特邀评述 www.scichina.com csb.scichina.com

《中国科学》杂志社 SCIENCE CHINA PRESS

新型铁基超导材料的制备和性能

张现平,马衍伟*

中国科学院应用超导重点实验室,中国科学院电工研究所,北京 100190 * 联系人, E-mail: ywma@mail.iee.ac.cn

2012-12-25 收稿, 2013-02-05 接受 国家重点基础研究发展计划(2011CBA00105)、国家自然科学基金(51025726, 51172230)和北京市自然科学基金(2122056)资助

摘要 铁基超导体是目前超导材料研究领域最受关注的研究方向之一,激发了凝聚态物理学家和材料学家广泛的兴趣.与近 20 多年来被广泛研究的铜氧化物超导体相比,铁基超导体具有非常高的上临界场、较低的各向异性,同时具有较高的临界电流密度,展现了良好的潜在应用价值.本文简述了新型铁基超导材料的发现、发展历程,对比了目前发现的几种铁基超导体的晶体结构,并详细分析了 1111,122,11 等几种铁基超导线带材和薄膜制备工艺的优化过程. 同时,针对当前铁基超导体的研究现状,探讨了提高铁基超导材料临界电流密度的途径.

1 铁基超导材料的发现

2008 年 2 月, 日本科学家 Hosono 研究组^[1]报道 了临界转变温度为 26 K 的 LaFeAsO_{1-x}F_x 铁基超导体. 该论文立刻引发了人们对这一超导体系的强烈关注, 如美国 Science 杂志报道称, 新的铁基超导材料的发 现是高温超导研究领域的一个重大进展, 必将激发 物理和材料学界新一轮的高温超导研究热潮. 我国 科研机构迅速开展了卓有成效的研究工作,在新一 轮的高温超导研究热潮中占据了重要位置: 2008年3 月初,中国科学院物理研究所王楠林研究组^[2]很快就 合成了 LaFeAsO₀₉F₀₁₋₆多晶样品,并测量了其基本 物理性质; 3 月中旬, 中国科学院物理研究所闻海虎 研究组^[3]成功合成出第一种空穴掺杂型铁基超导材 料 La1-rSrrFeAsO; 3月 25 和 26 日, 中国科学技术大 学陈仙辉研究组^[4]和中国科学院物理研究所王楠林 研究组^[5]分别独立发现临界温度超过 40 K 的 SmFeAsO_{1-x}F_x和 CeO_{1-x}F_xFeAs 超导体; 3 月 29 日,中 国科学院物理研究所赵忠贤研究组^[6,7]发现 NdO_{0.85}-F_{0.15}FeAs 和 PrO_{0.85}F_{0.15}FeAs 样品的超导转变温度能 达到 50 K 左右, 4 月中旬, 又利用高压合成技术合成 了含有氧空位的 SmFeAsO_{1-x}F_x和 NdO_{1-x}FeAs, 此类 样品的超导转变温度最高能达到 55 K^[8];而浙江大 学的许祝安研究组^[9]利用 Th⁴⁺离子取代 Gd³⁺离子的 方法,发现在 Gd_{1-x}Th_xOFeAs 中超导转变温度能达到 56 K.

2008年6月,德国的 Johrent 研究组^[10]合成了一 种新型铁基母体材料 BaFe₂As₂,并证明该母体材料 具有反铁磁和结构相变,通过 K 替代 Ba 离子,又得 到了转变温度达 38 K 的(Ba_{1-x}K_x)Fe₂As₂^[11]超导体. 随后美国休斯顿大学朱经武小组^[12]通过 K 或者 Cs 掺 杂 SrFe₂As₂,也获得了 37 K 的超导电性.紧接着,另 外两个铁基母体材料 CaFe₂As₂, EuFe₂As₂ 陆续被发现, 通过碱金属掺杂同样获得了空穴型超导体^[13-15]. 2010 年底,中国科学院物理研究所陈小龙课题组^[16] 通过在 FeSe 层之间插入钾原子,成功地合成了常压 下超导转变温度在 30 K 以上的 K_xFe_{2-y}Se₂.随后 Cs_xFe₂Se₂, Rb_xFe₂Se₂ 也合成成功,转变温度大致相 当^[17-19].

中国科学院物理研究所的靳常青小组^[20]和美国 朱经武小组^[21]首先独立发现了 LiFeAs,这种新结构 的超导材料与 1111 以及 122 型体系不同的是,它没

引用格式: 张现平,马衍伟. 新型铁基超导材料的制备和性能. 科学通报, 2013, 58: 986-995
Zhang X P, Ma Y W. Development of iron-based superconducting materials for applications (in Chinese). Chin Sci Bull (Chin Ver), 2013, 58: 986-995, doi: 10.1360/972012-1775

有显出任何自旋密度波的特性,无需化学掺杂就表现出了超导特性.不久 Parker 等人^[22]报道成功合成了 NaFeAs,也具有相同的结构.中国人民大学的陈根富小组^[23]在 NaFeAs 中利用 P 掺杂使得超导转变温度提高到 30 K.

Fe-11 是铁基超导家族中结构最为简单的一个体 系,中国台湾吴茂昆研究小组^[24]率先发现了 FeSe 超 导材料,其转变温度为 8 K. 很快,日本的研究小组 通过加高压将 FeSe 的转变温度提高到了 37 K^[25,26]. 随后通过 Te 掺杂, FeSe_{0.5}Te_{0.5}转变温度也达到了 15.2 K^[27]. 拥有和 FeSe 相同结构的 FeTe 本身并没有超导 特性,但是用 S 原子部分代替 Te 原子后,其超导转 变温度达到了 10 K^[28,29].

2008 年底, 闻海虎研究组^[30]首先制备出了新型 钙钛矿型的铁基化合物 Sr₃Sc₂Fe₂As₂O₅, 随后日本东 京大学研究小组在 Sr₄Sc₂Fe₂P₂O₆中发现了 17 K 的超 导电性^[31]. 闻海虎小组^[32]又制备了 Sr₄V₂Fe₂As₂O₆, 其 临界转变温度达到 37 K. 同时, 一系列其他化合物 也被发现, 如(Fe₂As₂)(Ba₄Sc₃O_{7.5}), (Fe₂As₂)(Ca_{n+1}(Sc, Ti)_nO_y) (*n*=3, 4, 5)等^[33,34]. 据不完全统计, 目前发现 的铁基超导体已有近百种.

2 铁基超导体的晶体结构

目前发现的铁基超导体均具有相似的结构,如 都含有 Fe 和氮族(P, As)或硫族元素(S, Se, Te)按 1:1 的原子比组成的导电层,这两种元素在层内构成正 四面体, Fe 位于正四面体中心, 氮族(P, As)或硫族元 素(S, Se, Te)位于正四面体的 4 个顶点. 导电层和为 导电层提供载流子的载流子库层交叉堆叠在一起就 构成了铁基超导体的三明治结构. 各种结构铁基超 导体的不同之处在于载流子库层不同.导电层直接 堆叠到一起就形成 11 型铁基超导体;导电层由两层 碱金属原子隔开就形成了111型铁基超导体;如果载 流子库层是一层碱土金属原子, 就形成了122型铁基 超导体;如果载流子库层由稀土元素和氧元素按原 子比1:1组成, 就形成了1111型铁基超导体; 此外载 流子库层还可以由更为复杂的结构组成.截止到目 前,已发现了5种结构以上的铁基超导体,如图1所 示. 分别是: (1) 以 FeSe 和 FeTe 为代表的化合物, 简 称 11 相; (2) 以 LiFeAs, NaFeAs 为代表的化合物, 简 称 111 相, 具有 PbFCl 结构(空间群为 P4/nmm); (3) 以 SrFe₂As₂, BaFe₂As₂, KFe₂Se₂为代表的化合物, 简

987

称 122 相, 属于 ThCr2Si2 型四方晶系结构(空间群为 I4/mmm); (4) 以 LaFeAsOF, SmFeAsOF 为代表的化 合物, 简称 1111 相, 属于 ZrCuSiAs 四方晶系结构 (空间群为 P4/nmm); (5) 新型钙钛矿型结构超导体, 如以 Sr₃Sc₂O₅Fe₂As₂ 为代表的 32522 相、以 Sr₄Sc₂O₆Fe₂P₂为代表的 42622 相、以及以 La₃O₄Ni₄P₂ 为代表的 3442 相等^[36]. 其中对前 4 种化合物的研究 较多, 这些晶 体结构体系从 1111–122–111–11 相, 其二维特性减弱、三维特性增强, 超导最高临界转变 温度也逐渐降低. 一般情况下, 二维特性越强, 其超 导转变温度也相应越高^[37].

随着新型铁基超导体的不断涌现和临界转变温 度的不断提高,对铁基超导材料应用方面的研究也 逐步展开.首先是 Hunte 等人^[38]报道了 LaFeAsO_{1-x}F_x 的上临界场 $H_{c2}(0)$ 高达 100 T,远远超过了顺磁极限. 随后的研究发现 LnOFeAs_{1-x}F_x(Ln=Sm 和 Nd)具有更 高的 H_{c2} ,甚至超过了 200 T^[39-41]. Yamamoto 等人^[42] 利用磁化和磁光法对 SmFeAsO_{1-x}F_x和 NdFeAsO_{1-x}F_x 的临界电流传输特性进行了详细的研究,发现铁基 超导体在 5 K,自场条件下的晶粒间临界电流密度 J_c 可以达到 10³~10⁴ A/cm²,比多晶铜氧化物超导体要 高两个数量级,展现出了令人乐观的应用前景.

3 铁基超导线带材的研究进展

针对铁基超导体优异的超导特性,为了探索其

在诸如高场磁体等方面的应用,研究者开始尝试制 备铁基超导线带材.2008年4月,中国科学院电工研 究所的马衍伟研究小组^[43]采用粉末装管(PIT)方法, 研制出世界上第一根新型铁基超导线材——LaO_{1-x}F_x-FeAs线材,如图2所示.在此基础上,通过优化工艺 条件,又分别于2008年6月和2009年2月制备出了 临界转变温度为52K的SmFeAsO_{1-x}F_x线材^[44]和35K 的Sr_{0.6}K_{0.4}FeAs线材^[45],并采用磁化法测量了超导芯 的临界电流密度.虽然当时在四引线法测量中并没 有检测到传输电流,但是这些工作为铁基超导线带 材的研究和发展奠定了基础.截止到目前,已经成功 制备了包括1111,122,11在内的3种体系的铁基超导 线带材.

3.1 1111 体系铁基超导线带材

继 2008 年 4 月世界上首根铁基超导线材被成功 制备后,西南交通大学超导中心^[46]在 8 月份报道了 SmFeAsO_{0.8}F_{0.2} 线材中晶内临界电流密度的峰值效应, 同时采用磁化法对晶间临界电流密度进行了研究, 结果显示晶间 *J*_c几乎为零. 2009 年 10 月,美国弗罗 里达高场实验室的 Kametani 等人^[47]进行了块状多晶 SmFeAsO_{0.85} 样品的传输电流测试,发现 Fe-As 相以 及微裂纹的存在是制约多晶样品传输电流的重要因 素.以上研究突出显示了多晶铁基超导体在研究的 起始阶段面临的晶界弱连接问题.

图 2 世界第一根铁基超导线带材-LaFeAsO_{1-x}F_x线材^[43]

2010 年 2 月, Wang 等人^[48]通过降低烧结温度, 采用原位法成功制备了 *J*_c约为 1300 A/cm²(4.2 K, 自 场)的 Sm1111 线材.这也是世界上首次在 1111 体系 的线带材中获得传输电流.随后先位粉末装管法也 在 Sm1111 线材制备上取得了成功. 2011 年, Fujioka 等人^[49]通过先烧结先驱粉, 而后补充 F 的方式制备 的线材的 *J*_c可以达到 4000 A/cm². 2011 年底, Wang 等人^[50]进一步优化了先驱粉的制备工艺,将 Sm1111 体系的带材样品的 *J*_c提高到 4600 A/cm², 这是目前 世界上在 1111 体系的线带材样品中得到的最高数值.

Sm1111 多晶样品中存在大量杂质和裂纹等缺陷, 在超导体内部形成了超导电流阻断网络.目前发现 的杂质主要有 FeAs 和 Sm₂O₃,其中 FeAs 化合物存在 于晶粒边界,这对其超导电流的阻碍作用十分突出, 一些电流的传输路径在非常低的外场(0.1 T)下就迅 速消退甚至消失.因此提高 Sm1111 超导体相纯度是 当前进一步提高 1111 体系线带材临界电流密度的一 个重要研究方向.

3.2 122 体系铁基超导线带材

相对于 1111 体系铁基超导线带材缓慢的研究进展, 122 体系铁基超导线带材的临界电流密度提高很快, 不断创出新高. 2009 年底, Wang 等人^[51]采用银作为包套材料, 解决了由于与包套反应导致的超导芯中杂质相较多的问题, 首次在 Sr122 线带材上测得传输电流. 而采用 Ag 作为添加剂后, 由于晶粒连接性的提高, 以及对晶界杂质层的抑制作用, 线带材的临界电流密度得到了很大的提高, 如在 4.2 K下, J_c提高到了 1200 A/cm². 为了通过提高超导芯致密度和结晶性来进一步提高线带材的临界电流密度, Qi 等人^[52]采用先位法制备了 Sr122 线材, J_c达到 3750 A/cm².

2011 年初, Wang 等人^[53]在透射电子显微镜 (TEM)中发现, 多晶 Sr122 样品的晶界中存在无定形 杂质和富氧杂质. 所以净化晶界成为人们提高铁基 超导线带材临界电流密度的一个重要途径. 2011 年 2 月, Togano等人^[54]采用银作为包套材料和添加剂, 制 备了 J_c约为 10⁴ A/cm²的 Ba122 线材. 8 月, Wang 等 人^[55]在轧制后的带材样品中发现了 Sr122 晶粒的织 构化取向, 这为解决多晶铁基超导材料的晶界弱连 接问题提供了一种新思路. 10 月, Gao 等人^[56]通过引 入 Sn 作为添加物并进一步强化超导芯织构化程度的 办法, 将 Sr122 带材的 J_c提高到 2.5×10⁴ A/cm².

目前看来, 122 体系的铁基超导线带材的制备工 艺已经十分成熟,如日本东京大学的 Ding 等人^[57]采 用先位法也成功制备了高性能的122体系线材,其中 未添加和添加银的 Ba122 线材的 J。分别达到了 104 和 1.3×10⁴ A/cm². 最近, 美国弗罗里达强磁场实验 室^[58]报道了采用铜/银作为包套材料,利用热等静压 工艺制备的 Ba_{0.6}K_{0.4}Fe₂As₂线材,其J_c在 4.2 K 和 0 T 条件下达到 10⁵ A/cm², 但在 10 T 磁场下 J。衰减为 ~8500 A/cm². 而中国科学院电工研究所通过普通先 位粉末装管法在锡掺杂的 Sr0.6K0.4Fe2As2带材上获得 了更高的性能^[59],如其 J_c在 4.2 K 和 10 T 条件下仍 然高达 1.7×10⁴ A/cm². 这是世界上在铁基超导线带 材方面获得的最高数值,极大增强了人们对铁基超 导线带材实用化的信心. 在提高样品超导相纯度和 减小晶界失配角度后,在122体系的线带材的临界电 流密度有望得到进一步提高.

3.3 11 体系铁基超导线带材

11 系铁基超导体由于其超导转变温度低(8.5 K), 因此并未受到足够的重视. 但鉴于 11 体系铁基超导 体具有简单的晶体结构,并不含有毒性元素,是环境 友好材料,因此也值得关注. 目前日本国立材料研究 所(National Institute of Materials Science)针对该体系 的线带材开展了较为系统的研究.

2009 年 6 月, 日本国立材料研究所采用原位粉 末装管, 然后退火扩散的方法制备了临界转变温度 为 11 K 的 Fe(Se,Te)超导带材, 并采用四引线法测量 了它的传输电流, *J*_c达到 100 A/cm²(4.2 K)^[60]. 2011 年, 同一研究组的 Ozaki 等人^[61]又报道了采用粉末装管 法制备的单芯和多芯 FeSe_xTe_{1-x}线材, 4 K 时的 *J*_c高 达 1000 A/cm².

经过几年的发展,铁基超导线带材制备性能提 高方面的研究取得了显著的进展,铁基超导体展现 了较强的实际应用前景^[62].整体来说,1111体系中的 晶界弱连接行为表现的最为突出,临界电流随磁场 增加下降较快.这一方面与 1111体系中元素多、成 分复杂有关,又与合成温度高、F 元素易丢失有关. 从目前研究结果看,合成工艺的改进将是提高 1111 体系临界电流密度的一个重要研究方向.相对于 1111 体系,122体系的临界电流密度已经接近实际应用需 要,如通过采用织构化和化学掺杂的工艺相结合,该 体系的 J_c在 4.2 K,10 T 条件下已经接近 2×10⁴ A/cm². 122 体系线带材的临界电流密度在通过提高超导芯 超导相纯度的基础上有望得到进一步提高.11 体系 晶格结构最简单,电流密度满足要求后有望在电子 行业发挥作用.图3显示了中国科学院电工研究所在 122 铁基超导线带材临界电流密度提高方面取得的 一系列进展,可以看出铁基线带材的临界电流密度 得到不断提高,逐渐接近实用化要求.

4 铁基超导薄膜研究进展

针对铁基超导材料普遍存在的晶界弱连接问题, 人们开始开发易于织构化控制的铁基超导薄膜,并 已经成功制备 1111, 122, 11 体系的超导薄膜.

4.1 1111 体系超导膜

1111 体系的薄膜首先由 Hiramatsu 等人^[63]制备. 他们采用物理激光沉积(PLD)方法在 MgO(面内晶格 失配>4%)、MgAl₂O₄(面内晶格失配>0.1%)和(La,Sr) (Al,Ta)O₃(LSAT,面内晶格失配<4%)等3种单晶基板 的(001)面上沉积了原位外延生长的 LaFeAsO 膜. X 射线衍射(XRD)测试结果表明,该薄膜具有良好的 *c* 轴取向和面内取向.但是电阻测试表明,在 780℃沉 积的薄膜中,由于F没有有效的取代O元素,电阻曲 线与未掺杂样品相似.虽然他们还尝试了通过 O 空 位的方法来制备超导薄膜,但是没有获得成功.随后 不久,Backen 等人^[64]通过 PLD 法制备了双轴织构的 LaFeAsO 超导膜.首先在室温下的 MgO 和 LaAlO₃-(LAO, 001)基板上制备了 600 nm 厚的 LaFeAsOF 膜, 然后对样品进行了 4 h 1030℃的退火后,样品的临界 转变温度约为 11 K,但未观察到零电阻转变. 2010 年,

通过优化薄膜的退火工艺,如降低氧偏压等,Haindl 等人^[65]成功制备了LaFeAsOF多晶膜,并将该类超导 膜的起始转变温度和零电阻转变温度分别提高到了 28 和 20 K,这是首次得到具有零电阻转变的超导膜. 但是该制备方法得到的薄膜具有显著的弱连接特性, 其自场 J_c也仅在 1000 A/cm²量级.Kidszun 等人^[66]采 用同样的工艺制备了 200 nm 厚的外延膜,并进一步 改善了退火氛围,得到了临界转变温度约为 25 K 的 样品.

2010年, Kawaguchi等人^[67]报道了使用分子束外 延生长(MBE)工艺在 GaAs(001)基板上制备的 NdFe-AsO (Nd1111)薄膜.在早期的实验中,虽然使用了含 F 的 NdF₃ 作为原料,制得的薄膜却表现了半导体行 为的电阻转变,意味着 F 未能成功替代进入晶格.在 随后的实验中,发现薄膜生长时间大于 3 h 后样品中 的杂质如 NdOF等开始出现,但当延长制备时间超过 5 h,得到了起始转变温度达到 48 K 的超导膜.他们 进一步分析了样品中的 F 含量,证实 F 仅存在于沉积 时间大于 5 h 的样品中.根据对 NdOF 层作用的分析, 他们制备了 NdOF/Nd1111 双层结构膜来增加 F 的替 代量,最终在 CaF₂ 基板上得到了起始转变温度高达 50 K 的超导膜.

4.2 122 体系超导膜

由于 122 体系中不含容易挥发的 F 元素, 因此 122 体系的超导膜相对来说较容易制备. 所以有关 122 体系超导膜的研究较其他体系多得多. 最早的超 导 122 体系外延生长超导膜在 2008 年由 Hiramatsu 等人^[68]在 LSAT 单晶基板上制得. 他们采用脉冲激 光沉积法制备的 Co 掺杂的 SrFe₂As₂(Sr122:Co)膜, 在基板温度为700℃时起始转变温度为20K,在4.2K 和零场时的传输电流约 10~20 kA/cm². 但是该类超 导膜对湿度非常敏感. 与之相比, 2009 年 Katase 等 人^[69]采用 PLD 工艺在 700 ℃制备的 Ba122: Co 薄膜却 十分稳定. 通过提高靶材的纯度, 他们在 LSAT 和 MgO 基板上均得到了转变宽度为 1.1~1.3 K, J。在 4 K 和自场下达到 1~4 MA/cm²的超导膜. Iida 等人^[70]采 用 PLD 法, 分别在 SrTiO₃(STO), LSAT 和 LAO 基板 上制备了 Co-Ba122 薄膜,发现晶格常数 cla 比值与 样品的起始转变温度有关. 2009 年, Choi 等人^[71]和 Maiorov 等人^[72]同样采用 PLD 法成功制备了 SrFe_{1.8}-Co₀ 2As2 薄膜.

采用缓冲层工艺同样可以制备高质量的 Co-Ba122 外延薄膜. Lee 等人^[73]通过在 LSAT 或者其他 基板上沉积一层 STO 或者 BaTiO₃(BTO)缓冲层, PLD 制备的薄膜的外延质量得到显著提高,该薄膜显示 了非常强的 *c* 轴取向, *J*_c 也高达 4.5 MA/cm². Iida 等 人^[74]采用 Fe 作为缓冲层也取得了成功. 与他们之前 所制备的薄膜相比,薄膜的临界电流得到了很大提 高. 如当 Fe 缓冲层在 15 nm 时,制得薄膜的 *J*_c 在 12 K 和自场条件下可达 0.45 MA/cm².

K 掺杂的 Sr(Ba)122 体系虽然具有较高的临界转 变温度,但由于 K 的强挥发性和反应活性,所以该类 超导膜成功制备时间较晚.2010 年 Lee 等人^[75]采用 PLD 法首先成功制备了 K-Ba122 薄膜.首先在 LAO (001)和α-Al₂O₃ (0001)基板上沉积未掺杂的 Ba122 膜, 然后在 K 气氛下经过 6 h 700℃的退火后,薄膜显示 了良好的 *c* 轴取向性,其起始转变温度也高达 40 K. 随后 Takeda 等人^[76]采用 MBE 法,原位成功制备了外 延生长的 K-Ba122 薄膜.

4.3 11 体系超导膜

11 体系的超导体的临界转变温度较低,但是其 晶格结构简单,而且临界转变温度可以通过施加压 力来提高,所以人们期望通过晶格失配的基板来获 得高性能的11体系外延生长膜.Wu等人^[77]率先取得 了成功,他们采用PLD法在MgO(001)单晶基板上制 备了零转变温度在12 K 左右的 FeSe_{0.5}Te_{0.5} 薄膜. Wang 等人^[78]在 2009 年制备了 FeSe 薄膜,他们在 500℃的 MgO 基板上沉积了 100 nm 厚的薄膜, 电阻转变温度~9 K. Jun 等人^[79]采用 PLD 法, 在 Al₂O₃, STO, 以及 LAO 基板上均制备得到了临界转变温度接近于块材样品的 FeSe 薄膜.

2009 年 Si 等人^[80]采用 PLD 法在 STO 基板上生 长的 FeSe0.5 Te0.5 薄膜,由于晶格常数 c 较显著的减小 而获得了接近17K的临界转变温度.2010年, Huang 等人^[81]采用 PLD 工艺在 310℃的 MgO 基板上制备了 厚度约为 400 nm 的 FeSe0.5 Te0.5 薄膜, 临界转变温度 约为15 K. Bellingeri 等人^[82]则在 LAO, STO 及 Y 加 强的 ZrO 基板上获得了高质量的外延生长膜, 临界 转变温度高达 21 K, 超过常压下制备的块材样品. 与其他体系的超导膜相比, 11 体系的超导膜的临界 电流密度均较低,报道也比较少.但在 2011 年, Tsukada 等人^[83]报道了在 CaF2 基板上采用 PLD 法外 延生长的 FeSe0.5 Te0.5 薄膜的 Jc在 4.5 K和 10 T条件 下达到 5.9×10⁴ A/cm², Si 等人^[84]则在带有缓冲层的 金属基带上制备了 J_c高达 10⁴ A/cm²(4.2 K, 25 T)的 FeSe0.5Te0.5织构薄膜,这些工作显示了FeSe0.5Te0.5较 高的应用潜力.

此外, Mele等人^[85]还采用PLD法制备了Fe(Te,S) 外延生长膜,临界转变温度约7K.而Si等人^[86]制备 的Fe_{1.08}Te:O_x薄膜的临界转变温度则约为12K左右.

借助于 PLD, MBE 等先进的薄膜制备设备, 铁基 超导体薄膜的研究进展较快, 在 1111, 122, 11 等几种 体系的铁基超导体中均制备了具有较高 J_c 的薄膜. 随着对铁基超导体认识的不断加深, 铁基超导薄膜

超导材料		1111	122	11	YBCO	MgB_2
临界转变温度 T _c (K)		55	38	14	93	39
$H_{c2}(0)$ (T)		70~300	80~135	55	100	40
<i>ү</i> н		4~5	1.5~2	1.1~1.9	5~7	3.5
ab 面内相干长度ζ _{ab} (nm)		2.5	3	1.5	2.2	10
c 方向相干长度 ζ_c (nm)		0.6	1.5	0.6	0.4	2
穿透深度 $\lambda_{ab}(nm)$		200	200	490	120	50
金兹堡数 Gi		4×10^{-4}	1.5×10^{-5}	10^{-3}	5×10^{-4}	10^{-5}
单晶	$J_{\rm c}(0)@5~{\rm K}~({\rm A/cm}^2)$	3×10 ⁶	10^{6}	10 ⁵	3×10 ⁶	10 ⁵
	$J_{\rm c}(5~{\rm T})/J_{\rm c}(0)$	0.8	0.5	0.3	0.5	< 0.01
薄膜	$J_{\rm c}(0)@5 \text{ K} (\text{A/cm}^2)$	1.8×10^{6}	4×10^{6}	7×10 ⁵	$10^{7} \sim 10^{8}$	10^{7}
	$J_{\rm c}(5~{\rm T})/{\rm J}_{\rm c}(0)$	0.3	0.5	0.5	0.5~0.2	0.1~0.03
线带材	$J_{\rm c}(0)@4.2 \text{ K} (\text{A/cm}^2)$	2×10^{4}	10 ⁵	10^{3}	-	10^{5}

表1 几种典型超导体的基本性能参数[89-92]

有望在应用领域发挥重要作用.

5 结论与展望

尽管铁基超导体取得的研究进展与铜氧化物超导体相比还有一定差距,物理学家和材料学家仍然相当兴奋^[87-91].原因有以下两点:(1)铁基超导体的临界转变温度有可能得到进一步提高;(2)相对于陶瓷性的铜氧化物超导体,铁基超导体由于具有 *H*_{c2}高、各向异性参数(*Y*_H)小等优点,对实际应用更加有利,尤其在强磁场领域.

表 1 给出了几种典型的铁基超导体的基本参数. 为了便于比较, MgB₂和 YBCO 超导体的对应参数也 一并列出.可以看出,在这些超导体中,铁基超导体 在 T_c附近具有最大的 H_{c2}-T 斜率,并具有较强的本征 钉扎特性,因而铁基超导体在 J_c 对磁场的依赖性方 面表现了优异的性能,在测试磁场范围内, J_c 几乎不 随磁场强度的增加而明显降低.这些特点奠定了铁基超导体在高场应用方面的优势.另一方面,铁基超导体的_{/h}小于 YBCO 超导体的_{/h},更远小于 Bi 系超导体的_{/h},小的_{/h}对于实际应用十分有利.

从应用角度来说, 122 和 1111 两类铁基超导体最 值得关注. 以 Ba_{1-x}K_xFe₂As₂ 为代表的 122 系铁基超 导体,具有相对较高的超导转变温度(38 K)、高的 $H_{c2}(100 \text{ T})$ 、高的 $J_{c}(>10^{6} \text{ A/cm}^{2})$ 、小的γ_H(<2)以及较 低的制备温度等优点,有着广阔的应用前景;而以 SmFeAsO_{1-x}F_x 为代表的 1111 系铁基超导体,不但具 有高的 H_{c2} 和 J_{c} 等优点,同时还拥有更高的超导转变 温度(55 K),因此也是目前研究的热点之一.

截止到目前,在铁基超导线带材 J_c提高方面已 经取得突破性进展,铁基超导薄膜也被尝试用来制 备薄膜器件.可以相信,在不久的将来,铁基超导体 将会成为实用化超导体的新成员.

参考文献

- 1 Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La(O_{1-x}F_x)FeAs(x=0.05-0.12) with Tc=26 K. J Am Chem Soc, 2006, 130: 3296-3297
- 2 Chen G F, Li Z, Wu D, et al. Superconducting properties of Fe-based layered superconductor LaO_{0.9}F_{0.1-δ}FeAs. Phys Rev Lett, 2008, 101: 057007
- 3 Wen H H, Mu G, Fang L, et al. Superconductivity at 25 K in (La_{1-x}Sr_x)OFeAs. Europhys Lett, 2008, 82: 17009
- 4 Chen X H, Wu T, Wu G, et al. Superconductivity at 43 K in SmFeAsO $_{1-x}F_x$. Nature, 2008, 453: 761–762
- 5 Chen G F, Li Z, Wu D, et al. Superconductivity at 41 K and its competition with spin-density-wave instability in layered $CeO_{1-x}F_xFeAs$. Phys Rev Lett, 2008, 100: 247002
- 6 Ren Z A, Yang J, Lu W, et al. Superconductivity in the iron-based F-doped layered quaternary compound $Nd(O_{1-x}F_x)$ FeAs. Europhys Lett, 2008, 82: 57002
- 7 Ren Z A, Lu W, Yang J, et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm(O_{1-x}F_x)FeAs. Chin Phys Lett, 2008, 25: 2215–2216
- 8 Ren Z A, Che G C, Dong X L, et al. Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO_{1-δ}(Re=rare-earth metal) without fluorine doping. Europhys Lett, 2008, 83: 17002
- 9 Wang C, Li L J, Chi S, et al. Thorium-doping induced superconductivity up to 56 K in Gd_{1-x}Th_xFeAsO. Europhys Lett, 2008, 83: 67006
- 10 Rotter M, Tegel M, Schellenberg I, et al. Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe₂As₂. Phys Rev B, 2008, 78: 020503
- 11 Rotter M, Tegel M, Johrendt D. Superconductivity at 38 K in the iron arsenide Ba_{1-x}K_xFe₂As₂. Phys Rev Lett, 2008, 101: 107006
- 12 Sasmal K, Lü B, Lorenz B, et al. Superconductivity up to 37 K in (A_{1-x}Sr_x)Fe₂As₂ with A=K and Cs. Phys Rev Lett, 2008, 101: 107007
- 13 Wu G, Chen H, Wu T, et al. Different resistivity response to spin-density wave and superconductivity at 20 K in Ca_{1-x}Na_xFe₂As₂. J Phys: Condens Matter, 2008, 20: 422201
- 14 Jeevan H S, Hossain Z, Kasinathan D, et al. High-temperature superconductivity in Eu_{0.5}K_{0.5}Fe₂As₂. Phys Rev B, 2008, 78: 092406
- 15 Qi Y P, Gao Z S, Wang L, et al. Superconductivity at 34.7 K in the iron arsenide Eu_{0.7}Na_{0.3}Fe₂As₂. New J Phys, 2008, 10: 123003
- 16 Guo J G, Jin S F, Wang G, et al. Superconductivity in the iron selenide $K_xFe_2Se_2$ ($0 \le x \le 1.0$). Phys Rev B, 2010, 82: 180520
- 17 Krzton-Maziopa A, Shermadini Z, Pomjakushina E, et al. Synthesis and crystal growth of Cs_{0.8}(FeSe_{0.98})₂: A new iron-based superconductor with Tc=27 K. J Phys: Condens Matter, 2011, 23: 052203
- 18 Wang A F, Ying J J, Yan Y J, et al. Superconductivity at 32 K in single crystal Rb_{0.78}Fe₂Se_{1.78}. Phys Rev B, 2011, 83: 060512

- 19 Mizuguchi Y, Takeya H, Kawasaki Y, et al. Transport properties of the new Fe-based superconductor K_xFe₂Se₂ T_c=33 K. Appl Phys Lett, 2011, 98: 042511
- 20 Wang X C, Liu Q Q, Lü Y X, et al. The superconductivity at 18 K in LiFeAs system. Solid State Commun, 2008, 148: 538-540
- 21 Tapp J H, Tang Z J, Lü B, et al. LiFeAs: An intrinsic FeAs-based superconductor with Tc=18 K. Phys Rev B, 2008, 78: 060505
- 22 Parker D R, Pitcher M J, Baker P J, et al. Structure, antiferromagnetism and superconductivity of the layered iron arsenide NaFeAs. Chem Commum, 2009, 2189–2191
- 23 Xia T L, He J B, Wang D M, et al. Superconductivity at 33 K in "111" single crystals at ambient pressure. arXiv: 1001. 3311
- 24 Hsu F C, Luo J Y, Yeh K W, et al. Superconductivity in the PbO-type structure alpha-FeSe. Proc Natl Acad Sci USA, 2008, 105: 14262–14264
- 25 Mizuguchi Y, Tomioka F, Tsuda S, et al. Superconductivity at 27 K in tetragonal FeSe under high pressure. Appl Phys Lett, 2008, 93: 152505
- 26 Margadonna S, Takabayashi Y, Ohishi Y, et al. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (*Tc*=37 K). Phys Rev B, 2009, 80: 064506
- 27 Fang M H, Pham H M, Qian B, et al. Superconductivity close to magnetic instability in Fe(Se_{1-x}Te_x)_{0.82}. Phys Rev B, 2008, 78: 224503
- 28 Mizuguchi Y, Tomioka F, Tsuda S, et al. Superconductivity in S-substituted FeTe. Appl Phys Lett, 2009, 94: 012503
- 29 Mizuguchi Y, Tomioka F, Tsuda S, et al. Substitution effects on FeSe superconductor. J Phys Soc Jpn, 2009, 78: 074712
- 30 Zhu X Y, Han F, Mu G, et al. Sr₃Sc₂Fe₂As₂O₅ as a possible parent compound for FeAs-based superconductors. Phys Rev B, 2009, 79: 024516
- 31 Ogino H, Matsumura Y, Katsura Y, et al. Superconductivity at 17 K in Sr₄Sc₂Fe₂P₂O₆: New superconducting layered oxypnictides with thick perovskite oxide layer. Supercond Sci Technol, 2009, 22: 075008
- 32 Zhu X Y, Han F, Mu G, et al. Superconductivity at 37.2 K in the parent phase Sr₄V₂O₆Fe₂As₂. Phys Rev B, 2009, 79: 220512
- 33 Kawaguchi N, Ogino H, Shimizu Y, et al. New iron arsenide oxides (Fe₂As₂)(Sr₄(Sc,Ti)₃O₈), (Fe₂As₂)(Ba₄Sc₃O_{7.5}) and (Fe₂As₂)(Ba₄Sc₃O₅). Appl Phys Express, 2010, 3: 063102
- 34 Ogino H, Sato S, Kishio K, et al. A new homologous series of iron pnictide oxide superconductors $(Fe_2As_2)(Ca_{n+1}(Sc,Ti)_nO_y)$ (n=3, 4, 5) with extremely thick blocking layers. Supercond Sci Technol, 2010, 23: 115005
- 35 王雷. 新型铁基超导线带材的制备与性能研究. 博士学位论文. 北京: 中国科学院研究生院, 2010
- 36 齐彦鹏. 新型铁基超导体探索及其线带材制备研究. 博士学位论文. 北京: 中国科学院研究生院, 2010
- 37 李玉科.1111相铁基超导体 LnFeAsO 的元素替代效应.博士学位论文.杭州:浙江大学,2010
- 38 Hunte F, Jaroszynski J, Gurevich A, et al. Two-band superconductivity in LaFeAsO_{0.89}F_{0.11} at very high magnetic fields. Nature, 2008, 453: 903–905
- 39 Senatore C, Flukiger R, Cantoni M, et al. Upper critical fields well above 100 T for the superconductor SmFeAsO_{0.85} $F_{0.15}$ with T_c =46 K. Phys Rev B, 2008, 78: 054514
- 40 Jia Y, Cheng P, Fang L, et al. Critical fields and anisotropy of NdFeAsO_{0.82}F_{0.18} single crystals. Appl Phys Lett, 2008, 93: 032503
- Wang X L, Ghorbani S R, Peleckis G, et al. Very high critical field and superior J(c)-field performance in NdFeAsO_{0.82}F_{0.18} with Tc of 51 K. Adv Mater, 2009, 21: 236–239
- 42 Yamamoto A, Polyanskii A A, Jiang J, et al. Evidence for two distinct scales of current flow in polycrystalline Sm and Nd iron oxypnictides. Supercond Sci Technol, 2008, 21: 095008
- 43 Gao Z S, Wang L, Qi Y P, et al. Preparation of LaFeAsO_{0.9}F_{0.1} wires by the powder-in-tube method. Supercond Sci Technol, 2008, 21: 105024
- 44 Gao Z S, Wang L, Qi Y P, et al. Superconducting properties of granular SmFeAsO_{1-x} F_x wires with T_c =52 K prepared by the powderin-tube method. Supercond Sci Technol, 2008, 21: 112001
- 45 Qi Y P, Zhang X P, Gao Z S, et al. Superconductivity of powder-in-tube Sr_{0.6}K_{0.4}Fe₂As₂ wires. Physica C, 2009, 469: 717–720
- 46 Chen Y L, Cui Y J, Yang Y, et al. Peak effect and superconducting properties of SmFeAsO_{0.8}F_{0.2} wires. Supercond Sci Technol, 2008, 21: 115014
- 47 Kametani F, Li P, Abraimov D, et al. Intergrain current flow in a randomly oriented polycrystalline SmFeAsO_{0.85} oxypnictide. Appl Phys Lett, 2009, 95: 142502
- 48 Wang L, Qi Y P, Wang D L, et al. Low-temperature synthesis of SmFeAsO_{0.7} $F_{0.3-\delta}$ wires with a high transport critical current density. Supercond Sci Technol, 2010, 23: 075005
- 49 Fujioka M, Kota T, Matoba M, et al. Effective *ex-situ* fabrication of F-doped SmFeAsO wire for high transport critical current density. Appl Phys Express, 2011, 4: 063102
- 50 Wang C L, Yao C, Zhang X P, et al. Effect of starting materials on the superconducting properties of SmFeAsO_{1-x}F_x tapes. Supercond Sci Technol, 2012, 25: 035013

- 51 Wang L, Qi Y P, Wang D L, et al. Large transport critical currents of powder-in-tube Sr_{0.6}K_{0.4}Fe₂As₂/Ag superconducting wires and tapes. Physica C, 2010, 470: 183–186
- 52 Qi Y P, Wang L, Wang D L, et al. Transport critical currents in the iron pnictide superconducting wires prepared by the *ex situ* PIT method. Supercond Sci Technol, 2010, 23: 055009
- 53 Wang L, Ma Y W, Wang Q X, et al. Direct observation of nanometer-scale amorphous layers and oxide crystallites at grain boundaries in polycrystalline $Sr_{1-x}K_xFe_2As_2$ superconductors. Appl Phys Lett, 2011, 98: 222504
- 54 Togano K, Matsumoto A, Kumakura H. Large transport critical current densities of Ag sheathed (Ba,K)Fe₂As₂+Ag superconducting wires fabricated by an *ex-situ* powder-in-tube process. Appl Phys Express, 2011, 4: 043101
- 55 Wang L, Qi Y P, Zhang X P, et al. Textured $Sr_{1-x}K_xFe_2As_2$ superconducting tapes with high critical current density. Physica C, 2011, 471: 1689–1691
- 56 Gao Z S, Wang L, Yao C, et al. High transport critical current densities in textured Fe-sheathed Sr_{1-x}K_xFe₂As₂+Sn superconducting tapes. Appl Phys Lett, 2011, 99: 242506
- 57 Ding Q P, Prombood T, Tsuchiya Y, et al. Superconducting properties and magneto-optical imaging of Ba_{0.6}K_{0.4}Fe₂As₂ PIT wires with Ag addition. Supercond Sci Technol, 2012, 25: 035019
- 58 Weiss J D, Tarantini C, Jiang J, et al. Evidence of high intergrain critical current density in fine grain (Ba_{0.6}K_{0.4})Fe₂As₂ wires and bulks. Nat Mater, 2012, 11: 682–685
- 59 Gao Z S, Ma Y W, Yao C, et al. High critical current density and low anisotropy in textured Sr_{1-x}K_xFe₂As₂ tapes for high field applications. Sci Rep, 2012, 2: 998
- 60 Mizuguchi Y, Deguchi K, Tsuda S, et al. Fabrication of the iron-based superconducting wire using Fe(Se,Te). Appl Phys Express, 2009, 2: 083004
- 61 Ozaki T, Deguchi K, Mizuguchi Y, et al. Transport properties of iron-based FeTe_{0.5}Se_{0.5} superconducting wire. IEEE Trans Appl Supercond, 2011, 21: 2858–2861
- 62 Ma Y W, Wang L, Qi Y P, et al. Development of powder-in-tube processed iron pnictide wires and tapes. IEEE Trans Appl Supercond, 2011, 21: 2878–2881
- 63 Hiramatsu H, Katase T, Kamiya T, et al. Heteroepitaxial growth and optoelectronic properties of layered iron oxyarsenide LaFeAsO. Appl Phys Lett, 2008, 93: 162504
- 64 Backen E, Haindl S, Niemeier T, et al. Growth and anisotropy of La(O,F)FeAs thin films deposited by pulsed laser deposition. Supercond Sci Technol, 2008, 21: 122001
- 65 Haindl S, Kidszun M, Kauffmann A, et al. LaFeAs $O_{1-x}F_x$ thin films: High upper critical fields and evidence of weak link behavior. Phys Rev Lett, 2010, 104: 077001
- 66 Kidszun M, Haindl S, Reich E, et al. Epitaxial LaFeAsO_{1-x} F_x thin films grown by pulsed laser deposition. Supercond Sci Technol, 2010, 23: 022002
- 67 Kawaguchi T, Uemura H, Ohno T, et al. Epitaxial growth of ndfeaso thin films by molecular beam epitaxy. Appl Phys Express, 2009, 2: 093002
- 68 Hiramatsu H, Katase T, Kamiya T, et al. Superconductivity in epitaxial thin films of Co-doped SrFe₂As₂ with bilayered FeAs structures and their magnetic anisotropy. Appl Phys Express, 2008, 1: 101702
- 69 Katase T, Hiramatsu H, Yanagi H, et al. Atomically-flat, chemically-stable, superconducting epitaxial thin film of iron-based superconductor, cobalt-doped Ba Fe₂As₂. Solid State Commun, 2009, 149: 2121–2124
- 70 Iida K, Hänisch J, Hühne R, et al. Strong Tc dependence for strained epitaxial Ba(Fe_{1-x}Co_x)₂As₂ thin films. Appl Phys Lett, 2009, 95: 192501
- 71 Choi E M, Jung S G, Lee N H, et al. *In situ* fabrication of cobalt-doped SrFe₂As₂ thin films by using pulsed laser deposition with excimer laser. Appl Phys Lett, 2009, 95: 062507
- 72 Maiorov B, Baily S A, Kohama Y, et al. Angular and field properties of the critical current and melting line of Co-doped SrFe₂As₂ epitaxial films. Supercond Sci Technol, 2009, 22: 125011
- 73 Lee S, Jiang J C. Nelson T, et al. Template engineering of Co-doped BaFe₂As₂ single-crystal thin films. Nat Mater, 2010, 9: 397-402
- 74 Iida K, Haindl S, Thersle T, et al. Influence of Fe buffer thickness on the crystalline quality and the transport properties of Fe/Ba (Fe_{1-x}Co_x)₂As₂ bilayers. Appl Phys Lett, 2010, 97: 172507
- 75 Lee N H, Jung S G, Kim D H, et al. Potassium-doped BaFe₂As₂ superconducting thin films with a transition temperature of 40 K. Appl Phys Lett, 2010, 96: 202505
- 76 Takeda S, Ueda S, Yamagishi T, et al. Molecular beam epitaxy growth of superconducting $Sr_{1-x}K_xFe_2As_2$ and $Ba_{1-x}K_xFe_2As_2$. Appl Phys Express, 2010, 3: 093101

- 77 Wu M K, Hsu F C, Yeh K W, et al. The development of the superconducting PbO-type @b-FeSe and related compounds. Physica C, 2009, 469: 340–349
- 78 Wang M J, Luo J Y, Huang T W, et al. Crystal orientation and thickness dependence of the superconducting transition temperature of tetragonal FeSe_{1-x} thin films. Phys Rev Lett, 2009, 103: 117002
- 79 Jung S G, Lee N H, Choi E M, et al. Fabrication of FeSe_{1-x} superconducting films with bulk properties. Phys C, 2010, 470: 1977–1980
- 80 Si W D, Lin Z W, Jie Q, et al. Enhanced superconducting transition temperature in FeSe_{0.5}Te_{0.5} thin films. Appl Phys Lett, 2009, 95: 052504
- 81 Huang S X, Chien C L, Thampy V, et al. Control of tetrahedral coordination and superconductivity in FeSe_{0.5}Te_{0.5} thin films. Phys Rev Lett, 2010, 104: 217002
- 82 Bellingeri E, Pallecchi I, Buzio R, et al. *T*c=21 K in epitaxial FeSe_{0.5}Te_{0.5} thin films with biaxial compressive strain. Appl Phys Lett, 2010, 96: 102512
- 83 Tsukada I, Hanawa M, Akiike T, et al. Epitaxial growth of FeSe_{0.5}Te_{0.5} thin films on CaF₂ substrates with high critical current density. Appl Phys Express, 2011, 4: 053101
- 84 Si W D, Zhou J, Jie Q, et al. Iron-chalcogenide FeSe_{0.5}Te_{0.5} coated superconducting tapes for high field applications. Appl Phys Lett, 2011, 98: 262509
- 85 Mele P, Matsumoto K, Haruyama Y, et al. Fabrication of Fe-Te-S Superconducting epitaxial thin films by pulsed laser deposition. Appl Phys Express, 2009, 2: 073002
- Si W D, Jie Q, Wu L, et al. Superconductivity in epitaxial thin films of Fe_{1.08}Te:O_x. Phys Rev B, 2010, 81: 092506
- 87 Paglione J, Greene R L. High-temperature superconductivity in iron-based materials. Nat Phys, 2010, 6: 645-658
- 88 Aswathy P M, Anooja J B, Sarun P M, et al. An overview on iron based superconductors. Supercond Sci Technol, 2010, 23: 073001
- 89 Wen H H, Li S L. Materials and novel superconductivity in iron pnictide superconductors. Condens Matter Phys, 2011, 2: 121–140
- 90 Stewart G R. Superconductivity in iron compounds. Rev Mod Phys, 2011, 83: 1589–1652
- 91 Tanabe K, Hosono H. Frontiers of jresearch on iron-based superconductors toward their application. Jpn J Appl Phys, 2012, 51: 010005
- 92 王春雷. 新型铁基超导体及 Sm1111 带材的制备工艺优化与性能研究. 博士学位论文. 北京: 中国科学院大学, 2012

Development of iron-based superconducting materials for applications

ZHANG XianPing & MA YanWei

Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China

The discovery of superconductivity in iron pnictides has generated a great deal of research interest, not only in basic physics, but also in the field of applied superconductivity. It has been confirmed that the pnictides have peculiar physical properties including an unconventional pairing mechanism. This brings an opportunity to discover new kind of superconductor with high transition temperature. On the other hand, compare to the cuprate, the iron-based superconductors have a rather high upper critical field (H_{c2}) and low anisotropy. These properties are very attractive for practical application. An overview of the development of iron-based superconductors is presented in this article. The crystal structure of various iron-based superconductors is presented. At the same time, the fabrication techniques of iron-based tapes and films for "1111", "122", "11" type of pnictide are reviewed. Some promising features such as a high critical current density in tapes and thin films under high magnetic fields have been clarified. Finally, we summarize and compare the features and properties of the pnictide materials with other classical cuprate and MgB₂ superconductors.

pnictide, wires and tapes, films, critical field, critical current density, anisotropy

doi: 10.1360/972012-1775