
2013c6� $ Ê Æ Æ � 117ò 12Ï

June, 2013 Operations Research Transactions Vol.17 No.2

Affine scaling interior Levenberg-Marquardt

method for KKT systems∗

WANG Yunjuan1,† ZHU Detong2

Abstract We develop and analyze a new affine scaling Levenberg-Marquardt method

with nonmonotonic interior backtracking line search technique for solving Karush-Kuhn-

Tucker (KKT) system. By transforming the KKT system into an equivalent minimiza-

tion problem with nonnegativity constraints on some of the variables, we establish the

Levenberg-Marquardt equation based on this reformulation. Theoretical analysis are

given which prove that the proposed algorithm is globally convergent and has a local

superlinear convergent rate under some reasonable conditions. The results of numerical

experiments are reported to show the effectiveness of the proposed algorithm.
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0 Introduction

Let F : Rn → Rn be once and h : Rn → Rp, c : Rn → Rm be twice continuously

differentiable functions. Define by

L(x, y, z)
def
=F (x) +∇h(x)y −∇c(x)z

the Lagrangian function, then we consider the following Karush-Kuhn-Tucker (KKT) sys-

tem:

L(x, y, z) = 0,

h(x) = 0, (0.1)

c(x) > 0, z > 0, zTc(x) = 0.

The main purpose of this paper is to find a KKT point ω∗ = (x∗, y∗, z∗) ∈ Rn+p+m

satisfying the KKT system (0.1). Due to its close relationship with the variational inequality

problem and the nonlinear programming problems, many constructing efficient algorithms

for (0.1) have been established.

The method we will describe in this paper is similar to the idea proposed in [1], where

system (0.1) is transformed into a differentiable unconstrained minimization problem. Based

on the Fischer-Burmeister function in [2]: ϕ : R2 → < defined by

ϕ(a, b)
def
=
√
a2 + b2 − (a+ b),

which has a very interesting property that

ϕ(a, b) = 0⇔ a > 0, b > 0, ab = 0.

Hence we can reformulate system (0.1) as a nonlinear system of equations Φ(ω) = 0, where

the nonsmooth mapping Φ : Rn+p+m → Rn+p+m is defined by

Φ(ω)
def
= Φ(x, y, z)

def
=

 L(x, y, z)

h(x)

φ(c(x), z)


and

φ(c(x), z)
def
= (ϕ(c1(x), z1), · · · , ϕ(cm(x), zm))T ∈ Rm.

It is easy to see that solving (0.1) is equivalent to finding a global solution of the problem

min Ψ(ω)
def
=

1

2
Φ(ω)TΦ(ω) =

1

2
‖Φ(ω)‖2, (0.2)

here Ψ(ω) denotes the natural merit function of the equation operator Φ.

This unconstrained optimization approach has been used in [1,3-4] to develop some

Newton-type methods for the solution of (0.1). Despite their strong theoretical and nu-

merical properties, these methods may fail to find the unique solution of (0.1) arising from
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strongly monotone variational inequalities because the variable z is not forced to be non-

negative in [1, 3-4]. This, together with the fact that the variable z has to be nonnegative

at a solution of (0.1), we are naturally led to consider the following variant of the problem:

min Ψ(ω) s.t. z > 0. (0.3)

Therefore, this paper will focus on the study of this reformulation of the KKT system (0.1).

It is well known that, it is rather difficult to solve the constrained optimization (0.3)

directly. In order to avoid handling the constraints explicitly, we can use affine scaling

strategies which contain an appropriate quadratic function and an scaling matrix to form a

quadratic model similar to Coleman and Li in [5]. And finally, we will consider to apply an

affine scaling Levenberg-Marquardt method to the quadratic model.

This paper is organized as follows. In the next section, we propose the nonmonotone

affine scaling Levenberg-Marquardt algorithm with backtracking interior point technique

for solving (0.1). In section 2, we prove the global convergence of the proposed algorithm.

In section 3, we discuss the local convergence property. Finally, the results of numerical

experiments of the proposed algorithm are reported in Section 4.

1 Algorithm

This section describes the affine scaling Levenberg-Marquardt method in association

with nonmonotonic interior backtracking technique for solving a bound-constrained mini-

mization reformulated by KKT system (0.1).

By the differentiability assumptions we made on the functions F , c and h, and by the

convexity of ϕ, it is obvious that the mapping Φ is locally Lipschitzian and thus almost

everywhere differentiable by Rademacher’s theorem. Let us denote by DΦ the set of points

ω ∈ Rn+p+m at which Φ is differentiable. Then, we can consider the B-subdifferential of Φ

at ω,

∂BΦ(ω)
def
= {H | H = lim

ωk→ω, ωk∈DΦ

∇Ψ(ωk)T}

which is a nonempty and compact set whose convex hull

∂Φ(ω)
def
= conv(∂BΦ(ω))

is Clarke’s[6] generalized Jocobian of Φ at ω.

Proposition 1.1[1] Let ω = (x, y, z) ∈ Rn+p+m. Then, each element H ∈ ∂Φ(ω) can

be represented as follows:

H =

 ∇xL(ω) ∇c(x) ∇h(x)Da(ω)

∇c(x)T 0 0

−∇h(x)T 0 Db(ω)


T

,

where Da(ω) = diag(a1(ω), · · · , am(ω)), Db(ω) = diag(b1(ω), · · · , bm(ω)) ∈ Rm×m are diag-

onal matrices whose jth diagonal elements are given by

aj(ω) =
hj(x)√

hj(x)2 + z2
j

− 1, bj(ω) =
zj√

hj(x)2 + z2
j

− 1
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if (hj(x), zj) 6= (0, 0), and by

aj(ω) = ξj − 1, bj(ω) = ζj − 1 for any (ξj , ζj) with ‖(ξj , ζj)‖ 6 1

if (hj(x), zj) = (0, 0).

Proposition 1.2[1] Ψ is continuously differentiable, and ∇Ψ = HTΦ(ω) for every H

in ∂Φ(ω).

Since the solving (0.1) is equivalent to finding a global solution of the problem (0.3),

a classical algorithm for solving (0.1) will be based on the reformulated problem (0.3), i.e.,

Φ(ω) = 0, z > 0. As is known to all that the concept of nonsmooth Levenberg-Marquardt

method is to make Newton-like method globally convergent while maintaining its excellent

local convergence behavior. Now, we begin the description of the affine scaling interior

Levenberg-Marquardt method with its core, the underlying Newton-like iteration.

Ignoring primal and dual feasibility of the problem (0.3), the first-order necessary con-

ditions for ω∗ to be a local minimizer are
(g∗)i = 0, if i ∈ I ∪ P,
(g∗)i = 0, if i ∈ J and (ω∗J)i > 0,

(g∗)i > 0, if i ∈ J and (ω∗J)i = 0,

(1.1)

where g(ω)
def
=∇Ψ(ω), (g∗)i is the ith components of g∗ = g(ω∗), Idef

= {1, · · · , n}, P def
= {n +

1, · · · , n+ p} and J
def
= {n+ p+ 1, · · · , n+ p+m}.

In order to omit the constraints appeared in the problem (0.3), we introduce an affine

scaling matrix similar to the idea in [5]. The scaling matrix Dk = D(ωk) arises naturally

from examining the first-order necessary conditions for nonlinear minimization transformed

by KKT system (0.1), where

D(ω)
def
= diag

{∣∣γ1(ω)
∣∣− 1

2 ,
∣∣γ2(ω)

∣∣− 1
2 , · · · ,

∣∣γn+p+m(ω)
∣∣− 1

2
}
, (1.2)

and the ith component of the vector function γ(ω) is defined as follows:

γi(ω)
def
=

{
1, if (g∗)i = 0 and i ∈ I ∪ P,
ωi, if (g∗)i > 0 and i ∈ J.

(1.3)

Definition 1.1[5] A point ω is nondegenerate if, for each index i ∈ J ,

gi(ωJ) = 0⇒ (ωJ)i > 0, (1.4)

where gi(ωJ) is the ith component of vector g(ωJ). A reformulated problem (0.3) is nonde-

generate if (1.4) holds for every ωJ .

The Levenberg-Marquardt equation arises naturally from examining the Kuhn-Tucker

conditions for the reformulate problem (0.3), i.e.,

D(ω)−2g(ω) = 0. (1.5)
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For each k, given a positive parameter µk and an identity matrix I, we define ψk : Rn+p+m →
< by

ψk(d̂)
def
=

1

2
‖Φ(ωk) +HkD−1

k d̂‖2 +
1

2
µk‖d̂‖2

=
1

2
‖Φ(ωk)‖2 + (D−1

k gk)Td̂+
1

2
d̂TD−1

k (Hk)THkD−1
k d̂+

1

2
µkd̂

Td̂, (1.6)

and consider the minimization problem

min ψk(d̂). (1.7)

We now state an affine scaling Levenberg-Marquardt method applied to the solution of the

semismooth problem (0.1). Let d̂k be the solution of the subproblem (1.6). Since ψk(d̂) is

a strict convex function, d̂k is the global minimum of the subproblem (1.6) which is in fact

equivalent to solving the following affine scaling Levenberg-Marquardt equation

[D−1
k (Hk)THkD−1

k + µkI]d̂k = −D−1
k gk. (1.8)

Zhu in [7] pointed out that the relevance of the used affine scaling matrix D−1
k and matrix

µkI depended on the fact that the affine scaled Levenberg-Marquardt trial step dk = D−1
k d̂k

was angled away from the approaching bound. Consequently the bounds will not prevent a

relatively large stepsize along dk from being taken. In order to maintain the strict interior

feasibility, a step-back tracking along the solution dk of the equation (1.8) could be required

by the strict interior feasibility and nonmonotonic line research technique.

Next we describe an affine scaling Levenberg-Marquardt algorithm which combines

nonmonotonic interior backtracking technique for solving the KKT system (0.1).

Algorithm 1.1

Initialization step

Choose parameters β ∈ (0, 1
2 ), τ ∈ (0, 1), ε > 0, 0 < θl < 1, µ > 1, 0 < q 6 1

and positive integer M as nonmonotonic parameter. Let m(0) = 0. Give a starting point

ω0 = (x0, y0, z0) with z0 > 0, calculate H0 ∈ ∂Φ(ω0). Set k = 0, go to the main step.

Main step

1. Evaluate Ψk = Ψ(ωk) = 1
2‖Φ(ωk)‖2 and Hk ∈ ∂Φ(ωk). Calculate Dk, gk = ∇Ψ(ωk) =

(Hk)TΦ(ωk) and µk = µ‖D−1
k gk‖2q.

2. If ‖D−1
k gk‖ 6 ε, stop with the approximate solution ωk.

3. Solve the affine scaling Levenberg-Marquardt equation (1.8) and obtain a step d̂k. Set

dk = D−1
k d̂k.

4. Choose αk = 1, τ, τ2, · · · until the following inequalities hold:

Ψ(ωk + αkd
k) 6 Ψ(ωl(k)) + αkβ(gk)Tdk, (1.9)

ωkJ + αkd
k
J > 0. (1.10)

where Ψ(ωl(k)) = max06j6m(k){Ψ(ωk−j)}.
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5. Set

sk =

{
αkd

k, if ωkJ + αkd
k
J > 0,

θkαkd
k, otherwise,

where θk ∈ (θl, 1) and θk − 1 = o(‖dk‖) and then set

ωk+1 = ωk + sk.

6. Take the nonmonotone control parameter m(k + 1) = min{m(k) + 1,M} and update

Hk to obtain Hk+1 ∈ ∂Φ(ωk+1). Then set k ← k + 1 and go to step 1.

2 Global convergence

Throughout this section we assume that Φ is semismooth. Given ω0 = (x0, y0, z0) ∈
Rn+p+m with z0 > 0, the algorithm generates a sequence {ωk}. In our analysis, we denote

the level set of Ψ by

L(ω0)
def
= {ω ∈ Rn+p+m | Ψ(ω) 6 Ψ(ω0), z > 0}.

The following assumptions are commonly used in convergence analysis of most methods

for the constrained systems.

Assumption A1 Sequence {ωk} generated by the algorithm is contained in a compact

set L(ω0) on Rn+p+m.

Assumption A2 There exist some positive constants χD, χΦ and χH such that

‖D(ω)−1‖ 6 χD, ‖Φ(ω)‖ 6 χΦ, ‖H‖ 6 χH , ∀H ∈ ∂Φ(ω), ∀ω ∈ L(ω0). (2.1)

The next lemma will show that the algorithm is well-defined.

Lemma 2.1 At the kth iteration, let d̂k be a solution of Levenberg-Marquardt equation.

If ‖D−1
k gk‖ 6= 0, then we have

(gk)Tdk < 0. (2.2)

Moreover, the proposed algorithm will produce an iterate ωk+1 = ωk+αkd
k in a finite number

of backtracking steps in (1.9)-(1.10), i.e., a positive αk can always be found in step 4.

Proof Suppose that (gk)Tdk = 0. Since d̂k is a solution of Levenberg-Marquardt

equation, we have

(gk)Tdk = (D−1
k gk)Td̂k

= −(d̂k)T[D−1
k (Hk)THkD−1

k + µkI]d̂k. (2.3)

Noting that the matrix D−1
k (Hk)THkD−1

k +µkI is positive definite since µ > 0, (gk)Tdk = 0

can only imply that d̂k = 0. Using the Levenberg-Marquardt equation again, we obtain

‖D−1
k gk‖ = ‖ − [D−1

k (Hk)THkD−1
k + µkI]d̂k‖

6 ‖D−1
k (Hk)THkD−1

k + µkI‖‖d̂k‖
= 0, (2.4)
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which contradicts ‖D−1
k gk‖ 6= 0. So we have (gk)Tdk < 0, i.e., (2.2) holds.

Now let us prove the latter part of the lemma.

On the one hand, it is clear to see that, in a finite number of backtracking reductions,

αk will satisfy

αk
def
= min{1,Γk}

def
= min

{
1,max

{
(ωkJ)i
(dkJ)i

, i = 1, 2, · · · ,m
}}

with Γk
def
= +∞ if

(ωk
J )i

(dkJ )i
6 0 for all i ∈ {1, 2, · · · ,m}.

On the other hand, assume that ωk satisfies that

Ψ(ωk + τndk) > Ψ(ωl(k)) + βτn(gk)Tdk > Ψ(ωk) + βτn(gk)Tdk (2.5)

for all n > 0. Then

Ψ(ωk + τndk)−Ψ(ωk)

τn
> β(gk)Tdk (2.6)

follows. Hence, for n→∞, we have (1− β)(gk)Tdk > 0, i.e., (gk)Tdk > 0 which contradicts

(gk)Tdk < 0. Therefore it is always possible to find a step length αk > 0 satisfying (1.9)-

(1.10).

So, we can see that the latter part of the lemma is also true. The total conclusion of

the lemma holds.

The main aim of the following two theorems is to prove global convergence results of

the proposed algorithm. The former indicates that at least one limit point of {ωk} is a

stationary point. The latter extends this theorem to a stronger global convergent result.

Theorem 2.1 Let {ωk} be a sequence generated by the proposed algorithm. Assume

that Assumptions A1-A2 hold and the nondegenerate condition of the reformulated problem

(0.3) holds. Then

lim inf
k→∞

‖D−1
k gk‖ = 0.

Proof According to the acceptance rule (1.9) in step 4, we have that

Ψ(ωl(k))−Ψ(ωk + αkd
k) > −βαk(gk)Tdk. (2.7)

Taking into account that m(k + 1) 6 m(k) + 1, and Ψ(ωk+1) 6 Ψ(ωl(k)), we have that

Ψ(ωl(k+1)) 6 max06j6m(k)+1{Ψ(ωk+1−j)} = Ψ(ωl(k)). This means that the sequence

{Ψ(ωl(k))} is nonincreasing for all k, and therefore {Ψ(ωl(k))} is convergent.

From (2.3), we have

(gk)Tdk = −(d̂k)T[D−1
k (Hk)THkD−1

k + µkI]d̂k

6 −µk‖d̂k‖2

= −µ‖D−1
k gk‖2q‖d̂k‖2

6 − µ

χ2
D

‖D−1
k gk‖2q‖dk‖2. (2.8)
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Combing (2.7) and (2.8), for all k > M , we obtain

Ψ(ωl(k)) 6 max
06j6m(l(k)−1)

{Ψ(ωl(k)−j−1)}+ βαl(k)−1(gl(k)−1)Tdl(k)−1 (2.9)

6 max
06j6m(l(k)−1)

{Ψ(ωl(k)−j−1)} − βµ

χ2
D

αl(k)−1‖D−1
l(k)−1g

l(k)−1‖2q‖dl(k)−1‖2.

If the conclusion of the theorem is not true, there exist some ε > 0 such that

‖D−1
k gk‖ > ε, k = 1, 2, · · · . (2.10)

As {Ψ(ωl(k))} is convergent, we obtain that from (2.9) and (2.10),

lim
k→∞

αl(k)−1‖dl(k)−1‖2 = 0. (2.11)

Further, following by induction way used in [8], it can be derived that

lim
k→∞

αk‖dk‖2 = 0,

which implies that either

lim inf
k→∞

αk = 0, (2.12)

or

lim
k→∞

‖dk‖ = 0. (2.13)

First, let us consider the case that (2.13) holds. Since µk=µ‖D−1
k gk‖2q6 µχ2q

Dχ
2q
Hχ

2q
Φ ,

we can obtain from the Levenberg-Marquardt equation that

(gk)Tdk = −(D−1
k gk)T[D−1

k (Hk)THkD−1
k + µkI]−1(D−1

k gk)

6 −
‖D−1

k gk‖2

‖D−1
k (Hk)THkD−1

k ‖+ µk

6 − ε2

χ2
Dχ

2
H + µχ2q

Dχ
2q
Hχ

2q
Φ

6→ 0. (2.14)

So ‖dk‖ 6→ 0, which means that (2.13) is not true. So (2.12) holds.

Next, we will consider the case (2.12) holds. (2.12) means that there exists a subset

κ ⊆ {k} such that

lim
k→∞,k∈κ

αk = 0. (2.15)

Assume that αk given in step 4 is the stepsize to the boundary to box constraints

along dk. From the definition 1.1, there must exist some i such that (ω∗J)i = 0 where ω∗

is any accumulation point of the sequence {ωk} and without loss of generality, assume that

{ωk}κ is a subsequence convergent to ω∗. Recall the Levenberg-Marquardt equation, we can

rewrite it as

µkd
k = −D−2

k [gk + (Hk)THkdk]. (2.16)
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Since ω∗ is nondegenerate with γi(ω∗J) = 0 for any i, we have that (ω∗J)i = 0 and (g∗J)i 6= 0

for some i. Hence, if αk is defined by some γi(ω∗J) = 0 and (g∗)i 6= 0, then αk =
|γi(ωk

J )|
|(dkJ )i|

for

sufficiently large k. Using (2.16) again, we have

αk =
µk

|(gk)i + [(Hk)THkdk]i|
>

µk
‖gk + (Hk)THkdk‖∞

. (2.17)

Combing the above inequality and µk = µ‖D−1
k gk‖2q > µε2q > 0, if αk given in step 4 is

the stepsize to the boundary of box constraints along dk, we have that

lim inf
k→∞

αk > lim inf
k→∞

µk
‖gkJ + (Hk

J )THk
Jd

k
J‖∞

> 0. (2.18)

Furthermore, if (2.12) holds, the acceptance rule (1.9) means that, for large k,

Ψ(ωk +
αk
τ
dk)−Ψ(ωk) > Ψ(ωk +

αk
τ
dk)−Ψ(ωl(k)) > β

αk
τ

(gk)Tdk.

Noting that αk

τ > 0, we can get from the above inequality that

Ψ(ωk + αk

τ d
k)−Ψ(ωk)

αk

τ

> β(gk)Tdk. (2.19)

Taking limits to (2.19), we obtain

lim
k→∞

(gk)Tdk > lim
k→∞

β(gk)Tdk,

that is,

lim
k→∞

(1− β)(gk)Tdk > 0. (2.20)

Taking into account that 1− β > 0, we can obtain from (2.20) that

lim
k→∞

(gk)Tdk > 0. (2.21)

Noting that (gk)Tdk 6 0, we have

lim
k→∞

(gk)Tdk = 0. (2.22)

But from (2.8), we can see that (2.22) is not true.

(2.18) and (2.22) mean that (2.12) does also not hold. Hence (2.10) is not true and the

conclusion of the theorem is true.

Theorem 2.2 Let {ωk} be a sequence generated by the proposed algorithm. Assume

that Assumptions A1-A2 hold and the nondegenerate condition of the reformulated problem

(0.3) holds, then

lim
k→∞

‖D−1
k gk‖ = 0.
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Proof The proof is still by contradiction. Let ε1 ∈ (0, 1) be given and assume that

there is a subsequence {mi} such that

‖D−1
mi
gmi‖ > ε1. (2.23)

Theorem 2.1 guarantees that for any ε2 ∈ (0, ε1) there is a subsequence of {mi}(without

loss of generality we assume that it is still the full sequence) and a sequence {li} such that

‖D−1
k gk‖ > ε2, for mi 6 k < li (2.24)

and

‖D−1
li
gli‖ < ε2. (2.25)

From the affine scaling Levenberg-Marquardt equation, we have that

(gk)Tdk = −(d̂k)T[D−1
k (Hk)THkD−1

k + µkI]d̂k

6 −µk‖d̂k‖2

= −µ‖D−1
k gk‖2q‖d̂k‖2

6 −µε2q
2 ‖d̂k‖2

6 −µε
2q
2

χ2
D

‖dk‖2. (2.26)

Since the matrix D−1
k (Hk)THkD−1

k +µkI is nonsingular in the affine scaling Levenberg-

Marquardt equation, we can get that

(gk)Tdk = −(D−1
k gk)T[D−1

k (Hk)THkD−1
k + µkI]−1D−1

k gk

6 −
‖D−1

k gk‖2

‖D−1
k (Hk)THkD−1

k ‖+ µk

6 − ε2
2

χ2
Dχ

2
H + µχ2q

Dχ
2q
Hχ

2q
Φ

. (2.27)

So, combing (2.26) and (2.27), we obtain

[(gk)Tdk]2 >
µε2q+2

2

χ2
D(χ2

Dχ
2
H + µχ2q

Dχ
2q
Hχ

2q
Φ )
‖dk‖2.

Noting that (gk)Tdk 6 0, we can get

(gk)Tdk 6 −
√
µεq+1

2

χD

√
χ2
Dχ

2
H + µχ2q

Dχ
2q
Hχ

2q
Φ

‖dk‖ = −σ‖dk‖, (2.28)

where σ
def
=

√
µεq+1

2

χD

√
χ2
Dχ

2
H+µχ2q

D χ2q
H χ2q

Φ

.

(1.9) and (2.28) mean that

Ψ(ωl(k)) 6 Ψ(ωl(l(k)−1)) + βαl(k)−1(gl(k)−1)Tdl(k)−1

6 Ψ(ωl(l(k)−1))− βσαl(k)−1‖dl(k)−1‖. (2.29)
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Similar to the proof of Theorem 2.1, we have that the sequence {Ψ(ωl(k))} is nonincreasing

for mi 6 k < li, and hence {Ψ(ωl(k))} is convergent. So

lim
k→∞

αl(k)−1‖dl(k)−1‖ = 0.

Similar to the proof in [8] , we have that

lim
k→+∞

Ψ(ωl(k)) = lim
k→+∞

Ψ(ωk). (2.30)

So we can also obtain

lim
k→∞

αk‖dk‖ = 0. (2.31)

Similar to the proof of (2.18), we can obtain that there exists a subset κ ⊆ {k} such

that

lim
k∈κ,k→∞

αk 6→ 0, (2.32)

where αk is given in the step size to the boundary of box constraints along dk, that is, the

step size {αk} cannot converge to zero.

Since ∇Ψ(ω) is continuous, and (2.31) holds, we have that

|[∇Ψ(ωk + ξkθkαkd
k)−∇Ψ(ωk)]Tdk| 6 1

2
(1− β)σ‖dk‖, (2.33)

where σ is given in (2.28). Noting that Ψ is continuously differentiable and using the mean

value theorem, we have the following result with 0 6 ξk 6 1

Ψ(ωk + αkθkd
k) = Ψ(ωk) + βαkθk∇Ψ(ωk)Tdk + (1− β)αkθk∇Ψ(ωk)Tdk

+αkθk[∇Ψ(ωk + ξkαkθkd
k)−∇Ψ(ωk)]Tdk

6 Ψ(ωk) + βαkθk∇Ψ(ωk)Tdk, (2.34)

here the last second inequality is deduced since the last term in brackets in the right-hand

side of equality in (2.34) will become negative when αkθk‖dk‖ is small enough. And hence

the corresponding θk → 1, as ‖dk‖ → 0.

We then deduce from

Ψ(ωk)−Ψ(ωk + αkd
k) > −βαk(gk)Tdk > βσαk‖dk‖

that for i sufficiently large,

‖ωmi − ωli‖ 6
li−1∑
k=mi

‖ωk+1 − ωk‖

=

li−1∑
k=mi

‖αkdk‖ =

li−1∑
k=mi

αk‖dk‖

6
1

βσ

li−1∑
k=mi

[Ψ(ωk)−Ψ(ωk+1)])

=
1

βσ
[Ψ(ωmi)−Ψ(ωli)]. (2.35)
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(2.30) and (2.35) mean that for large i, we have

‖ωmi − ωli‖ 6 ε2.

(1.3) implies that

|(γmi)j − (γli)j | 6 |(ωmi)j − (ωli)j | → 0,

as i tends to infinity. Finally, from (2.25), (2.27) and triangle inequality, we get that from

‖gmi − gli‖ = ‖(Hmi)TΦmi − (H li)TΦli‖ 6 χH‖ωmi − ωli‖ 6 χHε2,

ε1 6 ‖D−1
mi
gmi‖

6 ‖D−1
mi
gmi −D−1

mi
gli‖+ ‖D−1

mi
gli −D−1

li
gli‖+ ‖D−1

li
gli‖

6 ‖D−1
mi
‖gmi − gli‖+ ‖(D−1

mi
−D−1

li
)gli‖+ ‖D−1

li
gli‖

6 χDε2 + χHχΦε2 + ε2,

which contradicts ε2 ∈ (0, ε1), for arbitrarily small. This implies that (2.23) is not true, and

hence the conclusion of the theorem holds.

3 Local convergence

In this section we want to show that the Algorithm is locally fast convergent. The

assumption in this section is that a KKT point ω∗ of (0.1) is a BD-regualr solution of the

system Φ(ω) = 0.

Definition 3.1 The vector ω∗ is called BD-regular for Φ if all elements H ∈ ∂BΦ(ω∗)

are nonsingular.

The next result follows from the fact that Φ is a (strongly) semismooth operator under

certain smoothness assumptions for F , h and c (see [9-12]).

Proposition 3.1 The following state holds:

‖Φ(ω + h)− Φ(ω)−Hh‖ = c0‖h‖1+q for h→ 0 and H ∈ ∂Φ(ω + h). (3.1)

The following proposition refers to Robinson’s strong regularity condition. Here, we

will not restate its definition and interested reader may consult Robinson [13] and Liu [14]

for several characterizations of a strongly regular KKT point.

Proposition 3.2 A solution ω∗ = (x∗, y∗, z∗) ∈ Rn×Rp×Rm of system (0.1) is strongly

regular if and only if all matrices in Clarke’s generalized Jacobian ∂Φ(ω∗) are nonsingular.

In particular, the strong regularity of ω∗ is sufficient for ω∗ to be a BD-regular solution of

the system Φ(ω) = 0.

The next property follows from the semicontinuity of the generalized Jacobian (see

[15]) and the assumed BD-regularity. For the precise proofs, interested reader may refer to

Lemma 2.6 in [9] and Proposition 3 in [11].

Proposition 3.3 Let ω∗ be a BD-regular solution of Φ(ω) = 0. Then the following

statement hold:
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1. There exist constants c1 > 0 and δ1 > 0 such that the matrices H ∈ ∂BΦ(ω) are

nonsingular and satisfy

‖H−1‖ 6 c1 (3.2)

for all ω with ‖ω − ω∗‖ 6 δ1.

2. There exist constants c2 > 0 and δ2 > 0 such that

‖Φ(ω)‖ > c2‖ω − ω∗‖ (3.3)

for all ω with ‖ω − ω∗‖ 6 δ2.

In order to prove the local convergence theorem, we will need the following lemmas.

Lemma 3.1 Assume that ω∗ = (x∗, y∗, z∗) is a BD-regular solution of Φ(ω) = 0. Then

we have that

‖dk‖ 6 c1‖Φ(ωk)‖ (3.4)

for all ωk = (xk, yk, zk) sufficiently close to ω∗, where c1 is given in Proposition 3.3 and

dk = D−1
k d̂k and d̂k denotes a solution of Levenberg-Marquardt equation.

Proof Since ω∗ is a BD-regular KKT point, the matrix Hk ∈ ∂BΦ(ωk) are uniformly

nonsigular for all ωk sufficiently close to ω∗ by Proposition 3.3, i.e., there exists a constant

c1 > 0 such that

‖dk‖ 6 ‖(Hk)−1‖‖Hkdk‖ 6 c1‖Hkdk‖. (3.5)

On the other hand, using Levenberg-Marquardt equation, we have

0 = (D−1
k gk)Td̂k + (d̂k)T[D−1

k (Hk)THkD−1
k + µkI]d̂k

> (gk)Tdk + (dk)T(Hk)THkdk

= Φ(ωk)Hkdk + ‖Hkdk‖2

> ‖Hkdk‖ − ‖Φ(ωk)‖ · ‖Hkdk‖,

so

‖Hkdk‖ 6 ‖Φ(ωk)‖. (3.6)

Combining (3.5) with (3.6), we can easily obtain

‖dk‖ 6 c1‖Φ(ωk)‖. (3.7)

Theorem 3.1 Assume that assumptions A1-A2 hold. Let ω∗ be any accumulation point

of the sequence {ωk} generated by the proposed algorithm and ω∗ be a BD-regular point of

Φ. Then ω∗ is a BD-regular zero solution of Φ and ωk → ω∗, the step size αk ≡ 1 for large

enough k.

Proof If Φ(ωk) = 0 for some enough k, then from ‖dk‖ 6 c1‖Φ(ωk)‖ we have that

dk = 0 for all large enough k and the step size αk ≡ 1. Therefore, without loss of generality

we may assume that D−1
k (Hk)TΦ(ωk) 6= 0.
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From the Levenberg-Marquardt equation, we have

(gk)Tdk = −(d̂k)T[D−1
k (Hk)THkD−1

k + µkI]d̂k

6 −(dk)T(Hk)THkdk

6 − ‖dk‖2

‖(Hk)−1‖2

6 −‖d
k‖2

c21
. (3.8)

Using the acceptance rule (1.9) and (3.8), we have

Ψ(ωk + αkd
k) 6 Ψ(ωl(k)) + βαk(gk)Tdk

6 Ψ(ωk)− β

c21
αk‖dk‖2. (3.9)

Similar to the proof of theorem in [8], since {Ψ(ωk)} is convergent, we have

lim
k→∞

αk‖dk‖2 = 0. (3.10)

Assume that there exists a subsequence κ ⊆ {k} such that

lim
k→∞,k∈κ

‖dk‖ > 0. (3.11)

Then, assumption (3.11) implies that

lim
k→∞,k∈κ

αk = 0. (3.12)

Similar to the proof of (2.18), we have that αk 6→ 0 if αk is given by (1.10). And at the

same time, the acceptance (1.9) means that for large enough k,

Ψ(ωk +
αk
τ
dk)−Ψ(ωk) > β

αk
τ

(gk)Tdk. (3.13)

Since

Ψ(ωk +
αk
τ
dk)−Ψ(ωk) =

αk
τ

(gk)Tdk + o(
αk
τ
‖dk‖)

we have that

(1− β)
αk
τ

(gk)Tdk + o(
αk
τ
‖dk‖) > 0. (3.14)

Dividing (3.14) by αk

τ ‖d
k‖ and noting that 1− β > 0, we have that from (3.8)

0 6 lim
k→∞,k∈κ

(gk)Tdk

‖dk‖
6 − lim

k→∞,k∈κ

‖dk‖
c21

6 0 (3.15)

From (3.15), we can get that

lim
k→∞,k∈κ

(gk)Tdk = 0 and lim
k→∞,k∈κ

‖dk‖ = 0. (3.16)
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We now prove that if (3.16) holds, then αk = 1 must satisfy the accepted condition

(1.9) in step 4.

For large enough k, we have that

Ψ(ωk + dk)−Ψ(ωk)− (gk)Tdk

=
1

2
‖Φ(ωk) + (Hk)Tdk + o(‖dk‖)‖2 − 1

2
‖Φ(ωk)‖2 − (gk)Tdk

=
1

2
‖(Hk)Tdk‖2 + o(‖dk‖2). (3.17)

This gives that

Ψ(ωk + dk) = Ψ(ωk) + (gk)Tdk +
1

2
‖(Hk)Tdk‖2 + o(‖dk‖2)

6 Ψ(ωl(k)) + β(gk)Tdk + (
1

2
− β)(gk)Tdk

+
1

2
[(gk)Tdk + ‖(Hk)Tdk‖2] + o(‖dk‖2)

6 Ψ(ωl(k)) + β(gk)Tdk − (
1

2
− β)µk‖d̂k‖2 −

1

2
µk‖d̂k‖2 + o(‖dk‖2)

= Ψ(ωl(k)) + β(gk)Tdk. (3.18)

Therefore, the accepted condition (1.9) holds when αk = 1.

Now, we prove that if (3.16) holds, when αk = 1, the accepted condition (1.10) given in

step 4 also holds at the stepsize to the boundary of box constraints along dk. (3.16) means

that (dk)i → 0, for all i. Further, (dkJ)i → 0 for all i = 1, 2, · · · ,m. If (g∗J)i = 0 for any i,

assume that αk given in step 4 is the step size to the boundary of box constraints along dk,

the nondegenerate means that (ω∗J)i > 0, then

αk = min

{
1,max

{ (ωkJ)i
(dkJ)i

, i = 1, 2, · · · ,m
}}

= min{1,+∞} = 1.

If (g∗J)i 6= 0 for some i, we have that (ω∗J)i = 0. Since (Hk)THkdk converges to zero and µkI

is a positive definite diagonal matrix in (1.8), the nondegenerate condition of reformulated

problem (0.3) at the limit point implies that (dkJ)i and −(gkJ)i have the same sign for k

sufficiently large. Hence, if αk is defined by some γi(ω∗J) = 0 and (g∗J)i 6= 0, then αk =

|γi(ωkJ)|/|(gkJ)i| for k sufficiently large. Using (2.17), again, noting µ > 1, we have

αk = min

{
1,

µk
|(gkJ)i + [(Hk

J )T(Hk
J )dkJ ]i|

}
> min

{
1, µ− µ‖(Hk

J )T(Hk
J )dkJ‖

‖gkJ‖+ ‖(Hk
J )T(Hk

J )dkJ‖

}
→ 1 as dk → 0.

Further, by the condition on the strictly feasible stepsize θk ∈ (θ0, 1], for some 0 < θ0 <

1 and θk − 1 = o(‖dk‖), lim
k→∞

θk = 1, comes from lim
k→∞

dk = 0.

So αk ≡ 1, i.e., sk = dk and hence ωk+1 = ωk + dk.
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Similar to the proof of (2.28), we can get that

(gk)Tdk 6 −
√
µ‖D−1

k gk‖1+q‖dk‖

χD

√
χ2
Hχ

2
D + µχ2q

Dχ
2q
Hχ

2q
Φ

= −%‖D−1
k gk‖1+q‖dk‖, (3.19)

where %
def
=

√
µ

χD

√
χ2
Hχ

2
D+µχ2q

D χ2q
H χ2q

Φ

.

So from (3.19), we have

0 = lim
k→∞

− (gk)Tdk

‖dk‖
> lim
k→∞

%‖D−1
k gk‖1+q = %‖D−1

∗ g∗‖1+q, (3.20)

which implies that D−1
∗ (H∗)TΦ(ω∗) = D−1

∗ g∗ = 0. Since ω∗ is a BD-regular point of Φ,

i.e., D∗ and H∗ nonsingular, this gives Φ(ω∗) = 0 which means that ω∗ is a BD-regular zero

point of Φ.

Further, ω∗ is a BD-regular zero of Φ, then there exist δ2 > 0 and c2 > 0 such that

‖Φ(ωk)‖ > c2‖ωk − ω∗‖ for all ‖ωk − ω∗‖ 6 δ2.

All the above gives ωk → ω∗.

Theorem 3.2 Suppose that ω∗ is a BD-regular solution of Φ(ω) = 0. Let {ωk} denote

any sequence that converges to ω∗ for all k. For each ωk let d̂k denote a solution of Levenberg-

Marquardt equation. Then

‖ωk + dk − ω∗‖ = O(‖ωk − ω∗‖1+q).

Proof By the BD-regularity of ω∗ we have for ωk sufficiently close to ω∗ and Hk ∈
∂BΦ(ωk) that

‖ωk + dk − ω∗‖ 6 ‖(Hk)−1‖‖Hk(ωk + dk − ω∗)‖
6 c1‖Hkdk +Hk(ωk − ω∗)‖
6 c1(‖Φ(ωk) +Hkdk‖+ ‖Φ(ωk)− Φ(ω∗)−Hk(ωk − ω∗)‖)
= c1(‖Φ(ωk) +Hkdk‖+ c0‖ωk − ω∗‖1+q). (3.21)

Since d̂k is a solution of Levenberg-Marquardt equation and d̄k = Dk(ω∗−ωk) is feasible

for (1.7), we obtain that

‖Φ(ωk) +Hkdk‖2 = ‖Φ(ωk) +HkD−1
k d̂k‖2

6 ‖Φ(ωk) +HkD−1
k d̂k‖2 + µk‖d̂k‖2

6 ‖Φ(ωk) +HkD−1
k d̄k‖2 + µk‖d̄k‖2

6 ‖Φ(ωk)− Φ(ω∗) +Hk(ω∗ − ωk)‖2 + µk‖Dk‖2‖ω∗ − ωk‖2

= ‖Φ(ωk)− Φ(ω∗)−Hk(ωk − ω∗)‖2 + µk‖Dk‖2‖ω∗ − ωk‖2. (3.22)

For ω∗ with ω∗J > 0, there exists sufficiently small δ ∈ (0, 2] such that the open ball

B(ω∗, δ)
def
= {ω | ‖ω − ω∗‖ < δ, ωJ > 0}.
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Let {ωkj} be subsequence such that ωkj → ω∗ and j0 be the index such that for

k > kj0 , the sequence {ωkj} belongs to B(ω∗, δ2 ). Assume kj > kj0 . Then |(ωkjJ )i| > δ
2 for

i = 1, 2, · · · ,m. Hence, ‖Dkj‖ 6 n+ p+m
√

2
δ where

√
2
δ > 1. Taking into account that

µk = µ‖D−1
k gk‖2q 6 µχ2q

Dχ
2q
HL

2q‖ωk − ω∗‖2q,

we can obtain from (3.22) that

‖Φ(ωk) +Hkdk‖2 6 [c20 + µχ2q
Dχ

2q
HL

2q(n+ p+m

√
2

δ
)2]‖ωk − ω∗‖2+2q, (3.23)

that is,

‖Φ(ωk) +Hkdk‖ 6 c3‖ωk − ω∗‖1+q, (3.24)

where c3
def
=

√
c20 + µχ2q

Dχ
2q
HL

2q(n+ p+m
√

2
δ )2.

Together (3.21) with (3.24), we have that

‖ωk + dk − ω∗‖ = O(‖ωk − ω∗‖1+q). (3.25)

Theorem 3.2 shows that under the assumption that a KKT point ω∗ of (0.1) is a BD-

regualr solution of the system Φ(ω) = 0, the proposed algorithm has locally Q-superlinear

at (1+q)-order of convergence rate.

4 Numerical experiments

Numerical experiments on a new affine scaling Levenberg-Marquardt method with non-

monotonic interior backtracking line search technique given in this paper have been per-

formed on computer. The experiments are carried out on 4 test problems which are quoted

from [16]. Here, we first transform them into the Karush-Kuhn-Tucker system, and then

start searching from the initial points given by [16] to get the numerical results. The com-

putation terminates when one of the following stopping criterions is satisfied which is either

‖D−1
k gk‖ 6 10−8 or ‖Ψk+1 − Ψk‖ 6 10−8. The selected parameter values are: ε = 10−8,

β = 0.25, µ = 1, q = 0.5, τ = 0.5, θl = 0.95 and M = 5. NI and NF stand for the

numbers of iterations and function evaluations of Ψ respectively. The numerical results of

our Levenberg-Marquardt algorithm and the Modified BFGS given in [16] are presented in

the following Table 4.1.

Table 4.1 Experimental results

Problem name Levenberg-Marquardt algorithm Modified BFGS in [16]

NI/NF NI/NF

Powell’s function of four variables 24/24 45/51

Wood’s function 35/35 54/66

A quartic function 18/18 55/61

A sine-valley function 35/36 39/54
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