双倒数曲 线图
- Fig. 3 Lineweaver-Burk double-reciprocal plot of the inhibition of STEP-WT by NaVO₃

2.4 STEP-WT 及 STEP-T₃₃₀ D/T₅₄₁ A 催化过程的 pH 依赖性

2.4.1 STEP-WT 的 pH 依赖性 见图 4 和表 2、表
 3。STEP-WT 催化 pNPP 水解的 k_{eat}/K_m 随 pH 变化

的曲线呈典型的钟形,酸性一侧的 k_{cat}/K_m 随 pH 增 加而增加,斜率为2;碱性一侧随 pH 减小而减小,斜 率为-1。催化反应过程中,有2个主要基团需要处 于去质子化,另外有1个主要基团需要质子化。如 表2所示,STEP-WT 的 $pK_{E1} = 6.81$,可能是活性中 心的半胱氨酸在 pH = 6.8 时有 1/2 的残基可以去 质子化,以参与催化反应。而 STEP-WT 的 $pK_{E2} =$ 5.16,可能是其催化残基 D461 的 pK_a 接近 5.16。

- 图 4 STEP-WT 及 STEP-T₃₃₀ D/T₅₄₁A 的 pH 依赖性 A:STEP-WT 及其突变体的 k_{cat}/K_m 的 pH 依赖曲线; B:STEP-WT 及其突变体的 K_{cat} 的 pH 依赖曲线。
- Fig. 4 pH dependence of STEP-WT 及 STEP-T₃₃₀ D/T₅₄₁ A catalyzing pNPP hydrolysis A: k_{cat}/K_m versus pH profiles of STEP-WT and its mutants; B: k_{cat} versus pH profiles of STEP-WT and its mutants.

 表 2
 拟合图 4A 获得的酶动力学常数

 $k_{cat/}K_m$ pK_{E1} pK_{E2} $(k_{cat}/K_m)^{lim}[10^4 (mol/L)^{-1}s^{-1}]$

 WT
 6.81 ± 0.61
 5.16 ± 0.22
 3.56 ± 0.75

 T₃₃₀D
 6.62 ± 1.04
 5.25 ± 0.41
 3.04 ± 0.67

 T₅₄₁A
 6.57 ± 0.89
 5.63 ± 0.93
 0.05 ± 0.09

	表 3 拟合图 4B 获得的酶动力学常数				
$k_{\rm cat}$	pK_1^{app}	${ m p}{K_2}^{ m app}$	$(k_{\rm cat})^{\rm lim}({\rm s}^{-1})$		
WT	6. 64 ± 0.31	5.32 ± 0.12	22. 35 ± 6. 14		
$T_{330}D$	6. 76 ± 0.24	5.35 ± 0.68	23.42 ± 4.65		
$T_{541}A$	6. 13 ± 0. 29	6. 73 ± 0.49	1.953 ± 0.33		

2.4.2 STEP 突变体的 pH 依赖性 STEP-T₃₃₀D 与 STEP-WT 的 pH 依赖的 k_{cat}/K_m 相差很小, STEP-T₅₄₁A 的曲线 pK_{E1}和 pK_{E2}分别有一定的左移和右 移,但在实验误差范围内,所以根据当前的实验结果 还无法判定其变化。STEP-T₃₃₀D 的(k_{cat}/K_m)^{lim}与 STEP-WT 相比仅下降了 14%,但 STEP-T₅₄₁A 的 (k_{cat}/K_m)^{lim}却显著下降了 7 倍。

不同于 k_{cat}/K_m , STEP-WT 及突变型 k_{cat} 的 pH 依赖性曲线中酸性一侧和碱性一侧的斜率均为 1。 与 STEP-WT 相比, STEP-T₃₃₀D 的 pH 依赖性 k_{cat} 曲 线变化不显著, 而 STEP-T₅₄₁A 的曲线峰值明显降 低,其 pH 依赖性不明显, $(k_{cat})^{lim}$ 较野生型下降了至 少 10 倍。STEP-T₅₄₁A 的表观 pK_1^{app} 和 pK_2^{app} 较 STEP-WT 分别显著减小和增大。

2.5 STEP-WT 及 STEP- T_{330} D/ T_{541} A 酶活对底物 解离基团 p K_a 的依赖性 我们进一步检测了 STEP 对解离基团 p K_a = 7.14~9.99 的一系列磷酸化小分 子化合物的活性。图 5A 为 STEP-WT 及突变体 log(k_{cat}/K_m)对底物解离基团 p K_a 依赖性的线性关 系。STEP- T_{330} D 的曲线与 STEP-WT 基本重合,而 STEP- T_{541} A 的 Bronsted 斜率 β_{1g} 较 STEP-WT 降低。 图 5B 为 STEP-WT 及突变体 log(k_{cat})对底物解离 基团 p K_a 依赖性的线性关系。STEP-WT 与 STEP- T_{330} D 的 Bronsted 斜率 β_{1g} 均接近0(表4),而 STEP- T_{541} A 的 Bronsted 斜率(表 2) β_{1g} 值较野生型 有显著变化,增加了5倍。

2.6 T541 在催化中发挥作用的结构基础 STEP 催化结构域的晶体结构已经获得了解析^[12](蛋白 质数据库编号 2CJZ)。通过对其晶体结构的分析, 如图 6 所示, T541 与 WPD loop 上 Q462 的主链羰 基形成长距离氢键, 与 WPD loop 有重要的相互作 用。同时, T541 与 Q540 之间也存在着直接相互 作用。STEP 的催化过程如公式(3)所描述:

$$E + S \xrightarrow[k_{-1}]{k_1} E \cdot S \xrightarrow{k_2} E - P \xrightarrow{k_3} E + P \qquad (3)$$

- 图 5 STEP-WT 及 STEP-T₃₃₀ D/T₅₄₁ A 催化活性对底物解离 基团 pK_a 的依赖性 A:STEP-WT 及其突变体 log(k_{cat}/K_m)对底物解离基 团 pK_a 的依赖性曲线; B:STEP-WT 及其突变体 k_{cat}对 底物解离基团 pK_a 的依赖性曲线。
- Fig. 5 Leaving group dependence of STEP and STEP-T_{_{330}}D/ \$T_{_{541}}A\$
 - A: Leaving group dependence curve of the log (k_{cat}/K_m); B: Leaving group dependence curve of the log (k_{cat}).

表 4 STEP-WT 及突变体催化小分子磷酸化 底物水解的β₁。值

STEP	$\beta_{1g}(k_{cat}/K_m)$	$\boldsymbol{\beta}_{1g}(k_{\mathrm{cat}})$
WT	-0.05 ± 0.005	-0.02 ± 0.002
$T_{330}D$	-0.04 ± 0.004	-0.02 ± 0.004
T ₅₄₁ A	-0.07 ± 0.007	-0.10 ± 0.009

- 图 6 T541 在催化中发挥作用的结构基础 A:结合底物前 STEP 活性中心的结构; B:STEP 结合 磷酸化酪氨酸后的结构, WPD loop 发生了闭环; C: STEP 释放无机磷酸根的过程。
- Fig. 6 Structure representation of STEP catalysisA: Before the binding of phosphor-tyrosine to STEP;B: Binding of the phosphor-tyrosine with STEP; C: Releasing of the phosphate.

3 讨 论

酪氨酸磷酸酶家族成员催化过程中起重要作用 的一些保守氨基酸已经清楚,如 PTP1B 中的 C215^[18]、D356^[19], YopH 中的 Q446, PRL 中的 A110、V112, LYP 中的 R263、R266^[11,14,20], 但是 STEP 的催化机制仍未明了。PTP 的催化过程如公 式3所描述,在反应的第一步,磷酸酪氨酸与 PTP 酶的活性中心结合,形成酶-底物复合物(图 $(6A)^{[21]}$,这一过程用参数 k_1 和 k_{-1} 来描述。底物与 酶结合后,由于保守的 P-loop 上的 R 与底物磷酸根 的相互作用,带动 WPD loop 发生明显的构型变化, 使催化中起重要作用的天冬氨酸(STEP 中 D461) 处于适于催化的位置。如图 6B 所示,反应第二步 中 P-O 键断裂, 在苯环氧上产生一个负电荷, 需要 WPD loop 中的天冬氨酸提供一个质子来稳定,从而 生成产物磷酸根和失去磷酸基团的酪氨酸^[19,22-23], 可用动力学参数 k2 来描述。如图 6C 所示,反应第 三步涉及活性中心磷酸根的释放。这一步主要由 WPD loop 中的 D461 完成, Q-loop 中的 Q540 为这 一过程运输所需的水分子[24-25]。

本研究探讨了 T₃₃₀ D 和 T₅₄₁ A 两个突变体对 STEP 酶学特性的影响,发现 T541 对 STEP 的酶活 十分重要,而 T330 对 STEP 的内在 PTP 酶活无重要 作用。

在标准的米氏方程中,kcat反映的是产物生成和 磷酸根释放的限速步骤,且 $k_{cat} = k_2 \cdot k_3$ 。在 pH = 7.0, T_{541} A 突变对 STEP 的 K_m 影响很小的情况下, kcar较野生型降低了3倍。这说明 T541在 STEP 催 化机制中的作用主要是通过影响 K2 或 K3 两步来 实现的,在此过程中,Q-loop 和 WPD loop 的相互协 调是完成催化反应的基础。在 T₅₄₁ A 突变体中, NaVO₃抑制磷酸酶活力的 K_i 保持不变,钒酸根为磷 酸根类似物,结构与磷酰基转移反应里中间态的磷 酸相近,它可与 PTP 活性中心的半胱氨酸形成巯基 钒酸酯键,与催化反应中形成的巯基磷酸键相 $(U^{[26]})$ 。这一结果说明, T₅₄₁ A 不影响 STEP 活性中 心 P-loop 与钒酸根的结合;T541 A 突变体对 STEP 活 性中心的结构也无明显影响。NaVO, 抑制的实验 结果说明,T₅₄₁A活力的降低不是发生在底物结合 的步骤。

为进一步阐明 T541 参与 STEP 催化反应的机制,我们研究了 STEP 及其突变体的 pH 和底物解离基团的依赖性。相比于 STEP-WT, STEP-T541A 的

 $(k_{cat})^{lim}$ 显著降低, k_{cat} 的 pH 依赖性曲线中的 p K_2^{app} 显著增大。因为 k_{cat} 反映的是产物生成和磷酸根释放的限速步骤。所以, STEP 的 $T_{541}A$ 或者影响了产物生成, 或者影响了磷酸根释放的限速步骤。

检测 STEP 催化反应中底物解离基团的 pK, 依 赖性可以判断 STEP 的 D461 在反应中所起的作用。 如前所述,k_{cat}反映的是催化反应中的限速步骤,是 形成磷酸根-酶复合物水解及释放磷酸根的过程。 pH = 8.0时, STEP-WT 和 T₃₃₀D k_{cat} 的解离基团 pK_a 依赖性的 Bronsted 斜率 β_{1g} 均接近零。对此有两种 解释:①磷酸根从酶解离是野生型 STEP 的限速步 骤;②D461 在 pH = 8.0 的条件下依然具有通用酸 的功能,可以非常有效地催化中间产物的水解。将 T541 突变为 A 后, 酶的 k_{cat} 解离基团 pK_a 依赖性受 到了明显的影响,其 Bronsted 斜率 β_{1g} 明显增大,接 近 STEP k_{ext}/K_m 解离基团 pK。依赖性的 Bronsted 斜 率 $\beta_{1_{g}}$ 。T₅₄₁A的催化依赖于解离基团的 pK_a。该数 值的变化说明, T₅₄₁ A 反应的限速步骤是磷与苯基 氧之间单键的断裂和苯基氧得到质子的过程。已上 结果说明,T541参与了稳定过渡态,并与 WPD loop 的构型变化相互协调,在催化过程中起作用。从 STEP 的晶体结构(图 6C)可知, T541 可通过与 Q462 的直接相互作用,影响 D461 在催化过程中的 准确位移和定位,或者影响 Q540 配位水分子来介 导磷酸根释放的功能,因此推测,STEP 可能参与了 WPD loop 在催化过程中的构型变化,或者影响了参 与磷酸根释放的 Q-loop 对水分子的转运等功能。 T541 突变体晶体结构的解析将极大地帮助我们理 解 STEP 的催化机制。

以上酶学实验结果揭示了针对 T541 设计新型 PTP 抑制剂的可能性。目前国内外对于 PTP 抑制 剂的研究已经取得了大的进展^[9-11,27-29],最近研究证 实,WPD loop 的运动在不同 PTP 之间也有很大差 异。我们在以 STEP 作为对象进行的上述研究中发 现,T541 是影响 WPD loop 运动的重要因素之一。 因此,特异性针对 T541 的抑制剂可以阻断 T541 与 WPD loop 的相互作用,从而有效阻碍 WPD loop 的 功能,最终特异性地抑制 PTP 的酶活性。

综上所述,本文发现在 STEP Q-loop 中的 T541 和 pY-loop 中的 T330 两个残基中,T541 对 STEP 内 在酶活力的发挥有着重要作用,它可能主要参与了 产物生成的过程。鉴于抑制 STEP 有可能治疗多种 神经系统疾病,而 T541 对 STEP 的活力发挥有着重 要作用,未来设计以 STEP 为靶点的药物,可考虑针 对 T541 位点进行。

参考文献:

- [1] 陈明, 孙金鹏, 刘晶, 等. 糖尿病中蛋白酪氨酸磷酸酶 的研究进展[J]. 生理学报, 2010, 62(2):179-189.
- [2] 柳江, 刘芳. 蛋白酪氨酸磷酸酶非受体型 22 基因多态 性与 2 型糖尿病的研究进展[J]. 上海医学, 2010, 33 (1):91-94.
- [3] Hunter T. Signaling-2000 and beyond [J]. Cell, 2000, 100(1):113-127.
- [4] Neel B G, Tonks N K. Protein tyrosine phosphatases in signal transduction [J]. Curr Opin Cell Biol, 1997, 9 (2):193-204.
- [5] 张薇,杨金莲,胡中倩,等. SHP-2 酪氨酸磷酸酶激活 突变导致小鼠髓系异常增殖[J].中国病理生理杂志, 2011,27(4):682-687.
- [6] 班振英, 曾宪旭, 焦艳, 等. 蛋白酪氨酸磷酸酶 PRL-3 在乳腺癌中表达及意义[J]. 中华实用诊断与治疗杂 志, 2012, 26(4):349-351.
- [7] Baum M L, Kurup P, Xu J, et al. A STEP forward in neural function and degeneration [J]. Commun Integr Biol, 2010, 3(5):419-422.
- [8] Kurup P, Zhang Y, Venkitaramani D V, et al. The role of STEP in Alzheimer's disease [J]. Channels (Austin), 2010, 4(5):347-350.
- [9] Sun J P, Fedorov A A, Lee S Y, et al. Crystal structure of PTP1B complexed with a potent and selective bidentate inhibitor [J]. J Biol Chem, 2003, 278 (14): 12406-12414.
- [10] Yu X, Sun J P, He Y, et al. Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases [J].
 Proc Natl Acad Sci U S A, 2007, 104(50):19767-19772.
- [11] Sun J P, Wu L, Fedorov A A, et al. Crystal structure of the Yersinia protein-tyrosine phosphatase YopH complexed with a specific small molecule inhibitor[J]. J Biol Chem, 2003, 278(35):33392-33399.
- [12] Eswaran J, von Kries J P, Marsden B, et al. Crystal structures and inhibitor identification for PTPN5, PTPRR and PTPN7: a family of human MAPK-specific protein tyrosine phosphatases[J]. Biochem J, 2006, 395(3): 483-491.
- [13] Yu X, Chen M, Zhang S, et al. Substrate specificity of lymphoid-specific tyrosine phosphatase (Lyp) and identification of Src kinase-associated protein of 55 kDa homolog (SKAP-HOM) as a Lyp substrate [J]. J Biol Chem, 2011, 286(35):30526-30534.
- [14] Sun J P, Wang W Q, Yang H, et al. Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion [J]. Biochemistry, 2005, 44(36):12009-12021.
- [15] Zhang Z Y. Kinetic and mechanistic characterization of a

mammalian protein-tyrosine phosphatase, PTP1 [J]. J Biol Chem, 1995, 270(19):11199-11204.

- [16] Zhang Z Y, Palfey B A, Wu L, et al. Catalytic function of the conserved hydroxyl group in the protein tyrosine phosphatase signature motif [J]. Biochemistry, 1995, 34(50):16389-16396.
- [17] Denu J M, Lohse D L, Vijayalakshmi J, et al. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis [J]. Proc Natl Acad Sci U S A, 1996, 93(6):2493-2498.
- [18] Huyer G, Liu S, Kelly J, et al. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate[J]. J Biol Chem, 1997, 272(2):843-851.
- [19] Guan K L, Dixon J E. Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate[J]. J Biol Chem, 1991, 266(26):17026-17030.
- [20] Zhang Z Y, Wang Y, Dixon J E. Dissecting the catalytic mechanism of protein-tyrosine phosphatases[J]. Proc Natl Acad Sci U S A, 1994, 91(5):1624-1627.
- [21] Lohse D L, Denu J M, Santoro N, et al. Roles of aspartic acid-181 and serine-222 in intermediate formation and hydrolysis of the mammalian protein-tyrosine-phosphatase PTP1[J]. Biochemistry, 1997, 36(15):4568-4575.
- [22] Hengge A C, Sowa G A, Wu L, et al. Nature of the transition state of the protein-tyrosine phosphatase-catalyzed reaction [J]. Biochemistry, 1995, 34(43):13982-13987.
- [23] Pannifer A D, Flint A J, Tonks N K, et al. Visualization of the cysteinyl-phosphate intermediate of a proteintyrosine phosphatase by x-ray crystallography[J]. J Biol Chem, 1998, 273(17):10454-10462.
- [24] Zhao Y, Wu L, Noh S J, et al. Altering the nucleophile specificity of a protein-tyrosine phosphatase-catalyzed reaction. Probing the function of the invariant glutamine residues[J]. J Biol Chem, 1998, 273(10):5484-5492.
- [25] Barrett W C, DeGnore J P, Konig S, et al. Regulation of PTP1B via glutathionylation of the active site cysteine 215[J]. Biochemistry, 1999, 38(20):6699-6705.
- [26] Liu J, Chen M, Li R, et al. Biochemical and functional studies of lymphoid-specific tyrosine phosphatase (Lyp) variants S201F and R266W [J]. PLoS One, 2012, 7 (8):e43631.
- [27] 刘霞, 冯长根. 蛋白酪氨酸磷酸酶-1B 抑制剂研究进展[J]. 科技导报, 2012, 30(10):72-79.
- [28] 庞晓斌,谢欣梅,王守宝,等.人源蛋白酪氨酸磷酸酶 (PTP1B)抑制剂的高通量筛选[J].药学学报,2011, 46(9):1058-1064.
- [29] 李婉南,李莹,庄妍,等.蛋白质酪氨酸磷酸酶 SHP-1 的中药抑制剂筛选[J].吉林大学学报:理学版, 2008,46(6):1211-1216.