论文 www.scichina.com csb.scichina.com

"嫦娥一号"微波辐射计观测月球虹湾地区表面物理温度 昼夜时间分布

宫晓蕙, 金亚秋*

复旦大学波散射与遥感信息教育部重点实验室,上海 200433 * 联系人, E-mail: yqjin@fudan.ac.cn

2011-03-30 收稿, 2011-06-20 接受 国家自然科学基金资助项目(41071219, 60971091)

摘要 由中国"嫦娥一号"(CE-1)微波辐射计对月球虹湾地区观测时刻相对应的太阳入射 角与方位角,由极点球面坐标系与月球观测点局部坐标系的转换关系,得到 CE-1 对月球 虹湾区域(Bay of Rainbow,拉丁文 Sinus Iridum)观测的当地时间.采用 CE-1 微波辐射计观 测数据,得到月球虹湾地区当地不同时间的辐射亮度温度(T_b)变化分布.由月表三层模型 的热辐射传输理论,结合 CE-1 微波辐射计 19 与 37 GHz 通道的 T_b数据,反演得到月球昼 夜不同时段虹湾地区表面月尘层与月壤层的物理温度变化,分析了影响虹湾地区月表面 物理温度的主要因素. **关键词** "嫦娥一号"(CE-1) 微波辐射计 虹湾地区 辐射亮度温度 物理温度反演

《中国科学》杂志社

SCIENCE CHINA PRESS

在长期的地质演化过程中,月球表面由于火山 喷发以及受到陨石小天体的撞击在月表形成了一层 由尘土、非集结性岩块、碎屑、玻璃熔融物质等构成 的月壤层,位于其表面的是很薄的月尘土表层^[1].由 于没有大气的热传导,月球表面物理温度昼夜变化 极大^[1,2].了解月表面物理温度分布及其昼夜变化, 对探索月表面环境特征,开展登月与其他探月活动 都是十分重要的.

2007 年 10 月 24 日我国成功发射了第一颗探月 卫星"嫦娥一号"(CE-1),作为"嫦娥一号"的备份星, 具有更低运行圆轨道(约 100 km)的"嫦娥二号"(CE-2) 卫星也于 2010 年 10 月 1 日成功发射."嫦娥一号"和 "嫦娥二号"在世界上首次搭载了四通道微波辐射计, 频率分别为 3.0, 7.8, 19.35, 37.0 GHz,观察角度为 0°, 其空间分辨率分别约为 50 km (3 GHz)和 35 km (其余 三通道),测量精度为 0.5 K^[3,4].其任务旨在测量整个 月表面的微波辐射亮度温度(*T*_b, brightness temperature),进而反演月表层物理温度和月壤层厚度,估算 月壤层富含的氦-3(³He)含量^[5,6]. CE-2与CE-1的一个不同点是在其运行椭圆轨道时可达月球正上方约15 km,特别以更高分辨率对虹湾地区(43°N,31°W)进行CCD相机照相(www.people.com.cn, 2010-11-8),为今后CE-3计划着陆的地点做准备(www.people.com.cn, 2010-11-8).

对于月表面物理温度的认识以往主要来自于以 地球为基地的辐射测量^[7],在过去 Apollo等探月计划 中^[1,8],未曾针对虹湾地区有过特别的了解.由于月 表面受太阳光直接照射的影响,昼夜表面温度变化 很大.本文采用 CE-1 的 *T*_b数据,结合月表面三层热 辐射模型^[9],反演虹湾区域不同月球时刻的月表层物 理温度,将有助于了解作为一典型例子的虹湾地区 月表层物理温度及其昼夜变化,为 CE-3 在虹湾区域 登陆和其他探月活动提供一个物理环境特征的参考.

1 CE-1 观测数据的月球当地时间

采用 2007 年 11 月 27 日~2008 年 2 月 4 日和 2008 年 5 月 15 日~2008 年 7 月 28 日共 1307 轨 CE-1 微波 辐射计观测 *T*_b 数据,从中挑选出在虹湾地区不同月

英文引用格式: Gong X H, Jin Y Q. Diurnal distribution of the physical temperature at Sinus Iridum area retrieved from observations of CE-1 microwave radiometer (in Chinese). Chinese Sci Bull (Chinese Ver), 2011, 56: 1877–1886, doi: 10.1360/972011-30

球当地时间的 T_b 数据. CE-1 是一颗极轨卫星,在月 球自转一周的时间内,CE-1 可以分别在月球白天与 黑夜各观测到虹湾地区一次.月球的自转周期相对 较长,为 27 d 7 h 43 min^[1],因此可以先将所有数据 按照地球时间将每月球自转周期(27 d 7 h 43 min)进 行划分.参照 CE-1 给出的数据,观测时间可以划分 为 6 个月,分别为 2007 年 11 月 27 日~12 月 24 日 (M1)、2007 年 12 月 25 日~2008 年 1 月 21 日(M2)、 2008 年 1 月 21 日~2 月 4 日(M3)、2008 年 5 月 15 日 ~6 月 11 日(M4)、2008 年 6 月 11 日~7 月 7 日(M5)、 2008 年 7 月 7 日~7 月 28 日(M6).

这样,在每个月球日中 CE-1 都可以观测到虹湾 地区白天和黑夜辐射亮度温度的一组数据.由于月 球对太阳的相对位置会随着时间发生变化,因此每 个月份(M1 等)所观测到的虹湾区域实际上所处的月 球当地时间并不相同.如果要确定每个月球日中所 观测到虹湾区域所处的月球当地时间,则需要计算 观测当时的太阳星下点所在经度与虹湾区域所在经 度两者之差,这是表征当地时间的一个参量.举例来 说,如果该夹角为 0°,表明观测地区处于正午;若该 角度为 180°,则该地区处于午夜.在 CE-1 数据中, 除了给出观测点辐射亮度温度的同时,也给出了相 应的太阳入射角与方位角.

如图 1, P 点为月球主坐标系的北极点, Q 点(φ_0, λ_0) 为观测点,例如虹湾地区, φ_0 和 λ_0 分别为虹湾地区的 经纬度,K(φ, λ)点为太阳所在位置.太阳入射角以及 太阳方位角的定义都是基于以观察点 Q 为极点的地 平面坐标系而言的,太阳入射角是指太阳入射光线 与当地 Q 点法线的夹角,太阳方位角则定义为太阳 入射光线在地平面上的投影与当地子午线的夹角. 可以看到,图1中天顶距z所对应的圆心角(以z表示) 和 α 满足太阳入射角和方位角的定义.这样,由(1)式 即可确定K点,亦即太阳所处的位置,再由K点与Q 点的经度差就可以得到该观测点所处的月球当地时 间.事实上,(1)式可以通过球面三角形的正弦定理和 余弦定理通过简单的变换得到^[10]. $\cos z = \sin \varphi \sin \varphi_0 + \cos \varphi \cos \varphi_0 \cos(\lambda - \lambda_0),$

 $\sin z \cos \alpha = \sin \varphi \cos \varphi_0 - \cos \varphi \sin \varphi_0 \cos(\lambda - \lambda_0), \quad (1)$ $\sin z \sin \alpha = \cos \varphi \sin(\lambda - \lambda_0).$

采用上述方法,对 CE-1 的 T_b数据按月球自转周 期进行分组,找到对应的虹湾地区的 T_b数据,并按 照太阳入射角首先区分是月球白天还是黑夜的数据, 得到 CE-1 所观测到的所有各个时间段的虹湾地区的 辐射亮度温度 T_b分布以及所对应观测 T_b数据的太阳 入射角和方位角,按照(1)式换算成月球观测点的当 地时间,如表 1 所示.

这里月球观测点的当地时间的换算原则是以太 阳所在经度为正午 12 时,向左向右各 7.5°为正午 12 时时段,以此推断出虹湾地区所处的时间段,来确定 其月球当地时间.这里的月球当地时间仅是指观察 点区域所处的时间段.由于 M3 和 M6 时段并不是一 个完整的月球自转周期,在这两个时段中没有月球 黑夜的观测 *T*_b数据,因此在月球黑夜只得到了 4 个 时间点的观测 *T*_b数据.

图 2 给出各个时间段太阳与虹湾地区的相对位 置.图中是以虹湾中心位置为观察点对月球进行投 影得到的结果,此时太阳出于虹湾地区的背面,无法 直接观测到,图中给出的是透视到月球背面的太阳

图 1 确定新极点的球面坐标系各点之间的相对位置关系^[10]

表 1 CE-1 观测到虹湾地区不同时段的太阳入射角和方位角以及对应的月球当地时间

	月球白天						月球黑夜			
	M1	M2	M3	M4	M5	M6	M1	M2	M4	M5
太阳入射角(°)	47.1835	45.3518	54.7299	46.3664	42.0414	48.9401	137.852	133.497	134.149	133.3
太阳方位角(°)	204.971	166.705	132.251	213.772	176.823	141.744	9.65368	329.043	12.5084	336.425
当地时间	13:00	11:00	9:00	14:00	12:00	10:00	0:00	22:00	1:00	23:00

所在的位置.

2 虹湾地区地形特征与不同月球时间的 CE-1 观测 T_b数据

由日本 SELENE 卫星的激光高度计数据^[11],虹 湾地区地面数字高程(DEM)及其等高线图如图 3(a)和 (b)所示.虹湾地区中心位置经纬度为(43°N, 31°W), 这里选取了以该点为中心,长宽各 20 个经纬度的范 围进行成图,其中成图分辨率是每个经纬度4个像素, 对数据缺失点采用双线性插值法进行补充.

对月球虹湾地区 DEM 的了解,有助于理解整个 月表面 DEM 对月表辐射亮度温度分布的影响.虹湾 地区最显著的地形特征是具有清晰的月海与月陆的 分界线, 这在 CE-3 登月时或许可能实现一次探月同时比较月海与月陆的异同.

根据表 1 中给出观测数据的月球当地时间,图 4 给出了月球白天各个月球当地时间下,虹湾地区 37.0 GHz 的 T_b 分布 T_{b37} .由于篇幅所限,不将其他通 道的 T_b 逐一列出,其一般的规律是高频通道的 T_b 高 于低频通道,如 $T_{b37}>T_{b19}$.图中以三维形式表现 DEM 的起伏,以颜色表示 T_b 的高低,对于观测数据 缺失点采用最近邻方法完成插值计算,本文中所有 DEM 的单位都是千米(km).

从图 4 可看出, 在月球当地时间 9:00~14:00 之间, 虹湾地区月表面 T_b 随时间逐渐升高, 于月球当地时 间 14:00 时达到最高. 这是由于月表面受太阳光照的 影响, 太阳光照在到达正午之前一直持续增强, 使月 表面物理温度与 T_b随之增强. 在 12:00~14:00 点之间, 太阳光照的累积效果使月表面热吸收与热辐射仍持 续, 而使物理温度与 T_b 仍保持增加. 而对于一固定 时间段内的虹湾整个地区的 T_b,则按一般的规律随 纬度增高而逐渐降低. 在 DEM 较低的环形山底部由 于太阳光照度的减少, T_b也相对较低. 月海与月陆的 分界线也表现为 T_b 变化的分界线, 朝向月海区域的 T_b相对较高, 而朝向月陆区域的 T_b明显降低.

作为对照,图5给出月球黑夜各月球时段虹湾地 区的 CE-1 观测 T_{b37}数据.夜间一个主要特点是低频 通道 T_b要高于高频通道 T_b,如 T_{b37}<T_{b19},与白天恰相 反.这是由于月球黑夜表面顶层没有太阳光照,物理 温度骤冷,穿透深度小的高频通道对月表层顶部的 温度变化更为敏感,因而下降很快.22:00~次日 1:00 时段里月表面 T_b的变化表现为先下降,到午夜 0 时 达到最低,之后有小幅回升.这可能是由于 0 时左右 是一个月球日当中受太阳光照影响最小的时刻.

图 3 由日本 SELENE 卫星激光高度计数据获得的虹湾地区 DEM(a)与等高线(b)示意图

图 4 月球白天各当地时段虹湾地区 Tb37 分布

3 月球虹湾地区表面不同时间的物理温度

以月尘、月壤、月岩三层模型的辐射传输理论, 可以得到该分层模型的辐射亮度温度, *T*_b由月面介质 层介电常数(与介质体密度、FeO+TiO₂含量等有关)、 物理温度、表面起伏与 DEM、经纬度位置(太阳光照 不同)等有关,具体可参见文献[9,12,13]的阐述.本文 用上述 CE-1 高频通道的 *T*_{b19} 与 *T*_{b37} 观测数据反演虹 湾地区不同月球时段的月尘层与月壤层分别的物理 温度 *T*₁和 *T*₂. 按文献[9],高频通道(CE-1 的 19, 37 GHz)辐射亮度温度的表达式可写为

$$T_{\rm b} = (1 - r_{01})(1 - {\rm e}^{-\kappa_{a1}d_1})(1 + r_{12}{\rm e}^{-\kappa_{a1}d_1})T_1 + (1 - r_{01})(1 - r_{12}){\rm e}^{-\kappa_{a1}d_1}T_2.$$
(2)

由(2)式, 得到月尘层与月壤层物理温度 *T*₁和 *T*₂ 的反演式:

$$T_{1} = \frac{B_{37}T_{b19} - B_{19}T_{b37}}{A_{19}B_{37} - A_{37}B_{19}}, \quad T_{2} = \frac{A_{37}T_{b19} - A_{19}T_{b37}}{A_{37}B_{19} - A_{19}B_{37}}, \quad (3)$$

其中参数

$$A_{\nu} = (1 - r_{01})(1 - e^{-\kappa_{a1}d_{1}})(1 + r_{12}e^{-\kappa_{a1}d_{1}}),$$

$$B_{\nu} = (1 - r_{01})(1 - r_{12})e^{-\kappa_{a1}d_{1}},$$
(4)

式中*v*=19,37 GHz, *r*₀₁和*r*₁₂分别为月尘顶面与月尘/ 月壤界面的反射率, *κ*_{a1}(*v*)为该*v*通道的月尘层衰 减系数, *d*₁为月尘层厚度.

图 6 给出了月球白天各时段虹湾地区物理温度 T_1 和 T_2 的反演结果.其中参数按文献[12,13], d_1 =0.2 m, 月尘层密度 ρ_1 =1.3 g/cm³,月壤层 ρ_2 =1.5 g/cm³.从图

图 5 月球黑夜各当地时段虹湾地区 Tb37 分布

图 6 月球白天各时段虹湾地区月表层物理温度分布

月球白天虹湾地区表面平均物理温度<Ti>与<T2>随时间的变化 图 7

6 各图比较可看出, 月球白天的物理温度变化与月表 面 T_b 的变化规律类似, 朝中午逐渐升高, 在当地时 间 14:00 达到最高.

以(43°N, 31°W)为中心, 在覆盖整个虹湾地区的 长宽各 10 个经纬度的范围内计算平均温度,图 7 所 示为 9:00~14:00 时段整个虹湾地区平均的 T1 和 T2 的 变化.可以看到,在白天6h内<T1>就有近50K的温 度变化. 而月壤层的<T2>变化要小一些, 更多的是表 现出纬度以及地形的影响.因此,月球白天月表层温 度的变化随时间、纬度、地形、月尘与月壤成分等的 不同是十分剧烈的.

从局部来看,月表面 $T_{\rm b}$ 与该地的FeO+TiO₂含量 有关, 它是决定月表层介电常数和热发射率的主要 因素之一. 虹湾地区 FeO+TiO2含量分布如图 8 所示.

图 9 给出月球黑夜各个时段虹湾地区月表层物 理温度的反演结果.此时,月壤层的 T₂ 高于月尘层 T1, 这是由于月球黑夜接受不到太阳照射, 月尘层T1急 速下降, 而月壤层由于热传导缓慢, 维持住其物理温度 与热辐射.在22:00~1:00的时段内,虹湾地区的月表物 理温度先下降,到0:00达到最低,之后有小幅回升.

图 8 虹湾地区的 FeO+TiO₂含量分布

图 10 给出月球夜间 22:00~1:00 时虹湾地区月尘 层与月壤层平均温度的变化. 由于采用的数据时间 跨度较小,变化不是太剧烈.可以看到,此时月壤层 平均温度要远高于月尘顶层.

在月球白天,由于月尘层T₁远大于月壤层T₂,(2) 式右端第一项中(1-e^{-κald1})T₁占主导作用,即月尘层 贡献显著.在 FeO+TiO2 含量较低的地方,其因子 $1-e^{-\kappa_a l^d_1}$ 较小, 若固定一个 T_b 值, 该地的 T_1 就必须较 大. 而到了月球黑夜, 由于 T₁<T₂, (2)式右端第二项 贡献将占主导作用. 在 FeO+TiO2 含量较低的地方, 第二项中对应的因子 $e^{-\kappa_{al}d_{1}}$ 较大, T_{2} 也大, 这样在相 同的 T_b 值下第一层的贡献必然减小, 进而导致较小 的 T_1 . 这样就造成了在 FeO+TiO₂含量较低的地方昼 夜温差 Δ T_1 (≡ T_{ijk} – T_{ijk}) 较大. 反之, 在 FeO+TiO₂ 含 量较高的地方,昼夜温差就会小一些.

4 结论

在 CE-1 观测数据中提取月球虹湾地区在月球当 地时间白天 9:00~14:00 与黑夜 22:00~1:00 各时段的 辐射亮度温度 T_b分布, 在同一月球时间的 T_b随纬度 增加而降低;同时受到 DEM 的影响,在 DEM 较低太 阳光照较少的环形山底部,其 T_b也相对较低. 月海 与月陆的分界线也往往是 Tb 变化的分界线, 朝向月 海区域的 T_b 相对较高, 而朝向月陆区域的 T_b 较低. 对于不同月球时间,虹湾地区月表面的 T_b 在 9:00~14:00 随时间逐渐升高,于当地时间 14:00 时达 到最高. 而月球黑夜辐射亮度温度的特点低频高于 高频,在 22:00~1:00 时段里月表面 T_b表现为先下降 到 0:00 达到最低, 之后有小幅回升.

通过 CE-1 的 19 与 37 GHz 两通道的 T_b反演月尘 层与月壤层的物理温度. 在月球白天, 月尘层物理温

图 9 月球黑夜各时段虹湾地区物理温度的变化

图 10 月球黑夜虹湾地区平均物理温度随时间的变化

度高于月壤层,在月球黑夜则情况相反.在月球白天 不同时段里,月表层物理温度的变化与 *T*b 变化类似, 在9:00~14:00时段内月尘层平均温度从 253 K可升至 300 K,月壤层物理温度变化没那么大.在夜间 22:00~1:00时段内,虹湾地区月表层物理温度呈先下 降到 0:00 达到最低,之后有小幅回升;但在该时段 内总体上物理温度变化不太大,只有近 10 K.在所 有反演时段内的平均温度约为 254 K,所有计算时段 内昼夜最大温差可达约 90 K.

由于太阳光照度差异会明显影响不同时刻月尘

层物理温度.随着月壤厚度加深,月壤内部的热交换 趋于平衡,月壤层的温度变化似乎与纬度、DEM 的 相关性更强.Lawson 等人^[14]用红外数据也表明有类 似的结论.

月表层介电常数由其体密度ρ与 FeO+TiO₂ 等参 量决定^[9],进而计算表面热发射率,由此影响辐射亮 度温度和物理温度分布.可以看到,在月球白天时 FeO+TiO₂ 含量低的地方温度较高,而到了月球黑夜, 这些地方的物理温度却要更低一些.而使得该地的 月表面昼夜温差大,反之亦然.

参考文献

- 1 Heiken G H, Vaniman D T, French B M. Lunar Source-Book: A User's Guide to the Moon. London: Cambridge University Press, 1991
- 2 Dalton C, Hoffman E. Conceptual design of a lunar colony. NASA Grant Rpt. NGT 44-005-114, Washington D.C., 1972
- 3 姜景山. 微波月亮. 中国科学 D 辑: 地球科学, 2009, 39: 1028
- 4 Jiang J S, Jin Y Q. Selected Papers on Microwave Lunar Exploration in Chinese Cheng'E-1 Project. Beijing: Science Press, 2010
- 5 Fa W Z, Jin Y Q. Quantitative estimation of helium-3 spatial distribution in the lunar regolith layer. ICARUS, 2007, 71: 15–23
- 6 Fa W Z, Jin Y Q. Global inventory of helium-3 in lunar regolith estimated by multi-channel microwave radiometer on Chang-E 1. Chinese Sci Bull, 2010, 55: 4005–4009
- 7 Keihm S J, Gary B L. Comparison of theoretical and observed 3.55 cm wavelength brightness temperature maps of the full Moon. In: Proceedings of 10th Lunar and Planetary Science Conference, 1979. 2311–2319
- 8 Marcus G L, Stephen J K, Kenneth P. Revised lunar heat-flow values. In: Proceedings of 7th Lunar Science Conference, 1976. 3143–3171
- 9 Fa W Z, Jin Y Q. Simulation of brightness temperature of lunar surface and inversion of the regolith layer thickness. J Geophys Res-Planets, 2007, 112: E05003
- 10 张宏, 温永宁, 刘爱利, 等. 地理信息系统算法基础. 北京: 科学出版社, 2006
- 11 Araki H, Tazawa S, Noda H, et al. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science, 2009, 323: 897–900
- 12 Jin Y Q, Fa W Z. An inversion approach for lunar regolith layer thickness using optical albedo data and microwave emission simulation. Acta Astronaut, 2009, 65: 1409–1423
- 13 Fa W Z, Jin Y Q. A primary analysis of microwave brightness temperature of lunar surface from Chang-E 1 multi-channel radiometer observation and inversion of regolith layer thickness. Icarus, 2010, 207: 605–615
- 14 Lawson S L, Jakosky B M, Park H S, et al. Brightness temperatures of the lunar surface: Calibration and global analysis of the Clementine longwave infrared camera data. J Geophys Res, 2000, 105: 4273–4290

Diurnal distribution of the physical temperature at Sinus Iridum area retrieved from observations of CE-1 microwave radiometer

GONG XiaoHui & JIN YaQiu

Key Laboratory of Wave Scattering and Remote Sensing Information (MOE), Fudan University, Shanghai 200433, China

Based on the incidence and azimuth angles of solar illumination during observations by Chinese Chang'E-1 lunar satellite, the brightness temperature (T_b) observed by CE-1 multi-channel radiometers, especially at the Sinus Iridum (i.e. Bay of Rainbow) area, are collected at different lunar local time from the transformation between the principal coordinates and local coordinates at the observation point. It shows the T_b distribution and its diurnal variation. Based on the radiative transfer modeling of three-layer lunar media, the CE-1 T_b data at 19 and 37 GHz channels are used to invert the physical temperatures of both the dust layer and the regolith layer at Sinus Iridum area, which might be the CE-3 landing site, at different lunar local time. The physical temperature variations with the lunar local time and other geophysical parameters of lunar layered media are discussed.

CE-1, microwave radiometer, Sinus Iridum, brightness temperature, inversion of physical temperature

doi: 10.1360/972011-30