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FOREWARD

The primary objective of this research project is to develop
techniques for the optimal operation of a linked system of multi-
purpose reservoirs, Linkage of the system may be through normal
river reaches, canals, or through pumping in pipelines. 1In this
report a model is developed which utilizes stochastic inflows with
the total system subject to certain constraints. This model will

be utilized later in an operational study of an existing system.
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ABSTRACT

In Chapter I of this report a model of a single multi-purpose
reservoir with stochastic inflows is addressed, The objective of
the model is the development of an optimal operating policy for
given time sequence of minimum and maximuem reservoir levels. The
unregulated inflow into the reservoir is assumed to be stochastic

with known distribution for each time period.

The significant difference between this model and those of
previcus investigators is that no linear decision rule is utilized,
Instead, the approach is based on the distribution of the sum of
the inflows over successive time periods. The resultant reservoir
release variables are no longer stochastic values as they were in

previous models.,

The resultant constraint set forms a linear system of equations.
Stochastic demands as well as inflows also are considered in the

paper, Example problems are presented to illustrate the models.

In Chapter II, a single multi-purpose reservoir model with
stochastic inflows is extended to a connected system of such reser-
voirs. The reservoirs are considered to be linked by a system of
putping canals and normal river reaches. The objective of the
model is the optimal operation of the total system subject to certain

restrictions on reservoir operations.

The linked system model is a natural extension of the single
reservoir model proposed in Chapter I. The resulting constraints
for the problem are linear and the decision variables are deter-
ministic rather than random variables. Thus, linear, quadratic

or even general convex objective functions can be handled readily,
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CHAPTER I

A STOCHASTIC MODEL FOR A SINGLE MULTI~PURPOSE RESERVOIR

Operations research methodology and systems analysis has in
the last decade facilitated the water resource planner in the
development of reservoir management techniques. The Planner must
integrate the many functions of a reservoir in order to obtain

decision policies.

In a recent paper ReVelle et al. (1969) proposed a linear
decision rule for a single reservoir design and operation, The
linear decision rule permitted the structure of a chance-constrained
linear programming model for determining the reservoir capacity
required to maintain a range of storage volumes and releases during

specified time periods.

ReVelle's linear decision rule, as applied to a reservoir, has

the simple form
x =5 - b,

where x is the release during a period of reservoir operation; s is
the storage at the end of the previous period; and b is a decision
parameter chosen to optimizce some criterion function. The linear
decision rule was applied in two contexts: (1) the stochastic
contexts where the magnitudes of reservoir inputs are treated as
random variables unknown in advance and (2) the deterministic
contexts where the magnitude of each input in a sequence 1s spe-

cified in advance.

This article is an extension of the work of ReVelle for
reservoir modeling. The emphasis will be mainly on stochastic

systems since the deterministic case is merely a special case of the



stochastic model, The linear decision rule discussed by both
ReVelle and Loucks (1970) is not utilized in this model. By not
restricting the formulation to linear decision rules, several
advantages arise. Paramount among these are the ability to inmclude
the release quantities x, in the objective function, the extension
to a linked multiple reservoir system is readily obtained, and the
inclusion of stochastic as opposed to deterministic demands adds no
conceptional difficulties. This approach is applied initially to

a single multi-purpose reservoir. The important case of systems of

linked reservoirs will be taken up in a subsequent chapter.

Single Multi-purpose Reservoir

In this section a single multi-purpose reservoir with chance-
constraints is modeled based on a formulated continuity or material
balance equation. The formulation provides decisions that specify
the release during different time periods of reservoir operation.
The decisions for the entire time horizon are determined by solving
a linear programming problem. The linear programming problem is
the deterministic equivalent of the original stochastic system. The
continuity equation consists of the reservoir inventory for the
previous period, random inflow, deterministic demands, and scheduled

releases,

Chance-constraints for each time period are established,
Chance-constrained means that the specified constraints may not be
satisfied all the time, but will be satisfied at least some pre-
specified amount, The purpose of utilizing the chance-constrained
formulation is the convenience in which the random variables can be
handled in the constraints. The stochastic constraints selected
involve maintaining (1) a specified maximum capacity minus a time
requirement variable for upper storage space and (2) a time depen-

dent minimum pool level,



The chance-constraints contain random inflow for each time
pericd. The random inflows are assumed to be additive and essentially
independent from one time period to the next. By making this
assumption a density function for the sum of the independent random
variables is obtained by convolution. The independence assumption
is not necessary. It does, however, simplify the presentation of
this approach and hence will be adheared to in further discussion.

By using the convoluted random variables for each constraint, a

deterministic set of equivalent linear constraints is generated.

Objective functions are then appended to this mathematical
formulation for analysis of various decision policies. Both linear
and quadratic objective function forms subsequently will be discussed.
More general convex objective functions with linear constraints also
can be handled readily (Rosen, 1961 and Goldfarb, 1969)., However,
the size of the general problem which can be solved routinely is

much smaller than the more specialized linear and quadratic forms.

Continuity Equation

The continuity equation is based on the reservoir model shown

in Figure 1.

Figure 1: Single Multi-purpose Reservoir



The total unregulated flow Y, enters the reservoir in time
period t. The inflow is randomly distributed with a probability
density function (p.d.f.) £.(v+). Therefore, the inflow in a
particular period is known only with some probability, The inflow
plus the storage volume st-1 at end of the previous time period is

available for downstream release x , and extracted demands d, .

The current ending storage volume or inventory level s, is then

expressed as

(1) s, = e, s +V, - d, - x

where e, is the fraction of water remaining contingent upon losses

due to evaporation.

Chance-Constraints with Stochastic Inflows

The chance-constraint for the probability of not exceeding the

specified maximum capacity of the reservoir is given by
(2) P{sﬁ/ct-vt}?:&l,

where ¢, 1s the total capacity of the reservoir below the maximum

water level, v 1is the upper storage space which may be required

t
in time period t (this space might be reserved for flood control

or surcharge storage), and & 1is a specified value between zero and
one. The value of 2, is normally chosen to be reasonably close to
one, The complementary probability (1 - ©,) represents the allowable

risk that the random variable Wy will take on values such that

The probability at the end of time period t that storage s,

exceeds the minimum pool level s, is written as



(3) P { s, < 8 } = &, ,

where &, 1ls a preselected minimum allowable probability that must be
maintained. The complementary probability (1 - %, ) represents the
allowable risk that the random variable ¥, will take on values such

that

The downstream release x, must satisfy minimum X, and maximum

X, reservoir release constraints

(4) X < %X, < X

which might be established by water requirements for water control

dilution, or recreational purposes.

Convolution Formulation. The chance-constraints can be con-

verted to an equivalent set of linear constraint by ceonvolution.
The operation of obtaining the density function of the sum of two
independent random variables is called convolution (Feller, 1966).

The resulting p.d.f. is usually indicated as g, = £, * ;.

For the case of two contimuous random variables x and y with
a joint p.d.f. £(x,v), where = < X < = agpnd ~= < y < =, it is
required to determine the p.d.f. of s = x + y. To accomplish this
it is necessary to consider the cumulative density function.

(C.D,F.) of s,

G(s) = P x+y s ] or
thus, G (s) = _ _ f (x,y) dxdy
in which - = <z < o, = % .:_:y\'m,

and integrated over the range x +y % s,



Changes in the limits of integration are them made to the C.D.F,
and

[ A -

G ()=, [ " f (xy)dy ] ax

-

Now, G(s) is differentiated with respect to s and the p.d.f. of s
is obtained

+ o

g (s) =_.r

o

I (x, s - x) dx,

When x and y are independent, then

£ (xy)=§f )L

and the resulting p.d.f. of s denoted by g, (), is

g, )= £ 0L (s-x) dx,

S

For the case where it is required to obtain the convolution of
three or more random variables the formulas are applied recursively

until the density function of the total sum is obtained,

As an
example, let
s =x tx t... tx,
where x , X5 ... X are independent random variables. Then to

obtain the p.d.f. of s, start first by obtaining the p.d.f. of

s, = % *x,. Next with regard to s, = s, + x; and continue in this
manner until s = s _, +x .



The convelution operation also can be extended to the discrete
case, that is,

ey

p, (8) = p, (x) p (s-x).

P
all x

As an example of the discrete case, consider the density function
of the random inflow {, into a reservoir over a certain time period

t given by

'vtlo 12

p(Y,) ) .2 .3 .5

where Y, is the number of units of inflow (usually expressed in
day-second-feet or acre-feet) into the reservoir for the time
period. Assuming that this distribution is the same for each time
pariod and that each time period is statistically independent,
find the distribution of random inflow for two time periods. By

the application of the convelution formula, the discrete case yields,

p (0)

p (1)

p, (0) p, (0) = .2 x .2 = .04

p, (0) py (1) +p (1) py (O)
=,2x%x .3+ .3 x .2=.,12

p (2) =p (O) p, (2) +p, (1) p, (1) +p, (2) p, (O
= 2 x .,5+.3x .3+.5% .2=.29

p(3) =p (1) p 2 +p (2)p (1)
= .3x .5+ .5%.3=.30

]

p (4) =p, (2) p, (2) =.5x .5=.25



The distribution of the random inflow for the two time periods is

pCry + ) luoa 12 .29 .30 .25

Deterministic Equivalent., Chance-constraint (2) can now be

converted to an equivalent linear constraint. For time period t = 1,
substitute the continuity equation (1) into constraint (2) to

yield

P{elsa+"‘~’l-d1-X1§c1~vl}2&1.

The random variable Y, is taken to the right-hand side of the

1
constraint and the inequality sign reversed to give

RV
P{C1'V1'en so+d1+xlh‘{lj—cvl.

Since ¥, has a known p.d.f., the C.D.F. F,_ evaluated at the
1

argument

s. -+ d1 +-xi 1

1 8]

must be greater than or equal to ¢, . Thus

For specified o, , the chance-constraint becomes

.:)‘
S N sﬂ+d1+x1‘~(R1) 1,



where (R.‘L)“1 is the value of | from the cumulative distribution

F ¢/, such that only 100 (1-&, ) per cent of the random values of

v, are greater than the argument,

For t = 2, constraint (2) is

P{egsl+'\‘2—d2-x2_(c2-v2}>0f1.

Substituting for s, from the continuity equation (1),

1
P{e2 e, so-l-ea“fl-e?dl-e2x1+\f2—d.e-x9_<c2-v2}“:dl.
Grouping
Ple e s = (g d +d4) = (% %) - ¢ +v, <
SRR A
and reversing the inequality sign the constraint becomes
P{ce-ve-eael SO+(eEx1+xe)+e2d1+d2)2
(e Y, +Y3) } > o).
The C.D.F,.
FeeYl + v, [ (e - vy - ey &y 550 +(ey %y + %)
+ (e d, +dy) I,

which is obtained by convoluting the p.d.f.'s of e, Y, and v,

evaluated ‘at the argument must be greater than or equal to e



Again for specified o, ; the chance-constraint becomes
(%"Vg'e?ei 50)+(e2x1+x2)+(e2d1+d2)>

(e R, % R,) 1,

; . . . . o
which is linear in % and x,. The expression (e, R = Ry) !
represents a value on the convoluted cumulative distribution of the

random variables Yy and Y, evaluated at the point o .

Then for the gemeral nth time period, defining € 4, = 1,

(5) P is,il e +% (i

e) (v, - d, ~x,) o ¢c =-v |
t=1 1=l p=t+1 x t . t B B n

v
Q2

The sum of the random variables is taken to the right-hand side

of the constraint to give

P s i e, =% (T e ) (d, +x,) ' ~¢
B ! L L K t 0 Tt

2 +Vn
t=1 t=1 k=t+1

n

10
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n
The C.D.F, for § =11 (1 e, ) Y, evaluated at the argument is

. n n
b’;{cn-vn—soﬂet-}-z [ (o e)(dt-!-xt)]},

k

which must be greater than or equal @1. By specifying ¢, the

chance-constraint becomes

n n
(e -v, =8, 1 e )+2 [ (1  e) (@ +x ) 1=
i £=1 ) =1 k=n+1
n n
% {1 e, } Vt
=l k=t+1
or
n ol
(6)((:“-\1'“-5O e, ) +% C(h ek)(dk+x_,‘)]
t=1 t=1 k=t+1

~

where (R ., ) ‘T is the value at the o Point on the cumulative

H
of the convoluted distribution.

Constraint (6) is the deterministic equivalent of (2), where
the release quantities x, are the decision variables, All other

variables are state varilables selected by the water resource planner,

Chance-constraint (3) is next converted to an equivalent linear

constraint for two time periods followed by the general constraint

for the nth time period.



Constraint (3) is

Lys)
—
w
o>
iV
1,3
K
et
i/
“

and for t = 1

v
2

P { s, = 8 ]

Then, substitution of (1) into (3) yields

P{el So+«{1'd1"x12§-1}20[2'

Taking the random variable to the right-hand side
P{el so~d1-x1-§12-\’1}2’%
and reversing the inequality yields
PR
P{(gl-el SO)+d1+x;§\1j?Qf’E,

The deterministic equivalent for this equation, one minus the
C.D.F., FY s evaluated at the argument
1

[(gl-elso)+dl+x1]

must be greater than or equal to &,. Thus,

1-F [ (s -e so)+d1+x.l]3%

1

12
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or
Fyi_[ (__s_1 - e, sO)+d1 +x ]gl-% .
For specified o, the chance-constraint becomes

(8 -¢g sc)+d1+x1((R,1)1-'O(2

where (R;) 1-%  ig the value of (- ) from the cumulative distri-

buti F, .
ution v,

For t = 2, constraint (3) is
Pls 25 }2q .

Substitution of continuity equation (1) twice yields

P{-e2x1+ee o mep di te, e syt -dy -x

Regrouping and reversing the inequality yields
P{(_§a-e2e_1so)+(cgd1+d2)+(esxl+x3)
= ( € \Tfl + h\”g ) } = ag .

As before, to obtain the deterministic equivalent for this equation,
one minus the C.D.F. evaluated at the argument must be greater than

or equal to o,
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(§2'epe13o)+(ezd1+d2)
+ (e %, +x } = Gy .

Letting ( e,By = Ry ) 1-% represent the (1 - o) value on the

cumulative distribution Fe2 Yy Lty ? the deterministic constraint is
+

(8 e e 8, ) + (g d +d )+ (X +x )« (g R xR )12

The generalized formulation of equation (3) follows that of
equation (2) and the convolution of the sum of the random variables

€, 1s in general:

n n
+ 3 (H' ek)(dt+xt)
t=1 t=1 k=t+1

g{: (}[ ek)Rt}l-%

=1 =t+l

or

n n n
(1) (s,= 8, 1 e )+ (I e ) (d +x )g (R, )% .
t=1 t=1 l=t+1 »

Constraint (7) is the linear deterministic equivalent of (3) with
the release x, ( t =1, 2, ..., n ) being the decision variables
necessary to insure that the storage s, exceeds the minimum pool

level s, with a probability o,.
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Stochastic Inflows and Demands

The development for both stochastic inflows and stochastic
demands is similar to that for stochastic inflows. The main
difference is that the convolution of the inflows minus the demands

muist now be obtained,

Consider the general stochastic-constraint on reservoir
capacity (5),

n il n
Sq I e +3 (1 e, ) (Y, = dy - X Y ¢, =V 7= a .

t=1 =1 k=t+1

"

The sum of the random variables v, and d, 1is again taken to the
right-hand side of the constraint and, upon rearranging,

n o]

(8) P { ¢, mv, -8 I e + % (I e ) X, =

n n .
u (h e, ) (v -4, yiz o .
t=1 k=t+1

The distribution of the random variable

n n
§n=z(n ek)(\\jt-dt)
t=1 k= t+1
must now be obtained., This can be accomplished by convolution
or by application of Fourier transforms (Parzen, 1960)., Letting

F. represent the distribution function (C.D.F.) of & equation (8)

[JA1}

n

becomes

U
=
=
Q
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Thus,
T n n a‘l
(%) cﬁ-vﬂ-so‘et%-z(ﬂ e, ) x, =R ,
t=1 t=1  k=t+l (¥Y¥4 )n
o
where R(l y represents the value of the random variable En for
{%d In

which 100c, per cent of the area of the distribution is to the left

of %, or equivalently the & point on the C.D.F. Fz .
“n

Constraint (9) is the deterministic equivalent of equation (2)
when both the demands and inflows are stochastic. Similarly,

equation (3) becomes,

n n 1 -G
(10) s, = s, n e *tu ( 1 e, ) X =« R °
=1 t=1 k=t+l (y¥4 )n

The minimum and maximum constraints on releases remain as before.
Hence, for stochastic inflows and demands, the constraints on the

system are equatioms (9), (10), and (4).

Reservoir Models and Sclutions

In this section three example problems are solved to illustrate
the chance-constraint formulation. The first two example problems
are solved by linear programming. One of the problems assumes
stochastic inflow and the other example both stochastic inflow and
demand. The third example problem appends a quadratic objective
function to the original model, which is then solved by quadratic

programming.
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Lincar Objective Function with Stochastic Inflow

In the single multi-purpose reservoir example, it is assumed
that the objective is to maximize the profit of releasing x, units
of water for two time periods. The releases are subject to the

chance-constraints

and

from which the equivalent deterministic constraints (6} and (7)

were derived.

For two time periods, constraints (6) and (7) are, respectively,

- - e 1
I sOe1+dl+x1+c1 vy > Ry

=1 ;

q
-5, € +dl+x1+& < R Og

1

and

- 5, ¢ e, te, x tx, te,d, +d, +¢, ~v. ~ (e; Ry * R, )y 1

[

'Sce1e2+e2x1+xe+e2dl+d2+§2 - (e, R, % Ry y 1-%



The maximum and minimum release constraints also must be satisfied:

|

omox

t=1 / ]

] e H
and E
|

IR TR

£=2 <I _

i

By assuming the values in Table 1 for the state variables, the

problem to be solved is

ninimize X, = x tx

subject to: ~x,
%
X
e

-.95 % ~X,

.93 x =,

%

"

8.0

-3.0

Application of linecar programming reveals the critical values of

release x and X, as 1 and 3 units, respectively, and a winimum cost

X, of 4 units.

13
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Table 1

Stochastic Inflow Data

Variable

Time 1 2
d, 6.0 8.0
c, - v, 15.0 25.0
X, 7.0 8.0
X, 1.0 3.0
e, 1.0 0.95
ER 3.0 3.0
S 8.0

R, 1 11.0

Rl(l"o"l) 6.0

) o :

( e, R, « Ry )y 1 20.0

(e, R %Ry ) =% 15.0
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Linear Objective Function with Stochastic Inflow and Demand

In the previous example probhlem, only stochastic inflows were
assumed. The distribution of inflows was known and the input to
the program was listed in Table 1. 1In this example problem, the
same system 1s assumed. Now, however, the demands and inflows are
assumed to be normally distributed with means and variances listed
in Table 2, The corresponding convoluted inflows and demands to be
used in thé problem formulation are also listed. Thé minimum
reservoir level for time period two was adjusted to a unit value.
This adjustment was necessary, since the previous problem with these

inflows and demands is infeasible.

The solution to this problem is again obtained by the method of
linear programming. The critical values of releases in periods one
and two, x, and X,, are 1.3474 and 3.0, respectively, with a

maximum profit x, of 4.347 units.

(0]

Quadratic Objective Function

Consider a quadratic objective function for the same system

as example 1. Let the objective be:

2

minimize x, = x +x, +3 (x - 3) +5 (x, - 5)° + 3 X X

The solution to this problem is readily obtained by gquadratic
programming techniques (Frank and Wolf, 1956, and Wolfe, 1959).
The critical values of releases %, and %, are 1.0 and 4.6,

respectively, with a minimum cost x, of 32.2 units.



Table 2

Stochastic Inflow and Demand Data

21

Variable

Time 1 2
c, -V, 15.0 25.0
X, 7.0 8.0
X, 1.0 3.0
e, 1.0 .95
s, 3.0 1.00
S 8.0

E {d4,} 6.0 8.0
-2 fd } 1.0 1.0
E [} 8.0 7.0
F{v, } 1.0 1.0
R, M 4,336

R -.336

( e, R * Ry ) % 4,12
(e Ry xR, ) ' 7% -2.32
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Conclusions

In this paper an extension of the single multiple purpose
stochastic constrained reservoir model was presented. The linear
decision rules utilized by ReVelle et al. (1969) and Loucks (1970)
are omitted in the model., The purpose of using linear decision rules
is to disconnect the release in the nth period from the ending
inventory level in period n-1., The advantage of a linear decision
rule is that only the random inflow for the current period need be
considered. However, the actual quantity to be released in the nth
period is not known until the random inflows in periods 1 through
n-1 are observed, Thus, for planning purposes where operation of
the reservoir is important or when the release variables are
represented in the objective function, this formulation is unsatis-
factory since releases are actually random variables and not exactly

determined by the reservoir planner.

The formulation proposed here requires that the distributions
of the sums of the random inflows for all time periods be obtained.
This is a relatively simple task for models with a large number of
time periods. Since by the central limit theorem (Parzen, 1960), the
distribution of the sums derived from the sampling of the parent

distribution tends to become normal as the sample size increases.

By not using any form of decision rule, the constraints on upper
and lower release quantities become deterministic and need not bhe
represented by chance-constrained formulations. Also, quadratic
or even general convex objective functions of the release quantities
can be considered. The main advantage of this model is that it can
be expanded readily to encompass systems of linked reservoirs with

stochastic constraints.
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CHAPTER II

STOCHASTIC MODEL FOR CONNECTED
MULTI~PURPOSE RESERVOIRS

In the previous chapter a chance -constrained model was proposed
for a single multi-purpose reservoir. The model was based on a
material balance equation and made extensive use of distributions
of the sum of random variables. The natural extension of the single

multi-purpose reservoir model is to link a system of such reservoirs.

Linked System of Multi-Purpose Reservoirs

For the development of a linked system of reservoirs, it is
assumed that there are two general linkage types. These linkages
consist of the normal channel flow for reservoir releases, and
pipe lines or pumping canals. The model is completely general in
the sense that any connecting system can be modeled. Thus, each
reservoir could be connected to every other reservoir and could
receive releases from any or all other reservoirs as dictated by the

particular system under consideration.

For the purposes of this discussion, each reservoir in each time
period is assumed to receive random unregulated inflow, regulated
inflow from reservoir releases, and inflow from pumping. The reservoir
level is depleted by means of scheduled releases, deterministic
demands, evaporation and seepage losses, and pumping to other
reservoirs. Stochastic demands can be handled by a simple extension
to the model presented. The method of making this adjustment was

indicated in Chapter I. ; ;

The system of multi-purpose reserveirs with chance-constraints
is modeled based on material balance equations for reservoir inventory

levels, The formwaltion provides decisions that specify the release
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and pumping quantities during different time periods of system
operation. The release and pumping decisions for the entire planning
horizon are determined by solving a linear programming problem. The
linear problem is the deterministic equivalent of the original chance-

constrained system.

The chance-constraints for each reservoir and each time period
are identical to those developed for a single multi-purpose reservoir.
The random inflows for each reservoir are assumed to be independent
from one time period to the next. However, this assumption, while

simplifying, is not necessary te the model development.

Continuity Equation

The kth reservoir in the linked system is based on the model

shown in Figure 2 and the following notation:

m - the number of reservoirs,

v¢ - random unregulated inflow into reservoir k in time period t,

o

Cf - capacity of reservoir k in period t,
vf - design maximum capacity in period t,
si - ending reservoir inventory level for period t,
E: - minimum specified inventory level,
ef - fraction of inventory remaining after evaporation and
i seepage losses,
xi - scheduled downstream release from reserveir,
pf - scheduled pumping quantity from reservoir k to reservoir j,

p~¥ - maximum pumping capacity from reservoir k to rescrvoir j,
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x~¥ - maximum downstrcam rclease,
t.

K . -

X, ~ minimum downstream release, and

K s e s

dt - deterministic extracted demand.
Wk
"t

¥ e

Figure 2. Linked Multi-purpose Reservoir

The total unregulated random inflow V: enters the kth reservoir

in time period t. The inflow is randomly distributed with a p.d, f.

J
t

reservolr into reservoir k. The regulated pumped inflow pit is the

ft(\t). The regulated inflow x* is the release from the jth
water pumped from reservoir j into reservoir k. The pumping and
release into reservoir k can be from several reservoirs, thus j

can vary over all reservoir numbers.

The releases from the kth reservoir in time period t are (1) the
deterministic extracted demands d:, (2) the decision variable for
downstream release xi, and (3) the decision variable p:t for pumping
water from reservoir k to reservoir j; again, reserveoir k could pump

to several different reservoirs. The releases plus the inflows and



26

previous storage volume constitute the current inventory level s:.

The continuity equation for reservoir k in time period t is

¥ o_ Lk k Wk _ gk o ok 4% X, I P N
(11) sk =eksk | +) - d xt+§;1 (T'x} + 0P, ij“),

where

1 if reservoir j release flows into reservoir k

0 otherwise, and

1 if reservoir k pumps to reservoir j

0 otherwise.

Chance-Constraints with Stochastic Inflows

The chance-constraint for the probability of not exceeding the

maximum capacity of the kth reservoir is

(12) P{s“(c':—vt}20’.’,‘,k=l,2,...,m, and
£ =12, ..., T,
where ci is the design maximum capacity of the kth reservoir,

vt is the upper storage space required in time period t of the kth

reservoir, and &f are the specified constants between zero and one.

The probability 0;, at the end of time period t, for storage

sﬁ to exceed the minimum poeol level is

(13) P{s > box et

k =
+ it E’kul’z’ LRCINS ) m,
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where E: is the minimum storage that must be maintained.

k . ‘e
The downstream release X, must satisfy the minimum §ﬁ and the

maximum x:k reservoir releases constraints and maximum pumping

capacity constraints, i.e.,

(14) 5: < xt - x:k %k, t, and

k -k
0 = < 3
pJt Pjt »k, £, j.

The chance-constraints (12) and (13) are converted to their
equivalent linear deterministic constraints in a similar manner as
the chance-constraints of the single multi-purpose reservoir model.
The general equivalent linear deterministic result for chance-

constraint (12) with t=n is

r n Y ]
(15) f -V - sk e+ (e [d +x -3 (Ix
" =1 t=1 L=t+1 & t =1 3 ¥
1#x
§ 4 k K o)
+ -0 > 1
Okpkt JP‘”)]} Rk’*n 3

o
where R, lhn are the values at the af points on the convoluted
R

distributions. Chance-constraint (13) becomes

n k n
(16) s - sk 7 & +% (1 e ) [ & +xF -0 (I
™ =1 ' =1 LEtel ¢ AT

1#

+0'p - 0%p" )] - R (1-a3)

¥ okt | 1t - k}?’»‘n ?
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Figure 3: System of Connected Multi-purpose Reservoirs

The structure of the problem can now be put in the form

minimize Z = h y

subject to (A,Dy = b,
LeYeou
where
e ko0,

and where y is the decision vector comsisting of release, pumping,

slack, and artificial variables.
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Table 3

Data Used in Example Problem for Linked System of Reservoirs

Time 1 2
Reservoir 1 2 3 1 2 3
a* 6.0 . 5,0 10.0 8.0 7.0 7.0
ct-v}z 10.0 20,0 15.0 10.0 19.0 16.0
5;‘: 7.0 15.0 20.0 8.0 12.0 20.0
g; 1.0 2,0 1.0 3.0 3.0 1.0
e‘: 1.0 1.0 1.0 0.95 0.97 0.98
g: 3.0 4,0 3.0 3.0 2.0 4,0
st 8.0  20.0 6.0

R ™ 11.0  10.0 1%2.0'

R (%) 6.0 9.0 8.0

(e, R +R,)™ 20,0 15.0  20.0
(e, Ry %R, ) 2 15.0  14.0  17.0

p 10,0 5.0 10.0 5.0

e
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The values chosen for the cost coefficient of the objective

function are
h =[1.0, - 2,0, 0.0, - .75, .65, 1.0, - 2,1, 0.0, ~ .80, .70]

and the linear constraints are given by specifying the matrix A

and the vectors b, £, u as

S} 0 0 1 1 0 0 0 0 0|
1 0 0 -1 -1 0 0 0 0 0
1 -1 1 -1 0 0 0 0 0 0
-1 1 -1 1 0 0 0 0 0 0
0 0 -1 0 -1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
= loos 0 0 95 .95 -1 0 0 1 1
.95 0 0  -.95 -,95 1 0 o -1 -1
.97 -.97 .97  -.97 0 1 -1 1 -1 0
|-.97 .97 -.97 .97 0 -1 1 -1 1 0
0 0 -.98 0 -.98 0 0 -1 0o -1
0 0 98 0 .98 0 0 1 0 !

L _




. B 7]
5 I 2 15
-5 1 20
20 ‘0 10
7 E 0 5

b= ' L= > w={ °

-3.9 3 12
5.9 1 20
6.45 0 10
19,55 L0 5
6.92

| 2.08 |

Application of the revised simplex method in conjunction with the

bounded variable technique reveals the critical values of y:

xl 7

1

x? 9

1

X 1

1l

° 4

pll

3

p11 0
L= < - 8

2

2

X 3

2

%= 1

-3

2

p12 4.85

3
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(=g, )

£

where R are the values at the l—og points on the convoluted

K
distributions, Equations (15) and (16) are linear in the decision

variables xi and pkt. The releases and pumping units during different
J

time periods of reservoir operation are, thercfore, determined by

solving a mathematical programming problem with linear constraints,

Linear QObjective Function

The example presented is a system of multi-purpose reservoirs.
Figure 3 is the model formulated for illustration. The linked
reservoir system is composed of three reservoirs, two of which have
pumping capabilities, Random inflows and predetermined demands
are assumed for each reservoir. Table 3 describes the state variables
assumed for each reservoir and time period. The objective is to

minimize the operating cost of the system for two time periocds.

The decision variables are to be determined for cach time
period. They are: the units of water released from reservoirs one,
two, and three; and the number of units of water pumped into
reservoir one from reservoirs two and three. The total number of
variables to be determined is the product of the number of time

periods with the sum of the number of reservoirs and pumping variables.

The decision variables must satisfy the equivalent deterministic
constraints (15), (16), and the upper and lower limits on release (14).
By taking advantage of the fact that the decision variables are
bounded from above and below, the number of constraints can be reduced
considerably for linear programming formulation of the problem.

Using the bounded variable techniques discussed in Taha (1970), the
resulting number of constraints is the product of twice the number

of reservoirs multiplied by the number of time periods.
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and an optimum cost of operating the system as -16.11 or a profit

of 16,11 units,

Conclusions

The development of a mathematical model for a linked system of
multi-purpose rescrvoirs with stochastic unregulated inflows is
obtained as a straight forward generalization of the single reservoir
model developed in Chapter I. The chance-constrained formulation for
reservoir capacities and minimum inventory levels converts to a
linear system of constraints. Linear, quadratic, or even general
convex objective functions can be appended to this system and the

solution obtained with facility.

The seemingly difficult, or at least time consumming, task of
obtaining the distributions for the sums of the random inflows for
models with many time periods is actually simple. As the number of
time periods increase, the sum of random variables, independent of
the basic distribution, are approximately normally distributed. This

result is due to the well-known central limit theorem (Parzen, 1960).

If linear objective functions are assumed, which could be
operational or of a capacity nature, very large problems can be solved.
Since the cummulative inflows will be nearly normally distributed for
these problems, their formulations and solutions are thus a matter of
course, However, the problem of capacity expansion is generally not
well modeled as a continuous linear problem. Capacity expansions
are usually limited to certain periods and have nonlinear costs as

a function of size.
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CHAPTER III

PROGRAM DOCUMENTATION

The linear programming system which is used to solve the
multiple reservoir chanced-constrained problems is based on the
revised simplex method with bounded variables. The bounded variables
procedure is a method by which constraints that are merely upper or
lower bounds on individual variables are handled implicitly rather
than explicitly in the program. Since the work invelved in solving
linear programs is mainly a function of the number of constraints,
speed and accuracy can be improved significantly by utilizing the
bounded variables procedure. This is particularly important for
linked multiple reservoir models since at least one~half of the
constraints are hounding constraints. A detailed discussion of the
revised simplex procedure with bounded variables is given by Taha

(1970, Chapter 8).

Although a large number of excellent codes are available, the
authors developed the code which is used in the model. The program
is FORTRAN based which offers the greatest flexibility for interfacing
with the remaining subroutines and for conversion te other computers.
The program was developed te run under the WATFOR, WATFIV or OS 360
FORTRAN systems on the IBM 360/635,

Program Structure

The basic structure of the computer program consists ol a
master program which reads the input data, develops the linear
programuing formulation, submits the problem to the linear program-
ming subroutine LPSIM, and interprets the results for printout, The

general problem solved by the linear program (l.p) subroutine is
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maximize cy

subject to (A,Dy =b - o

where y is the decision vector and consists of release, pumping,
gslack and artificial variables. The variables are stored into hid
in the following manner (the notation is that given in the previous

chapter):

all releases all pumping variables

T,
r t 2 n 2 <] 1 *
y = ;xl,xl,...,xl, P aPiyseeesPy nnns time 1
2 m =) 1 . .
xg,xa,...,x@, plg, ses 3P rcees time 2
1 2 o 2 : .
RysXis-eenX pli,.q. J time T

in narrative form the sequence of variables is (1) each release

k
t

first period pumping variables; (2) the pumping variables are

variable x for each reservoir for time period one, followed by all
ordered by all pumping into reservoir one, then reservoir two, etc.;
(3) this sequence is repeated for each of the T time periods; and

(4) the slack and artificial variables occur next, one each for

every constraint.

Program Input Formats

The notation which is used in FORTRAN to designate whether a

variable is an integer or a floating point variable is 1 or F,



36

respectively. TFor I type variables, the data must be read in
right adjusted in the field. For floating point variables, f
designation, the decimal point must be included and the data
inserted anywhere within the specified field. A field type of A

is used for title information and can be any alpha or numeric character,

CARD FIELD TYPE DESCRIPTION
1 1 15 NT - number of time periods,
2 15 NR ~ number of reservoirs.

The remaining cards are read in sets. One set for each
reservoir. All of the pertinent data for each reservoir is included
within the set. Each reservoir in the system must be given a
designation number; these numbers must be sequencial starting with

one. A title card also is included to identify the reservoir.

SET
CARD FIELD TYPE DESCRIPTION
1 1 ABC reservoir title card, can be any
alpha-numeric characters, a max-
imum of 80 columns is available.
2 1 F10 reservoir extracted demand for
period one,
2 F10 demand for period two,
NT F10 demand for period NT (If more than
8 periods are to be studied, continue
data on successive cards., A maximum
of 8 periods per card until NT
reached.).
3 1 15 NP-number of other reservoirs that

this rescrvoir can pump to (If
this number is zere, place a onc
in column 5 of the card.),
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SET
CARD FIELD TYPE DESCRIPTION
2 15 the number of one of the reservoirs
which is pumped to,
3 15 the number of one of the reservoirs
which is pumped to,
{Repeat reservolr numbers until all
reservoirs that are pumped to from
this reservoir have been included.
The maximum number on each card
is 9 reservoirs on the first card.
This is followed successively by 10
reservoirs per card. The limit of
9 on the first card is because NP
takes up one field on this card.).
(The following set cards 4 and 5 are repeated for each
reservoir pumped to from this reservoir or NP times.
However, if no pumping is allowed from the reservoir
omit set cards 4 and 5.)
&4 1 F10 pumping canal maximum capacity
for first time period,
NT F10 pumping canal maximum capacity
for time period NT.
5 1 F10 profit per unit pumped through

canal in first time period (costs
are considered as negative profit),

NT F10 profit per unit pumped through
canal in period NT.



SET

FIELD

NP

TYFE

I5

I5

15

F10

FX0

F10

Fl10

F10

F10
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DESCRIPTION

NP-number of other reservoirs for
which the normal channel release
flows into this reservoir (If this
number is zero, place a one in
column 5.),

the number of one of the reservoirs
which relcases into this reservoir,

the number of one of the reservoirs
which releases into this reservoir
(Maximum number per card is 9 on
first and 10 each on successive
cards. Reasons are same as that
for set card 3.).

maximum inflow into reservoir in
period one (This is the o, point
from distribution inflow and was
designated by (R*l)c"1 in previous

discussions.),

maximum inflow into reservoir in
period two, (R, )%,
2

maximum inflow into reservoir in
last time period

minimum inflow into reservoir in

period one, (R, )'~%,
1

minimum reservoir inflow in period
NT, (Ry.. ) "0,

maximum reservoir capacity minus
surcharge (c;-vt) for time period
one,



SET

CARD

10

11

12

13

14

FIELD

NT

NT

IPE

Fl0

F10

Fio

F10

Fio

Fl0

F10

F10

F10
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DESCRIPTION

maximum reservoig capacity minus
surcharge (ci?-v\,) for time period
NT. -

minimum reservoir pool level E:
for time period one,

A . K
minimum reservoir pool level s

NT
maximum normal channel release

x~% from reservoir in period one,
1

maximum normal channel release
x—¥ from reservoir in period NT.
mT

minimum normal channel release

gi from reservoir in period 1,

m%nimum normal channel release

EN from reservoir in period NT.
NT

profit per unit for releasing from
reservoir in period 1 (cost
considered as negative profit),

profit per unit for releasing from
reservoir in period NT.

evaporation factor, e, for time
period (This is the fraction of
previous period ending rescrvoir
inventory quantity which is not lost
duce to cvaporation or leakage.),



40

SET
CARD FIELD TYPE DESCRIPTION
NT F10 evaporation factor, ef , for time
period NT. NT
15 i FL0 starting rescrvoir water quantity.

A list, of the imput cards for the linked multiple reservoir
example, Figure 3 discussed in Chapter II and using the data in

Table 3, is given below.



Program Qutput

The program output is self explanatory. Therefore, a computer

run for data listed above is included without further discussion.

41



EXAMPLE DATA LIST

COLUMNS
1 5 3 1 2
0 5 0
2 3
RESERVOIR ONE
6. 8.
1 0
1 0
11. 20.
6. 15.
10.90 10.0
3. 3,
Te 8.
1. 3.
1.0 1.0
l. «95
8.
RESERVOIR TWOD
Se Te
1 1
10. 10.
-075 -+ 80
2 1 3
10. 15,
9. 14.0
20.0 19.0
4. 2.
15. 12.
2. 3.
-2 -2.1
l. 97
20.
RESERVOIR THREE
10.0 7.0
1 1
5 S5
«65 .70
1 0
12.0 20.0
8.0 17.0
15.0 16.0
3.0 4.0
20,0 20.0
1.0 1.0
0.
1.0 «98

6.0



NUMBER OF TIME PERIODS= 2
NUMBER OF RESERVODIRS

TIME PERIOD

RESERVOIR 1
DEMANDS

PUMP TO 0,CAP.
PUMPING PROFIT
RELEASE FROM
INFLOWS

L INFLOWS
CAP,—FREEBD.
SMIN

FLOW LIMIT U
FLOW LIMEIY L
RELEASE PROFITY
EVAPORATION

6.000
0.000
0.000
0
11.000
6.000
10.0G60
3.000
7.000
1.000
1.0C0
1.000

= 3

RESERVOIR
8.000
0.000
0.000

20.000
15.000
10.000
3.000
8.000
3.000
1.000
0.950

STARTING RESERVOIR QUANTITY

RESERVOIR 2
DEMANDS

PUMP TO 1.CAP,
PUMPING PROFIT
RELEASE FROM
INFLOWS

L INFLOWS
CAP.—~FREERD.
SMIN

FLOW LIMIT U
FLOW LIMIT L
RELEASE PROFIT
EVAPORATION

5,000
10.000
-0.750

1
10.000

9.000
20.000

4,000
15.000

2.000
-20000

1.000

RESERVOIR
7.000
10.000
-0.800
3
15.000
14,000
19.000
2.000
12.000
3.000
-20100
0.970

STARTING RESERVOIR QUANTITY

RESERVOIR 3
DEMANDS

PUMP TO 1.,CAP.
PUMPING PROFIT
RELEASE FROM
INFLOWS

L INFLOWS
CAP,-FREEBD.
SMIN

FLOW LIMIT U
FLOW LIMIT L
RELEASE PROFIT
EVAPORATION

10.000
5.000
0.650

0

12.000
8.000

15.000
3.000

20.000
1.000
¢.000
1.000

RESERVOIR
7.000
5.000
0.700

20.000
17.000
16,000
4,000
20.000
1.000
C.000
0.980

STARTING RESERVOIR QUANTITY
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ONE

8.000

TwWO

20.000

THREE

6.000



L.P., PROBLEM SIZE NUMBER OF VARIABLES 10 NUMBER OF CONSTANTS i2
TAB 1 =1,00 0.060 0.00 1,00 1.00 0,00 0.00 0.00 0.00 0.00 =-3.00
TAB 2 1.60 0.00 0.00 -1.00 -1.00 0.0C 0.06G 0.00 0.00 0.00 5.00
TAB 3 1.00 -1.00 1.00 -1.00 0.00 0.00 0.0 0.00 0.C0 0.0C =-5,.00
TAB L —1.00 1.00 =1.00 1,00 0,00 0.00 0.00 0,00 0.00 0.CC 20.00
TAB 5 (.00 0.00 -1.00 0.03 ~1.00 C.00 0.00 0.C0 0.00 0.00 T.00
TAB & 0.00 0.00 1.00 0.0 1.00 ©.00 0.00 0.00 0.00 0.00 1.00
TAZ 7 =0.95 0.00 0.C00 .55 0.95 =1,00 0.00 0.00 1.00 1.00 -3.90
TAB 8 0.95 0.00 0.00 -0,95 -0,9% 1.00 0,00 0.00 -1.00 -1.00 5.50
TAR 9 0,97 ~0.97 Q.97 =9.97 0.00 1.00 -1.00 1.00 -1.00 90.00 —3.55
TAB 10 ~G.97 Q.97 —0497 0.97 0,00 -1.,00 1.00 =1.00 1.00 G.CO0 19.55
TAB 11 0.00 0.00 —-0.98 <.00 —0.98 0.00 0.00 -1.00 0.00 -1.C0 6.92
TAB 12 0.00 Q.00 0.98 0.00 0.98 .0 0.00 1.00 0.00 1.0C0 2.08
VAR LOWER BOUND UPPFR B8CUND
1 1.000 7.000
2 2.000 15.0G0
3 1.C00 20.000
4 0.000 10.G0C
S 0.000 5.000
6 3.000 8.000
T 3.000 12.6G00
8 1,630 2C.C00
9 0.020 10.000
10 c.0cn 5.C00
INFEASIBLE INITIAL RHS FOR CONSTRAINT 1 -2.0CC0
INFEASTIBLE INITIAL RHS FUR CONSTRAINT 3 ~5.00C0
INFEASIBLE INITIAL /HS FOR CONSTRAINT G —-4.5500
CPTIMAL SOLUTICON
Xt 1= 7.000 0.1060000E 01}
Xt 21= 9. 000 -{.,2000C00E 01
Xt 3)= 1.000 CL.UCCOC00E CO
XU 4)= 4.000 -{.750CCN0E CO
X( 6= 8.009 C.100CNCO0E Q1
Xt 7= 3.000 -C.210CC0O0E 01
X{ Bl)= 1.G00 Q.CO003CO00E OO
Xt 4)= 4,850 -C,.8000000€ GO
Xt 10)= 0.100 0.7CO0CO0E QO
Xt 13)= 2.000 0.CCO2000E 00
X{ 17})= 15,000 G.00G0C00E Q0
X( 191= 8.000 C.COGCO0COE 00
X 231= 2.000 0.CO0CO000E 00
x{ 27)= 0.150 0.00G0000E 0O
Xt 29)= 15.850 0.GC00L000E GO
X{ 31)= 9.000 0.0002000E 0O

ODBJECTIVE FUNCTION VALUE I35

-0.1611002E 02



TIME PERIOD 1

RELEASE FROM RESFRVCIR 1 INTD CHANNEL BED IS
RELEASE FROM RESFRVOIR 2 INTO CHANNEL BED IS
PUMPING FROM RESERVOILIR 2 TO RESERVOIR 1 IS
RFLEASE FRNM RESERVOLIR 3 INTO CHANNEL BED IS
PUMPING FROM RESERVOLIR 3 TO RESERVOIR 1 15
TIME PERINDD 2
RFLEASE FROM Rc-SERVOIK 1 INTO CHANNEL BED IS
RELEASE FROM RESERVOIR 2 INTO CHANNEL BED IS
PUMPING FROM RESERVOIR 2 T0 RESERVOIR 1 IS
RELEASE FR(OM RESERVOTR 3 INYO CHANNEL BED 1S
PUMPING FROM RESERVOIR 3 TO RESERVOIR 1 IS

45

O b= O~
« a9 9 » @
OOO0O0O

Y b=
s & & & @
=g O oo

One type of output which isn't displayed above is that for an
infeasible problem. In this case, all of the above information is
given along with an analysis of the infeasibilities which is

similar to:

TIME 1 RESERVAIR 1 CAPACITY CONSTRAINT VICLATED BY



Program Listing

The reservoir model program is listed below.

system for running the program is depicted as:

-

/TP TTA

e e

JINER

fiFP§i@:éﬁdé.

PROB. GEN. ROUT/

WHATYV CONTROL
CARD  |— -
—

46

A complete input
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REAL MSIO
INTEGER T
DATA ARY /-1.E9/
COMMON NXB(25) .,LB(25)
DIMENSION XUB(99), XLB{99), PA(25), P(25)s C(99} ,XP{9
- 9}
DIMENSION NPVLE25) ,10(25,25)14D(25:2%)
1 RIF(20425),RIFL125425),y NPVSX(25}
DIMENSION RCAP{25425)RFULIZ254+25)RFLL{Z5,25)
1 +SMIN(25+29) 2E{25:425)S0(25)+NRF(25])+NSRF(25,425)}
2+MSIDE254 5,25),TAB(25,99) 4 NPTRI(25}, NVPTR(25,25)
3, ITIBI20)Y, PRRES{25425),PROPUM(25, 5,25)
FORMAT(8F10.3)
FORMATY{YLY)
WRITE(b,4)
READ(5,6+END=500) NT,NR
6 FORMAT{L10OIS5)
8 FORMAT{20A4)
WRITE(OLs 10INT,NR
10 FORMATIL 5X,*NUMBER QOF TIME PERIODS= ",i5/5%,
1 *NUMBER OF RESERVOIRS = ' [5%/)
WRITEL6,111 (JseJd=14NT)
il FORMAT{'-— TIME PERIOCD*10¢I7,3X)
1, 10(/13X, 10110}}
NPVV=0
DD 40 I=1,4NR
READ(5,8) IT7i8
WRITE(6,19) I, ITIB
19 FORMATI(*~ RESERVOIR® 13,10X, 2GA4)
READIS+3) (D{LeJd)vJd=14NT)
WRITE(6,21) { DIT,d)esd=14NT)
21 FORMAT{8X' DEMANDS' 10F10.3,10(/16X 10F10.3})
00 920 T=1,NT
PROPUM{1 41,7} =0.0
920 MSIO(I.1,.T) = 0.0
READLS5+6) NPo{ 10[(14sJbed=1yNP}
IF{ 10{1,1} .EQ. O) GO YO 922
C READ PUMPING CAP. AND COSTS
DO 921 J=1,NP
READES+3) { MSIO(I,4deT) oT=1lgNTI
G21L READCS3VIPROPUMII ;e T) 4 T=1yNT}
922 DO 23 J=1,NP
WRITEL(6,22) 100140, { MSIO(TsdaT)T=1,NT)
22 FORMAT(' PUMP TD'"I3',CAP.' 10F10D.3,
1 10(/716X, 10F10.3))
23 WRITE(6524) (| PROPUMIL s J4T)T=1.NT}
24 FORMAT(* PUMPING PRQOFIT' 10F10.3,
1 10(/16X, 10F10.31)}
NPV F=NP
IFCIOII,+1).EQ.0) NPVII)=0

oW
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23

29

30

31

32

38

38
40

OO ;Y
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READ{(546) NPy { NSRF(I,J),J=1LNP)

NRF{I) = NP

IF( NSRF{I,1} JEQ.0) NRF{I) = O

WRITE(6,25) INSRF{I,J)J=1 NP}

FORMAT{4 X, *RELEASE FROM' 10I10,10{16X%X/101101})
READIS,3) (RIFLI,J)4J=1,4NT)

WMRITE(6,28B) (RIF{I,J)eJd=1,NT)

FORMAT{9X, " INFLOWS" ,10F10.3,10(/16X,F10.3)1}
READ{543) (RIFLI{I4J)3J=1eNT)

WRITELG,29) (RIFL{I 4J¥¢Jd=1,NT)

FORMATL{7 X, "L INFLOWS' yIOF10.3,10(/16X4F10.3))
READIS5+3) (RCAP{I,J}¢Jd=1,NT)

WRITE(6¢30) (RCAP{IsJ)sJd=1,NT)
FORMAT(4X,'CAP.~FREEBD.?*10F10.3,10(/16X,F10.3})
READ {5:3) (SMIN{I4J)sd=1,NT)

WRITEL{G&,)3L) ISMINIT, J) 4d=14NT)

FORMAT{12X*®SMIN® 10FLlO0.3,10(/16X,10F10.3})
READ(5¢3) {RFUL(IsJ) 9yd=14NT)

WRITE{6,32) (RFUL(IT,J)eJ=1,NT)

FORMAT (4 Xy "FLOW LIMIT u° 10F10.3410(/16X,10F10.31}) )
READ(5,3) (RFLLITyJ)sd=1,NT)

WRITE(6434) (RFLLIL+J)yJ=1,NT])

FORMAT (4 X,*FLOW LIMIT L?® LOFL0.3,10(/16%, 1CF10.3))
PROFIT FROM RELEASE BY TIME PERDID

READ{(S543) ( PRRESI{I +J) s J=1,NT})
WRITELOy3S){PRRESET ¢J) s d=1,NT}

FORMATI{2X*RELEASE PROFIT" 10F10.3,10(/16X%X, 1OF10.3))

READ {5, 3} {E{Tl,J)YeJd=14NT)

WRITE( b6y 36) (E({letJ=11NT}_
FURMATIS5X ¢ EVAPORATION" S10F10.3,10{(/16X,10F10.3))
READ{(5,43) SCG{I1)

WRITE(6,38}F SO(1)
FOURMATI(5X, * STARTING RESERVOIR QUANTITY *F10.3)
CONT INUE

COMPUTE THE L.P. SIZE
NY=NR ®NT

NP=0

NPVSX(1})=0

D0 45 leyNR

NP=NPVI] }+NP

NPTR{L}) = O
NPVSX{I+1)=NP

SETUP INTO PUMPING VAR. ARRAY

NPTR{K) — NO. INFLUWS TO RES, w
NVPTRIK 31 -NO. OF VAR. PUMPEU INYDY KES. K
DO 4B K=1,NR

J= NPVIK)

IF{J.LE.O) GO TU 48
N= NPVSX{K)+ NR

438
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60

65

70
3

47
48

59

—

DU 47 t=1,4
RES. PUMPED INTO

L= TO(K, I
Kl= NPTR({L} + 1
N= N+l

NVPTR{L,KLl}) = N

NPTRIL) = Ki

CONTINUE

NVENV+NPENT

NC= 2%¥NR=%:NT

WRITE{H,457) NV,NC

FORMAT({*1L.P, PROBLEM SIZE NUMBER (OF VARIABLES °*
215,5X ' NUMBER OF CONSTANYS' [5)
NVT=2%Nl+ NV

DO 59 I=1,NVT

C{I) = 0.0

XLBtI) = 0.0

XP{Il) = 0.0

XUBil) = 1.0E30

NRHS=NV+1

NOBJ=NC+ 1

DO 60 I=1,NOBJ

DO 60 J=1+NRHS

TAB{14+J})=0.0

00 90 N=14NT

ICN= 2¥NR*{N-1)

DO 90 K=1,NR

ICN=ICN+ 1

PE=SO{K)

DO 65 T=1,N

PE=PEXE(K, T}

TABL{ ICNy NRHS }=—RIF{KyN)-PE+RCAPIK N)
TAB{ TCN+ Ly NRHS)Y=RIFLIKyN)#PE-SMIN{K,N)
DD 85 T=1|N

INVR={NP+NR)*(T-1)

PE=1.0

IFITLEQeN} GO TO T3

Ki=T+1

DO 70 L=K1l,N

PE=PE®E(K,L)

TABIICN ¢ NRHS)I=TAB{ ICNyNRHS)}+PE®D (K, T)
TAB(ICN+ L, NRHS)=TABIICN#+] NRHS)~PE*(K,T)
RELEASE VARIABLE RES. K

ISUB= INVR+K

TAB{ICN,ISUB) = -PE

TABIUICN+1,IS5U8 Y= PE
IFINPVIK).EQ.O) GO YO 77
IXV=INVR+NR+NPYSX (K}

K1=NPV{K)

DO 75 J=1,Kl

49
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17

89

82
B85

30

L10
115

i35

137

IXV= 1
PUMP

IF(K1

Xv+1

50

ING FROUM RES. K VAR,
TAB{ICN#1,IXV)=PE
TAB{ ICNy [XV)=-PE
Kl= NRF{K)

«£EQ. O

DO 79 L=1.K1
J= NSRFIK,L)

GC 10O 80

VAR. INTO RES. K THAY ARE RELEASES FROM OTHER RES.
TAB{ICN,INVR+J) = PE )
TAB{ICN+1,INVR+J) = —-PE

VAR. FOR PUMPING INTO RES., K FROM OTHER RES.

Kl= NPTR{K)

IFl K1.EQ.0Q}
D0 82 L=1,Kl1
J= NVPTRIiK,L)

TAB{ICN, INVR+J} = PE
TABUICN+1,INVR+J) = -PE

CONTI

NUE

GU TO 85

RELEASE VAR. CAP. BY TIME PEROID
XUB({ INVR+K)

XLBL I

NVR +K )

ClINVR+K) =
ICN=ICN#*1

Kl=NpP
IF(K1

VIK)
.EQ.O)

= RFULIKyN)
RFLL(K¢N)
PRRES {XyN)

G0 70 90

IXV=INVR+NR+NPYSX{K)
L=1,K1

DO 89
Ixv=1

Xv+1l

PUMPING VAR,
MSTIO(K, L 4N}
CLIXV) = PROPUM(K L NI

XuB(1l

CONTE

CONTI

X¥} =

NUE
NUE

CAP, BY TIME PEROID

DO 110 I=1sNC
WRITE(G6s115)
FORMAT(* TA

IXv=

NV

B

NV= 2%NC+ NV
DO 135 I=1,NC

PA{L}
PLT)

TAB(J

= 0.0

I+ TABUI+J) sJ=1sNRHS)
VI3,1LF 6.2/ B8X,11F6,210)

= TAB(I,+NRHS)
DO 137 I=NRHS, NV
DO 137 J=1.NC

) =

0

.O

DO 140 I=14+NC,2

Ixv=
TAB( 1]

IXv+ |
1 IXV)

1.0

STARTING BASIS VARIABLE IN LP 5S5UBR.

NXBI{ T

IXV



CBII} = Cllxv)

IXV= [XV+1
THIS IS THE ARTIFICIAL VARIABLE
TABCI,IXV) = ~1.0
CIIXV)=ART
IXv= IXv+1l

TAB{TI+1l,IXV) = 1.0
STARTING BASIS VARIABLE IN LP Su3.
NXB(I+1)= IXv
CBII+1)=Cl{IXV)
IXV=1XVv+1l
THIS IS THE ARTIFICIAL VARIABLE
TAB(I#+l,IXV) = -1.0
140 CUIXV)=ART
WRITE(6+300) XZEROy{ XP(I)4I=1,NV) )
300 FORMAT(*O SOLUTION X0 XIT) ' 1F10.4,
1 100 /722X S5F10.4 ))
ix= 0
WRITE(6,4)
DO 330 T=1,NTY
WRITEL6,320) 7T
320 FORMAT({*-" [4X'TIME PERIQD '13)}
DO 330 K=1,NR
IX= [X+1
WRITE(64325) K, XPLIX)
325 FORMAT(20X'RELEASE FROM RESERVOIR' 14,
1L * INTO CHANNEL BED [S' F9.1}
NP= NPV{K)
IF{ NP.EG.0) GO TO 330
DO 329 J=1,NP
IX= IX+1l
WRITE(G6,4327) Ky TO(KJ) 4 XP(IX)
327 FORMAT{20X'PUMPING FROM RESERVOIR*I4,
1 ' 7O RESERVQIR'I4,* 1S' F9.1l)
329 CONTINUE
330 CONTINUE
WRITE{(6,4)
DO 350 T=1,NT
DO 350 K=1,4NR
IX=[x+2
IF{ XP{IX) .EQ. 0.0) GO TO 340
WRITE{64335) T,K,XxP{IX}
335 FORMAT{LISX*TIME' [4,' RESERVOIR'[4,?' CAPACITY *
I 'CONSTRAINT VIOLATED BY'F10.1})
340 IX= IX+2
IF{ XP(IX) .EQ. 0°.0) GO TO 3%0
WRITE(64345) T,k, XP(IX)
345 FORMAT(LISX*TIME® [4,' RESERVUIR*1«%,* MIN POOL °*
1 *CONSTRAINT VIOLATED BY?*Fi0.1)
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350 CONTINUE

GO TO 5

500 STOP

I1

12

15

END

SUBROUTINE

1 LPSIMINV yNC oK yLoAgPyPACoyXUByXLBsXZERTD, XP}

PROGRAM TO DU REVISED SIMPLEX AND PARAMETRIC

RHS RANGING, NU ATTEMPT FGR PROGRAMMING

EFFICIENCY HAS BEEN MADE, THE PROBLEM FORM S
8-20-71 GUY CURRY

MAX CX

S.T. (A,I)X = P GE O, X GE O

ALSO P + Y¥PA FOR RHS PARAMETRIC ANALYSIS

NV - NUMBER OF VARIABLES. INCLUDES ALL SLACKS, ETC.
NC - NUMBER OF CONSTRAINTS

NPA ~ ZERO FOR REV. SIMPLEX

NPA -~ ONE FOR PARA. RHS

NPA — TwWO FOR STOCHASTIC SOL.

NARTV — NUMBER Of ARTIFICIAL VARIABLES

THEY ARE NOT USED IN THE PARA OR STOCH ANALYSIS

PROGRAM EXTENDED TO DO BOUNDED VARIABLES 12-3-71
LOWER BOUNDS ARE SUBSTITUTED OUT IN THIS MODEL

IXP{I)=0 MEANS CRIGINAL VARIABLES [N PROBLEM
IXP{I)=1 MEANS COMPLEMENT OF VARIABLE IN PROUBLEM

DATA T0L/0.0001/

COMMON NXB.CB

ODOUBLE PRECISION BI,ALPHA ,2C8, IMC

DIMENSION A{25,+99)4B1{254+25),XP199),

L PCTHI254+25), P{25),y PA{25), Ci399), CB{25), XBL25),
2 NXB{25), ZICB(25), ALPHAILZ2S), IMC (991, STH{Z2S)
3,0BUVI2Z25) ,XLB199) ,XUBI99),1XP(993)

WRITE(H,114 NV NC

FORMAT{®* ]* 15X 'REVISED SIMPLEX NUMBER OF VARIABLE
*- S5 IS?

1 I3,5X"NUMBER OF CCNSTRAINTS 15 13 )
WRITEI(G6+12)

FORMAT(*—(A,1),P2,PAa * )

DO 15 I=14NV

IXPIT} = O

DG 20 1I=14NC

WRITE(6, 2104 AlL,JY U=l NVI,PILY,PALT)
CONT INUE

FORMAT( 8FLID.3 )



™y

25
30

935

35

936
937
938

941

G45

953

39

40

45

53

DO 30 I=1,NC
U0 25 J=1,NC

BI{IsJdt = 0.0

BI(l,1) = 1,0

WRITEL(6,935)

FORMAT{® VAR LOWER BOQUND UPPER BUOUND )

WRITE{(6,35)( C({I),1=1,NV]

FORMAT{'0O C ' 10E10.3,10(/5X10E10.3))

D0 937 I=1,NV

IF( XUBT{I)I.GT. 1.0829 JAND. XLHLID).LELD.O) GU YO 937

WRITE(6,938) I, XLB{I),XUB{I)

IF( XLB(I) «LFa. 0.0) GO TO 937

XUB€I1 = XUB(T) —XLBIID

DO 936 J=1,NC

POUE = PLJ) = AlJ,1)eXLBII)

CONT INUE

FORMAT{IS5, F13.3, F16.3 )

DO 953 I=1,NC

[F{ P(I} .GE. 0.0) GO TO 953

WRITE(6,941) I, P(I}

FORMAT(® INFEASIBLE INITIAL RHS FOR CUNSTRAINT?
15’F1004'

CONVERT TQO POSITIVE RHS CONSTRAINTS

P{I} = -P(IN

DO 945 J=1,NV

Alledl = —A[1,44)
J= NXB{(I) +1
NXB{IL) = )

CB{I) = C{J)
XBL{I}y = P(])

WRITE(6,41053( XB{I}sI=1,NC)

Z1J)Y - C{J} = CB#BI*PJ - CJ
IMIN = 0.0
DO 40 I=1,NC
Ic8lI) = 0.0
DO 40 J=1,4NC
ZCBIIY = ZCBUI) + CB(J) *BI{(J, 1)
WRITE{6,45) ( ZCB{I)4I=1,NC )
FORMAT{ 'O CB=*BI * 10F10.5 )
DO 60 I=1,NV
IMCITI) = ~C{I1)
DO 50 J=1,NC
IMCOLY = ZMCLI) + ZCBULJY * A(J,I)
IFU ZMC{I} .GT. ZMIN } GO TO 60
IMIN = ZMCL ]}
[MIN = |
CONTINUE
WRITE(6465) ( IMCUI) a1=14NV)
FORMAT{(?*0ZJ-CJ * 9¢12.5 1)

IF CJ-C4 GE O FUR ALL J, OPT. SOL. GO TO 200
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If (ZMIN .GE. -0.00100) GO TO 200
DO 70 I=1,NC
ALPHALIL)= 0.0
DO 70 J=1,NC
TO ALPHA{I) = ALPHA(I) + BIL{T,Jd} * A(J,IMIN)
WRITEL6,75) IMIN,( ALPHA(I)},I=1,NC)
75 FORMAT{*- ENTERING VARTABLE IS*I3,"' ALPHA (S5'( 7TELl2.5,
1/734X1))

COMPUTE LEAVING VARIABLE BY MIN (XB{I)/ ALPHA{IL),
FOR ALPHALLI} LT O 1}

ICODE=0

VALUE=XUB(IMIN)

ILEAVE= O

DO 90 I=1,4NC

IF {ALPHAtI}.LE. -TOL } GO TO 8O

IF {ALPHALI).,LE. TOL ) GO TO 90
POSITIVE ALPHA

RAFIO =XxX8{I1)/ALPHALI)

IF (RATIO .GE. VALUE ) GO TO 90

ILEAVE=1
VALUE =RATIC
ICODE =1
60 TO 90

NEGATIVE ALPHA
80 J=NXBI(1)
RATIO= (—=XxUB(J) + XxBUI}) /7 ALPHALI)}
IF {RAT]JO .GE. VALUE )} GO TO S0

ILEAVE =1
VALUE =RATIO
ICODE =-1

90 CONTINUE
IFl VALUE .iT. 1.0EZB) GO 1O 9]
IF{ILEAVE) 110,110,91
91 IF{ICODE .LE. 0O } GO 1O 125
92 J=NXBI(ILEAVEI
WRITE{6,95) J
95 FURMATI*0 LEAVING VARIABLE IS' 13 )
CBUILEAVE) = C{IMIN)
NXB{ILEAVE)= [IMIN
CALL NEWBI( NC, Bl , ALPHA, ILEAVE )
97 DO 100 [=1,NC
XxBlId = 0.0
DO 100 J=1,NC
100 X8(1) = XB{I) + BI{I.,J) = PLJ)
WRITE(6,10%3( XB{I1),I=1,NC}
105 FORMAT{* xB8 ' lOFLI0.%)
GO TO 39
110 WRITE(O6,115)
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115 FORMAT (* - UNBOUNDED SOLUTION ' )
RE TURN
125 IF{ ICODE.NE.O) GO ¥O 150
NONBASIC VARIABLE CAN NOT ENTER BECAUSE [T HAS
ENCOUNTERED ITS UPPER BOUND, REPLACE IT BY ITS
COMPLEMENT ANE CONTINUE
J=IMIN
IFL IXP{J) EQ. 0O) GO TO 127
IXPLJ)Y = O
GO 10 130
127 IXPLJ) = 1
130 DO 132 I=1,4NC

AlT,Jd) = -A{TI,Ji
132 PUL) = PUI) + A(1.J)*XUBR(J)
Ctyd) = —-CiJ}

WRITE(64135) J,xUR{J]
135 FORMAT{*— VARIABLE'15,5X'WAS SUBSTITuUED AT ITS*
LY UPPER BDUND'F10.3 3
GO TO 97
ALPHA IS NEGATIVE
150 J=NXBlILEAVE)
WRITE(6,4155) J
155 FORMATI( *0 LEAVING VARIABLE IS * I3, ' THEN !
1+"REPLACE BY ITS COMPLEMENT')
CBIILEAVE) = CUIMIN)
NXB{ILEAVE)=IMIN
CALL NEWBI (NC,BI,ALPHA,ILEAVE)
Ixp{d) =1
DO 160 I=1,NC
Allsd) =—A(T,J}
160 PCLI=P{L) +A(1,J)%XUB{J)
CtJ)y = ~CtU)
GO YO 97

OPTIMAL SOLUTION HAS BEEN OBTAINEDR
200 XZERO = 0.0
WRITE(6,205)
205 FORMAT{']l OPTIMAL SOLUTYION'/)
D0 206 I=1,NV
XPli) = XLB{I)
IFO IXP(I} .EQ.0) GO TO 206
cti)y = -CL1}
XPLI)Y =XP{11 +XUB(I)
206 CONTINUE
DO 210 1=1,NC
J= NXB{I)
IF1 IXP({J) .EQ.0) GO TO 209
XPLIY=XPL{J)-XB(T)
GO 10 210

209 XPLJ)=xP{J)eXxB(])



210 CONTINUE
DO 212 I=1,NV
IF{ XP{1).EQ.0.0) GO TO 212
XZERQO=XZERO+C(1)% XP(I)
WRITE(G6,2E1)1, XP{1)4C(I)
211 FORMAT(* X{'I3%)=' F10.3,5XE20.7)
212 CONT INUE
WRITE(6,215) XZEROD
215 FORMAT{ * GBJECTIVE FUNCTION VALUE IS ' E20.7,/7%1")
RE TURN
END
SUBROUTINE NEWBI {NC, BI, ALPHA, IL )
DOUBLE PRECISION B1,ALPHA, BETA, P,DABS
DIMENSION BI{25,25), ALPHA(25) , BETA(25}
P = 1.0/ ALPHA{IL)
DO 5 I=l,4NC
5 BETA(IL) = BICIL, )
DG 20 I=1,NC
IF(I JEQ. IL )} GO TO 10
DO 9 J=1,NC
BI{Igd) = BI(1,J) - P®ALPHALIL}*BETA(J)
9 [F{DABS(BI(I,J))LE.1.0D=-09)BI(1,J)=0.0000
GO TO 20
10 DG 15 J=1,NC
15 BI{I4J) = BI{Il,J)%P
20 CONTINUE
DO 30 I=1,NC
30 WRITE(6,35) ( BI{I4J)4d=1,NC)
35 FORMAT(* Bl " 10F10.5 )
RE TURN
END

o Oy Oy
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