文章编号:1001-4179(2013)S1-0168-03

立洲 RCC 拱坝坝址处天然渗流场反演分析

王 滔¹,胡升伟²,陈建康^{1,3},裴 亮¹,郭曙光¹

(1.四川大学水利水电学院,四川成都 610065; 2.中国水电顾问集团成都勘测设计院,四川成都 610065;
3.四川大学水力学与山区河流开发保护国家重点实验室,四川成都 610065)

摘要:立洲水电站坝址处地形和水文地质条件复杂,岩体渗透性呈现分区明显、各向异性等特性,且已知的地 下水位特征点较少。根据坝区的工程地质与水文地质条件,建立了拱坝与地基的三维渗流场有限元模型,利 用长观孔的实测水位,设置合适的边界水位,采用三维有限元方法对坝址处的渗流场进行反演分析。分析结 果为了解坝区天然地下水的分布情况,并为坝址处施工期与运行期渗流分析以及渗控措施优化设计提供了 依据。

关键 词:渗流场;反演分析;有限元;渗透系数;RCC 拱坝; 立洲水电站 中图法分类号:TV642.2 文献标志码: A

由于拱坝具有受力条件好、承载能力高的优点,近 年来成为一种让受计人员青睐的坝型,但据国内外对 拱坝事故的统计,相当部分事故与渗流有关,因而弄清 楚坝址的渗流规律对拱坝的稳定有着至关重要的作 用。在拱坝建设前,为了对整个坝区的地下渗流分布 有较透彻的了解,通常布置一定数量的钻孔来观测坝 址区的地下水,通过钻孔抽压水试验得出钻孔附近的 岩体渗透系数。但是布置的钻孔数量有限,不能全面 的了解坝址区的地下水分布规律及岩体的渗透性,需 利用钻孔测值对坝址处的天然渗流场进行反演分析, 其结果成为将来设计渗控措施的重要依据^[1-3]。

1 工程地质及计算模型

1.1 工程地质条件

立洲水电站枢纽工程由碾压混凝土双曲拱坝、坝 身泄洪系统、右岸地下长引水隧洞及右岸地面发电厂 房组成。坝址位于立洲岩子灰岩峡谷内,坝址区出露 地层属于异地系统地层。坝址区地表共出露4条断 层,分别为 F₁₀、f₂、f₄、f₅。其中 F₁₀属 Ⅱ级结构面,f₂属 Ⅲ级结构面,f₄、f₅属 Ⅳ级结构面。坝址区主要发育有 L1、L2、LP285 几条长大裂隙或裂隙带,除 L1、L2 属 Ⅳ 级结构面外,其余裂隙均属 V级结构面。根据坝址区 平硐裂隙统计资料,坝址区裂隙极为发育,尤其以近 EW 走向裂隙最为发育。表1坝址区主要地质结构。

表1 有限元模拟的坝址区主要地质结构

编号	高程/m	两岸情况	地质情况
F ₁₀	1680 ~ 2210	贯通	横跨左右岸、右岸与 Dlyj 岩层相接、左岸 与 Pk 岩层相接,材料参数左岸为一类,右 岸与表层风化区为一类
f_5	1860 ~ 2210	贯通、穿过坝体下方	左岸自 1860m 高程延伸至 2060m 高程
L1	1940 ~ 2060	位于左岸帷幕上游	在 2060m 高程与 L2 相接
L2	2020 ~ 2120	位于左岸,由帷幕截断	高程 2020 ~ 2060 m 位于帷幕下游,高程 2060 ~ 2120 m 位于帷幕上游,与 L1 相接
LP285	2010 ~ 2060	位于左岸,由帷幕截断	充填黄色黏土夹少量灰岩碎石,粘土呈软 塑状,含量约占80%~90%。
LP4 - 1 ~ LP4 - 3 及 LX2 ~ LX4	2065 ~ 2110	位于右岸,由帷幕截断	主要为卸荷裂隙,张开宽5~20cm。

1.2 渗流场计算模型

根据立洲水电站主要枢纽的布置、防渗帷幕、排水 幕和左右两岸抗力体排水洞的布置情况以及地形地质 条件,考虑计算域的边界效应,设定的三维有限元计算 模拟范围为:铅直向(Z)自建基面(高程1960m)向 下延伸280m(2倍坝高)至高程1680m,自坝顶(高 程2092m)向上延伸118m至高程2210m;顺河向

收稿日期:2012-12-30

(Y)自大坝向上游延伸 200 m(约1.5 倍坝高),向下 游延伸 450 m(约3 倍坝高);横河向(X)自大坝中心 向左右岸分别延伸 400 m(约3 倍坝高)和 500 m(约 3.6 倍坝高),河床高程取为1 980 m。图1 为大坝典 型渗控布置和地质结构模拟图。

图1 立洲水电站渗控布置及典型地质结构模拟

2 三维渗流场反演分析

2.1 渗流场反演理论

渗流反分析主要是考虑渗流区域地下水位的观测 值与求解水位计算值之间的误差,通过不断的修正待 求参数,从而实现对地下渗流模型待求参数的识别,因 此渗流反分析的主要问题是建立目标函数,求解最优 参数。

渗流场反分析归结为:设渗透系数为 k_j ,待求的 渗透参数共 $m \uparrow$,即: $x_j = k_j$ (j = 1, 2, ..., m),求 $\{x\} = [x_1, x_2, ..., x_m]$,使加权误差平方和 S = $\sum_{i=1}^{m} \omega_i (\phi_i - \phi_i^*)^2$ 取到极小值,并满足条件 $x_j \leq x_j \leq \overline{x_j}$, (j = 1 - m)。其中, ω_i 为加权系数; x_j 为 x_j 的下限; $\overline{x_j}$ 为 x_j 的上限; ϕ_i 为水头函数计算值; ϕ_i^* 为水头函数实 测值;i为测点编号。

其计算基本思想是,先等距划分各透水岩体渗透 系数的范围,依次对每个变量逐一搜索,搜索出第一变 量使目标函数取得最小值的相对最优解,固定该变量, 然后再对其他变量逐一搜索。将通过此方法算得的渗 透系数及边界初始值结果与钻孔水位进行对比,若计 算值与测值相差较大,则改变边界水位,再对渗透系数 逐一搜索,直到得到合理渗透系数和边界条件。

2.2 初始及边界条件

立洲水电站坝址处地下水的已知资料较少,已知

的地下水位特征点更少,这对于初始条件和边界条件 的选取造成很大的难度,经过多次反复验算,在反演分 析时采取以下处理:由于天然渗流状态下坝址区河水 位变幅不大,模型范围内的上游河水位在1988 m左 右,下游河水位在1986 m附近,在进行天然渗流场反 演分析时,将上下游相应特征水位作为定水头边界。 通过已获得的钻孔水位长观资料可以看出,在F₁₀断层 (位置在坝址下游侧200 m左右)上游侧,天然地下水 位较低平,几乎与河床水位持平,变化幅度很小,而在 F₁₀断层下游侧,天然地下水位较高,变化幅度比较大。 根据已知资料,并结合地形及天然地下水位的变化情 况,选取6个特征点作为反演上下游及左右岸边界水 位和岩体渗透参数的参考依据,得出对应的边界水位。

2.3 裂隙岩体渗透张量的计算

计算天然状态下渗流场时,岩体材料渗透系数的 反演分析以设计建议的各渗透分区渗透系数范围为参 考,其中,新鲜岩体、微风化、弱风化区以钻孔压水试验 所得的透水率为依据,渗透系数见表2。再结合计算域 边界,通过大量的试算调整,经反复迭代,获得断层、裂 隙分区的渗透系数,按(1)式计算各渗透分区对应的 各向异性岩体的渗透张量^[4-5]:

$$K_{ij} = \frac{g}{12\nu} \sum_{1}^{n} \frac{b_{(l)}^{3}}{B_{(l)}} \left[\delta_{ij} - n_{i(l)} n_{j(l)} \right]$$
(1)

式中, K_{ij} 为渗透张量, m/s; g 为重力加速度; $b_{(l)}$ 为 l组裂隙张开度; $B_{(l)}$ 为 l 组裂隙发育间距; v 为水的运 动粘滞系数; δ_{ij} 为 Kronecker 记号, 即 $\delta_{ij} = \begin{cases} 0, (i \neq j) \\ 1, (i = j) \end{cases}$; $n_{(l)}$ 为 l 组裂隙法向方向余弦。

表 2 坝址新鲜岩体、微风化、弱风化岩体渗透系数

材料分区	透水率 范围值/ Lu	渗透系数 范围值/ (cm・s ⁻¹)	渗透系数反演 分析值/ (cm・s ⁻¹)	渗透系数反演 等效值/ (cm・s ⁻¹)
新鲜岩体	1~2	$(1 \sim 2) \times 10^{-5}$	2×10^{-5}	2×10^{-5}
微风化岩体	2 ~ 3	$(2 \sim 3) \times 10^{-5}$	3×10^{-5}	3×10^{-5}
弱风化岩体	3~5	$(3 \sim 5) \times 10^{-5}$	5×10^{-5}	5×10^{-5}

根据已知的坝址区裂隙统计资料,并通过试算调整,获得了一组比较可信的岩体材料分区各向异性渗透系数(表3)。

3 渗流场反演结果

通过大量的试算和反复调整(主要调整边界水位 和各岩体分区的渗透系数^[6]),以渗流场反分析方法 为基础,并综合考虑坝址区的地形和地势变化,以天然 地下水位线为依据,采用各向异性岩体材料参数(渗 透系数见表 2)的渗流计算模型对坝址区天然渗流场 进行了反演分析^[7-8]。对比分析 6 个特征点的水头值 (见表 4)可以看出,反演分析得到的对应点水位值与 实测值差别不大,计算结果差异较小。

表 3 立洲水电站坝基断层、裂隙的渗透系数

针科导应	透水率范围	渗透系数范围	渗透系数等效值 K / (cm · s ⁻¹)		
机杆刀区	值/Lu	值 K / (cm · s ⁻¹)	K_{xx}	K _{yy}	K_{zz}
断层 F ₁₀	50000 ~ 100000	$(5 \sim 10) \times 10^{-1}$	0.125	5.79 $\times 10^{-3}$	0.125
断层 f5	50000 ~ 100000	$(5 \sim 10) \times 10^{-1}$	1.53×10^{-2}	1.72×10^{-2}	2.30×10^{-2}
裂隙组 LP ₄₋₁ ~	15000 ~ 30000	$(1.5 \sim 3) \times 10^{-1}$	2.31×10^{-5}	1.20×10^{-2}	1.20×10^{-2}
${\rm LP_{4-3}}\not\!$					
裂隙(LP285)	15000 ~ 30000	$(1.5 \sim 3)~\times 10^{-1}$	1.34×10^{-3}	1.65×10^{-3}	2.0×10^{-3}
裂隙 L1、L2	15000 ~ 30000	$(1.5 \sim 3)~\times 10^{-1}$	$3.18\times10^{\ -2}$	3.18 $\times 10^{-2}$	4.5×10^{-2}

注:表中X向表示横河向,Y向表示顺河向,Z向表示铅直向。

表4 钻孔的实测水位与计算水位对比

测点	测点 位置	地面 高程/m	测点 水头值/m	各向异性计算 水位值/m
G ₁ G ₁ (左)	G ₁ G ₁ 与河中心线 相交点向左 200m	2330	1991	1990.28
G ₁ G ₁ (右)	G ₁ G ₁ 与河中心线 相交点向右 165m	2290	1991.35	1990.31
LB(左)	ZLB 与河中心线 相交点向左 260m	2370	1991.65	1991.08
LB(右)	ZLB 与河中心线 相交点向右 233m	2360	1992.12	1992.11
WM(左)	F ₁₀ 断层左岸 下游侧 56m	2100	2018.15	2016.62
WM(右)	F ₁₀ 断层右岸 下游侧 70m	2153.56	2032.44	2030.49

由计算结果可看出,天然渗流场计算的水位线与 地下实测水位线分布规律基本一致,表明本文反演分 析获得的计算边界水位、各岩体分区的材料渗透系数 及天然渗流场比较合理,可以作为运行期各工况下渗 流场分析的计算依据。

由等势线图(图2,3)可以看出,当岩体渗透系数 为各向异性时,在F₁₀断层(位置在坝址下游侧200 m 附近)的上游侧,左右岸的地下水位总体是向河床补 给并且偏向下游,且水位低平,变化幅度不大,大致与 河床水位持平,这与开始所推测的地下水位线比较吻 合。F₁₀断层下游侧水位比较高,但总体上还是向河床 补给并且流向F₁₀断层处,最终通过断层流向河床。系 数充分考虑了坝址区岩体和断层的空间分布特征和

由天然渗流场反演计算成果可以看出,渗流参数 为各向异性时,渗流模型计算所获得的地下水位与设 计提供的地下水位推测线比较接近。各向异性的渗透

图 2 各向异性天然渗流场 1970m 高程地下水位

等势线(单位:m)

图3 各向异性天然渗流场 SY - SY 剖面地下水位等势线 实际情况,能够较好地模拟坝址区渗流场的变化规律, 基本上反映了坝址区的渗流场的变化规律,与实际情况比较吻合。

参考文献:

- 毛视照. 渗流计算分析与控制(第二版)[M]. 北京:水利电力出版社,1990.
- [2] 杜延龄,许国安,韩连兵.复杂岩基三维渗流分析方法及其工程应用研究[J].水利水电技术,1991,(1):2-9.
- [3] 王媛,速宝玉,徐志英.裂隙岩体渗流模型综述[J].水科学进展, 1996,7(3):276-282.
- [4] 肖裕行,王泳嘉,卢世宗,等.裂隙岩体水力等效连续介质存在性的评价[J],岩石力学与工程学报,1999,18(1):75-80.
- [5] 毛昶熙,陈平,李祖贻,等. 裂隙岩石渗流计算研究[J]. 岩土工程 学报,1991,13(6):1-10.
- [6] 许模.渗流场反分析及其在多孔介质中的应用[J].地质灾害与环境保护,1996,7(2):56-60.
- [7] 周敏,代永新,朱青山.渗流参数的反分析及其工程应用[J].矿业 快报,2003,(4):20-24.
- [8] 张俊霞,李莉,胡广伟,等.小浪底大坝渗控措施三维有限元计算 分析[J].岩土工程界,2005,(7):62-64.