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ABSTRACT

A Hydrodynanic Study of Flow
in Irrigation Furrows
by
Otto Charles Wilke

Equations of motion describing flow in {rrigation furrows are
derived and presented in characteristic form. Predicted flow profiles
obtained from approximate numerical solutions of the equations of
motion did not compare well with measured Flow profi?es; An estimate
of furrow hydraulic roughness was obtained from field data. A pro-
cedure for determining infiltration rates from measurements of surface
flow volume and irrigation stream advance is proposed for the case
for which the cumulative infiltration is described by the Kostiakov-
Lewis equation. WNumerical solutions of the steady-state form of the
flow equations were used.to prepare design curves providing estimates
of cutback flow rates for preventing tailwater losses. Sample
problems illustrate how these reduced rates of application can be
utilized to design furrow irrigation distribution systems to obtain
improved irrigation efficiencies and subsurface water distribution
patterns.

Descriptors: Furrow irrigation, rates of application, infiltration,
"—___?gﬁﬁﬁﬁéss (hydrau]ic?, irrigation efficiency, distribution
patterns, irrigation design, distribution systems

Identifiers: Irrigation stream advance, cutback furrow streams,
tatllwater losses
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CHAPTER 1

INTRODUCTION

Competition among industrial, municipal, and agricultural users
of water for available supplies is increasing. In some areas, the
RHigh Plains of Texas for example, ground water supplies are being
depleted. Pollution also decreases the supply of water suyitable
for irrigation purposes.

The annual income from irrigated crops in Texas alone 1s in
excess of 600 million dollars (36}. An increase in production with
a given supply of water or decrease in the amount of water
necessary to maintain a given production, by virtue of improvements
in the design of irrigation systems, would be of considerable value.

Ideally the amount of water infiltrating into the soil should
be equal at all points along the Jength of the irrigation run and
thus no water would be wasted. Since the water advances from the
supply at the head of the run to the lower end of the run, the
upper end generally receives the most water. The amount of water
infiltrating into the soil at amy point along an irrigation run is
affected most by the length of time the soil surface has been
wetted. Thus, a system should be designed so that water is standing
over each location along the run an approximately equal amount of

time,

The citations on the following pages follow the style of the
Transactions of the American Society of Agricultural Engineers.




It is desirable to be able to describe mathematically the
advance of water along the run and the recession of water after the
flow to the furrow or border is stopped. Continuity equations
which adequately describe only the rate of advance for the case of
constant inflow and variable infiltration are available, but have
restrictive assumptions. Finite difference solutions of the
equations of motion, i.e., the continuity equation and the momentum
equation, have been obtained for the case of one-dimensional flow
in an infinitely wide channel with constant or variable infiltra-
tion. Apparently no solution has been available for the more
general case with variable inflow into a shallow channel of finite
cross-section and having an infiltration rate that is a known
function of time. Furthermore, a solution for this general case
s necessary for determining both the advance and recession of a
furrow irrigation streém and consequently necessary for determining
the distribution of infiltration amounts along the furrow length,

Hansen (13) listed stream size, depth of flow, infiltration
rate, length of run, slope of the surface, surface roughness,
channel shape, erosion hazard, and depth of water to be applied as
some of the variables influencing the design of an irrigation
system.

In 1938, Lewis and Milne (20) applied the principle of
continuity of mass to determine the rate of advance of a border

irrigation stream. Their derivation involved the assumption of



constant inflow to the border and constant flow depth on the
border. Utilizing the Faltung theorem of Laplace transforms,
Philip and Farrell (26}, in 1964, presented a general solution of
Lewis and Miine's equation. One particular form of their
solution has been compared with field data by the writer and has
been found to be adequate (40). Fok and Bishop (11) have also
published an equation describing the rate of advance of an
irrigation stream with constant inflow and variable infiltration.
Neither method is useful for predicting the recession of an
frrigation stream.

Spatially varied unsteady surface flow can be described by
two simultaneous differential equations normally termed the
equations of motion. These equations can be found in NUMErous
texts, e.g., Chow (6) and Rouse (27). Lamb (19) notes that the
rate of changé of moméntum of a fluid element in motion past a
fixed region is equal to the sum of the change in momentum within
the fixed region and the flux of momentum outwards across the
boundaries.

Numerical solution of the equations of motion was suggested
by Massau (23) and by Thomas (37) but convergence and stability
must be checked for each solution. Isaacson et ai. (15), and
Stoker (35) solved the equations for gradually varied unsteady
flow without lateral inflow using an explicit finite difference

scheme. They also used the theory of characteristics to prevent



their solution from becoming unstable, Liggett (21), Chen (3), and
Kruger and Bassett (18) have used various methods in solving the
equations of motion for the specific problem of overland flow.
Liggett applied the theory of characteristics to a modified form of
the equations, Liggett's modification of the momentum equation
seems to be app]itable only when the lateral inflow is very small.

Schreiber (30) used an implicit central difference technique
to predict the recession of flow over an infinitely wide porous
bed having constant infiltration. He showed that this technique
is unconditionally stable. However, in a recent paper, Liggett
and Woolhiser (22) argued that under certain conditions some
finite difference techniques may yield unstabile results even
though they are theoretically stable. Wei (39) used an explicit
central difference scheme to compute overland flow hydrographs
resulting from a measured storm. Wei's analysis is based on the
assumption of an infinitely wide flow plane. Chen and Hansen (5)
suggest that the key to the solution of the equation may lie in
the characteristics of the equations and the dimensionless
parameters involved,

In any case some estimate of the friction slope must be made.
The general practice is to assume that the roughness acts the same
for unsteady gradually varied flow as it does for uniform flow and
Manning's n is calculated from measurements of uniform flow.

The uniformity of distribution of infiltrated water has been



termed the water distribution efficiency and an equation for this
efficiency is given by Israelsen and Hansen (14). The effect of

the variability of infiltration rate with time on water distribution
efficiency has been studied by Bishop (2), Smerdon (32), and

Smerdon and Glass (33).

The purpose of this study was to formulate, investigate the
nature of, and seek solutions of the equations of motion describing
unsteady gradually varied flow along irrigation furrows for the
case in which the lateral outflow due to infiltration is a function
of time. Any solution or approximate solution will be analyzed to
determine the effect of time variations in the inflow into a
furrow on the uniformity of distribution of infiltrated water along

the irrigated runs.



CHAPTER 11
EQUATIONS OF MOTION

The flow generally occurring in irrigation furrows is a spa-
tially varied unsteady flow with tateral outflow. The equations of
motion describing such flow are based on the principles of con-
servation of mass and momentum. The derivations will be presented
in detail. The assumptions involved in the derivations are:

1. Forces normal to the direction of flow are negligible,

This requires that the channel be prismatic with
small, constant bottom slope. The vertical depth of
flow is approximately equal to the flow depth normatl
to the channel bottom.

2. The momentum or Boussinesq coefficient is unity.

3. The head loss at a section is the same as for a

uniform flow having the same velocity and hydraulic

radius of the section.

A representative fluid element is depicted in Fig. 2.1.

The Continuity Equation

At time, t, the velocity and area of flow at section 1 are V
and A. The mass per unit time entering the fluid element at
section 1 at time t is

pAV. 2.1
The fluid density p 1is assumed to be constant. At time, t + dt,
the mass per unit time entering the fluid element is given by the
expression,

p(A + At dt)(v + Vt dt). 2.2
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FIG. 2. A REPRESENTATIVE ELEMENT OF SPATIALLY
VARIED UNSTEADY OPEN CHANNEL FLOW.



The symbolism f, represents 3f/3t. The average rate at which mass
is entering the fluid element at section 1 is assumed to be the
numerical average of expressions 2.1 and 2.2. Neglecting products

of differentials, the average mass entering the system in time d¢t
is

 o(AV + AV + A Vt dt + Vv At dt)dt. 2.3

The mass leaving the fluid element at section 2 per unit of
time t by means of surface flow is

p(V + VX dx)(A + Ax dx). 2.4

Because the furrow slope is assumed small, the distance, x, is
measured in the direction of flow. The distance increment, dx, is
the distance between section 1 and section 2.

The rate at which mass is leaving the system by means of
surface flow at time t + dt is

p[V + Vx dx + (v 4 Vx dx)t dt]
[A + Ax dx + (A + Ax dx)t dt]. 2.5

The average rate at which mass is leaving the system is assumed to
be the numerical average of expressions 2.4 and 2.5, Thus the mass
leaving the system by means of surface flow in time dt, neglecting
higher order products of differentials, is

p[AV + A Vx dx + VA % dx + (A Vt dt + V At dt)]dt. 2.6

Let I be the volume of water infiltrating into the soil per
unit of channel length per unit of time (dimensionally, I * L2/71).

I denotes the infiltration rate at section 1 at time t. The average



rate at which mass is leaving the fluid element by means of infil-

tration at time t is given by the expression,

Lo(l + 1+ Ix dx )dx. 2.7
At time t + dt, the average loss of mass by infiltration per unit
time is

b p r+1, dt + 1 + 1 dx+(I+Ix dx}, dt] dx. 2.8

Neglecting higher order differentials, the approximate mass leaving
the system by infiltration in time dt is
el dx dt, ' 2.9
The mass present in the fluid element at time t is
approximately

Lp(A+ A+ Ax dx)dx. 2.10

The mass present in the fluid element at time t + dt is

%o [;t\+:l\t dt+A+Ax dx+(A+Ax dx)tdt] dx. 2.11

Neglecting higher order differentials, the increase in mass present
in the fluid element during time increment dt is

pA, dx dt. 2.12

t
The continuity equation, obtained by equating the net mass
entering the system to the increase in storage, is

A Vx +V Ax + At +1=20 2.13
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The Momentum Equation

Newton's second law states that the unbalanced force is equal
to the time rate of change of momentum,

F = d(mv)/dt, 2.14
in which F is the net force acting on the fluid element and m is
the mass of the fluid contained in the element. Lamb (19) noted
that the rate of change of momentum of a fluid element in motion
past a fixed region is equal to the sum of the change in momentum
within the fixed region and the flux of momentum outwards across
the boundarfies,

The average momentum entering the fluid element defined by
Fig. 2.1 per unit of time is

PQV +'p(QV) dt = p[QV + 5 Q V, dt + 5V q, dt], 2.15

in which Q s the volume of fluid per unit of time entering the
system at section 1. The average momentum leaving the system per

unit time is
%o (0 Q+ 0 d)(V+ v, dx) +(Q+Q dx + (Q+0Q dx), dt]
[V + VX dx + (V + Vx clx)t dt] 1. 2.16

The net momentum flux outwards across the boundaries per unit time,
neglecting higher order differentials, is

el[Q Vx dx + V Qx dx]. 2.17

Since the velocity of that part of the fluid which infiltrates into
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the soil is quite small, it will be assumed to remove no momen tum
from the surface flow.
The average momentum within the fluid element at time t is

[p(A + A + Ax dx) dx][%(V + V + v, dx)}. 2.18

At time, t + dt, the approximate momentum within the fluid element

becomes

{% p[A + At dt + A + Ax dx + (A + Ax dx)t dt)dx 1}
{%[V + vt dt + V + Vx dx + (V + Vx dx)t dt) 3. 2.19

Neglecting higher order differentials, the change in momentum
within the fluid element per unit time is

(oV At dx dt + pA Vt dx dt)/dt. 2.20

The time rate of change of momentum is given by the sum of
expressions 2,17 and 2.20;

d(mV)/dt = 5[Q Vx dx + V Q, dx +V At dx + A Vt dx]. 2.21

Three forces acting on the fluid element will be considered,
These are (1) that component of the gravity force acting in the
direction of flow, (2) the net pressure force acting in the
direction of flow, and (3) the resisting viscous or shear force
which is considered to act parallel to the direction of flow.

The component of gravity force acting in the direction of flow
is

FG = pg (average volume) sin s , 2.22

in which 8 is the angle between the furrow bed and a horizontal
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datum and sin e = S, where S is the furrow slope, Neglecting
higher order differentials, the gravity force component is given by
the equation,
FG = pAgS dx. 2.23
The approximate net Pressure force in the direction of flow is

FP = —pgA dx[(F/A)Ax + FXJ, 2.24

in which h is the distance from the free surface to the center of
gravity. The expression in Parentheses on the right hand side of
Equation 2.24 may be written

(h/A) A+t h = [(h - d)/a] A, * (h - d),» 2.25

in which d s the distance from the channe] bed to the center of

gravity of flow. Since the channel is prismatic, the distance to the

center of gravity from the bed can be defined as

d =UA h dA'J /A, 2.26
0

in which h' and A’ are variables of integration. Thys Equation

2.25 may be written:
oo _ A, ' 2
(h/A) Ax + hx = (h/A)Ax (JL- h' dA") AX/A

ho- (IA h' dA'/A) . 2.27
X X
0
By expanding the derivative of the quotient contained in the final
term in Equation 2,27 and applying the Leibnitz rule for differen-

tiation under an integral sign, Equation 2.24 can be written as:

FPp = -pgAh dx. .28
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The final force which will be considered is the viscous force
in the direction of flow,

FV = -pgA(SF) dx, 2.29
in which SF is the estimated friction slope.

The momentum equation, Equation 2.14, for spatially varied
unsteady open channel flow with latera] outflow can now be

written in the form:

p[gAS dx - gAhx dx - gA(SF) dx] = p[Q Vx dx + V Q, dx
+V At dx
+ A Vt dx]. 2.30

Replacing Q by AV and applying the continuity equation leads to
the conventional form of the momentum equation,

S - SF=h + (Vg)V - VI/Ag + V,/g. 2.31

Equations 2.13 and'2.31 contain derivatives of A, y, and V.
Since 3A = Wah, where W {is the top width of flow, Equation 2.31

can be written:

S = SF - AW -V /g +VI/Ag - V /g = 0. 2.32

The Theory of Characteristics

The following analysis is taken from Courant and Friedrichs (7).
Equations 2.13 and 2.32 form a pair of non-linear partial differen-
tial equations, L1 and LZ’ of the first order. Since the equations

are to be solved simultaneously there must be a Tinear combination,
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Lo =N L1 + A2L2 = 0, ' 2.33
so that the derivatives of V and A combine to derivatives in the
same direction. The coefficients, X and 2o, are functions of the
variables, A, V, x, and t.

The variable, o(x,t), can be chosen so that the direction of
these derivatives is given by the ratio xU/tU. In order that A
and V be differentiated in the proper direction the ratio of the
coefficients must be

Alv FAM A /g

S TR 0Ap + 2p/9

Multiplying Equation 2.33 by X yields

xo/to' 2,34

(xlv + Az/w) A0 + (AA1 + VAZ/g)V0
+ [—AZ(VI/Ag +S5S - 5S5F) + AII]xU = 0. 2.35
Multiplying Equation 2.33 by tU gives
(Al +0x,) A+ (0A1‘+ Ao/9) v,

+ [-2,(VI/Ag + S - SF) + A1t = 0, 2.36

Equations 2.34, 2.35, and 2.36 form the following four linear

homogeneous equations for A, and Ayt
AI(V to - xo) + Az(to/w) =0, | 2.37
AI(A to) + AZ(V tU/g - xo/g) =0, 2.38

AI(V AU + A V0 + 1 xa) + 2y, [AU/N +y Vc/g

-xU(VI/Ag +S -5SF)] =0, 2.39
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and
Al (A0 + i to) + AZ{VU/g - (V1/Ag + S - SF)tU] = 0, 2.40
In order that Equations 2,37 through 2.40 have non-trivial

solutions for Al and Az the coefficient determinants must vanish,

From Equations 2.37 and 2.38,
(1/9)(x )% - (2/g)t x_ + (Vi/g - A/W)(t )2 = o 2.41
g a g o g o » .

and

xJt, =V (g/2) ARG = v+ Jgb~ . 2.42

D denotes the hydraulic depth, A/W. Since 4A/gW is real and
positive, two characteristic directions, xG/tc. exist, and Equa-
tions 2.13 and 2.32 form a set of hyperbolic partial differential
equations (7).
The value of the coefficient determinant of Equations 2,38 and
2.40 is
; 2
(Mg) v t_ - A(VI/Ag + S - SF)(t_)
- (A + 1t )(V t,/9 - x./9) = 0, 2.43
Division by (to)2 and substitution of V + /gD and V - /gD,
respectively, for xo/t0 yields
Vo/ty + (VaD/A)(A /t ) = g(S - SF)
+ IV/A & 1 /gb/A . 2.44
Data, which are presented in Chapter III, indicate that the

shape of an irrigation furrow can be described by an equation of the

form,
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A = blhb, 2.45

in which A s the cross-sectional area, in square feet, h is the
depth of flow, in feet, and bl and b are constants. For this
case the ratio of depth to hydraulic depth, h/D, is the constant b.
Thus the quantity, (/gD/A) A . is equivalent to (2b¢§ﬁ)u, and

Equations 2.42 and 2.44 can be written:

dx/dt = V + /gD , 2.46
and
d(V + 2b V/gD)/dt = g(S - SF) + IV/A ¥ 1/gD/A. 2.47

Other characteristic relations could be derived from Equations
2.37 through 2.40 but would provide no further information.
Equations 2.13 and 2.32 or 2.46 and 2.47 form the desired
mathematical model of flow in irrigation furrows. However, before
useful solutions can be ‘obtained, an adequate determination of the

friction slope, SF, and the infiltration rate, I, must be made.



CHAPTER 111
FRICTION SLOPE EVALUATION

The frictional resistance to flow in open channels has his-
torically been characterized by three parameters: Chezy's C,
Manning's n, and the Darcy-Weisbach friction factor, f (1). The
values of these parameters are generally considered constant for a
channe] having a particular surface roughness, but are known to
vary with changes in the ratio of depth of flow to the height of
the surface roughness elements and with changes in other flow
parameters.

Derivations of relationships between these three resistance
parameters and other variables of flow depend on the assumption
that steady, uniform flow exists. The flow which typically occurs
in irrigation furrows is a gradually varied, unsteady filow. For
such flow the head loss at a section is generally assumed to be
the same as for a uniform flow having the same velocity and
hydraulic radius (6). This assumption has been almost universally
applied in the study of the hydraulics of furrow irrigation (18,
24),

Thus the friction slope in the momentum equation can be
evaluated by one of the three uniform flow formulae:

SF

SF

fVZ/BRg, 3.

(Vn/1.4s6k/ 32 [English units], 3.

17

1
2
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and

sk = vZ/cr. 3.3
V is the mean velocity obtained from Q/A, Q is the flow rate and
A 1s the cross-sectional area of flow, R 1is the hydraulic radius,
and g is the acceleration of gravity.

The following relationships (1) hold between the resistance

parameters:

(89/f)%, 3.4

[p]
n

and

n = 1.48 RY® (£/89)%  [English units]. 3.5
Theoretical relationships for the resistance parameters, f, n,
and C (6}, are based on the assumption of a logarithmic velocity
profile in the turbulent region and on various other assumptions.
For hydraulically smooth surfaces having roughness protuberances
which do not extend through the laminar sublayer into the turbulent
region of flow, the friction factor is a function of the Reynolds'
number, Re., For rough surfaces, the friction factor is a function

of the hydraulic radius. The following relations are given:

T/(f’)!i ~ log (Re(f)%/cl) (smooth surfaces), 3.6

and

l/(i")'li ~ log (CZR/ks) (rough surfaces), 3.7

in which ks is the height of uniformly spaced roughness elements,
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Re is Reynolds' number, Re = 4RV/v, and <y and ¢, are
constants,

However, as noted in 1963 by the ASCE Task Force on Friction
Factors in Open Channels (1), the shape and Tongitudinal spacing of
the roughness elements also affect the resistance to flow, In
addition, none of the above relations strictly apply when erosion

or silting is occurring in the channel. Finally, for Froude numbers.
near unity, such as might be expected near the wetting front, free-
surface flow becomes unstable and the frictional resistance
increases (6),

Resistance to flow in irrigation furrows is caused by soil
clods, grass, and dead leaves, in addition to grain roughness. The
clods may remain stable when wetted or may disintegrate. Erosion
and silting may change the channel shape and roughness during the
flow period. Local variations in channel shape are common and
collection of debris may cduse damming. If the equations of motion
are to be used to predict the advance and recession of a furrow
irrigation stream, then the resistance to flow that actually occurs
in the field must be estimated.

Olsen (24) successfully used a chosen constant value of Chezy's
C to predict the advance of water over an irrigation border. Davis
(9) suggested that, at high flow velocities, "the flow tends to
smooth the furrow and dissipate the cloddiness, which reduces the

roughness of the furrow." He presented data relating Manning's n
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and the mean velocity of flow. Thornton (38) noted a similar
relationship.

In the following, data from 36 furrows at four separate loca-
tions in Texas are presented. These data were collected by Smerdon

and Hohn (34), and by several investigators, including the writer,
over a period of years,

The flow rate into each furrow was measured either by volu-
metric catchment or by use of a V-notch weir. Depths of flow were
measured at uniformly spaced positions along the furrow length.
After the water was turned off, measurements of furrow shape were
made. Average relationships between flow depth and top width are
presented in Fig. 3.1. A power equation (34),

b-1

W= blbh , 3.8

in which W is the top width, h is the depth of flow, and b1
and b are constants, describes the relationships quite well.

Integration of Equation 3.8 results in equations for the area

of flow, A,
A=nbh. 3.9

The wetted perimeter, P, is given by the equation,

p = Zjh'\/l 4+ d ‘g'ﬁz) dh', 3.10
0

in which h s the particular depth of the flow in question, and

h' 1is the variable of integration. .Generally when d(W/2)/dh'>1,
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the value of the integral in Equation 3,10 can be estimated by ex-
panding the integrand into a binomial series and integrating term by

term to obtain

3-b 7-3b

) b-1 2h - 2h oL 3.1
P=b.bh’ ' 4 : :
b, b{b-1)(3-b)
! (AR bf b3(b-1)° (7-3b)

Usually only the first two or three terms of Equation 3.11 need to
be evaluated. Relationships between flow depth and wetted perimeter
for the furrows studied are presented in Fig., 3.2. Due to irrequ-
larities in the channel surface, actual wetted perimeters are
slightly greater‘than those obtained from Fig. 3.2

At this point the assumption is made that uniform flow exists
except at the zone inmediately behind the wetting front. Conse-
quently, at the upstream end, (x = 0), the depth should approach the
uniform flow depth corrgsponding to the inflow rate for that furrow.

In general, independent measurements of mean flow velocity were
not made, The values of velocity were deduced from measurements of
flow rate and cross-sectional area. The results of calculations
leading finally to the determination of Manning's n and the Darcy-
Weisbach f for each of the 36 furrows studied are presented in
Table 3.1

Fig. 3.3 shows the relationship between Manning's n and
velocity. Included on Fig. 3.3 are data taken from Davis (9) and
Thernton (38). For a particular velocity, Manning's n appears to

increase with increasing furrow slope. Illustrated in Fig. 3.4
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is a logarithmic plot of friction factor versus Reynolds'
number,

The accuracy of the relationships shown in Fig. 3.3 and Fig. 3.4
is questionable for severa]'reasons. First, the velocity was not
measured independently (for the 36 furrows in Texas). Errors in the
calculation of velocity are due primarily to errors in the measure-
ment of uniform flow depth and are magnified in the calculation of
Manning's n and the Darcy-Weisbach f. The flow generally occurring
in frrigation furrows appears turbulent in that dye is rapidiy
diffused and values of Reynolds' number are in the generally
accepted turbﬁ?ent range. Although the value of f is expected to
vary some with variations in the Reynolds’ number, the degree of
variation illustrated in Fig. 3.4 is much greater than similar
piots of flume data would lead one to expect {6). The fact that
the Jogarithmic plot of Manning's n versus velocity has a slope
approximately equal to minus one suggests that the relationship
actually being presented is the relationship between an estimated
velocity -and its reciprocal. Again the variation of n with
velocity seems excessive.

Due to local variations in furrow shape and siope, direct
measurements of mean flow velocity are difficult to obtain. Inde-
pendent measurements were made of flow depth, flow rate, furrow
stope, and furrow shape. A logarithmic plot of 1.486AR2/3 versus

0/81/2 is shown in Fig. 3.5. The ordinate and abscissa values
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are measured independently., The fact that the slope of this plot is
approximately one supports the use of a constant value of Manning's
n. An estimate of Chezy's C is similarly obtained from the
logarithmic plot of J'lRI/2 versus 0/51/2 shown in Fig. 3.6,

Although the value of the resistance parameters is expected to -
vary with variations in other filow parameters, this variation cannot
be well described without an extended study which ought to include
independent measurements of mean flow velocity. = At the present time
the assumption of a constant value of Manning's n for a particular
furrow appears to be as practical and reasonable an assumption as
one can make. A reasonable value of Manning's n for 40-inch

irrigation furrows in Texas is 0.046.
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CHAPTER 1V

DETERMINING THE INFILTRATION FUNCTION

One mathematical model for describing infiltration is based on
the assumption that the soil water movement is primarily an
isothermal liquid-phase diffusion phenomenon which obeys Darcy's law

(12, 25). An intensive study of this model has been conducted by
Philip (25). The potential causing flow includes gravitational and

capillary components. Generally both the capillary potential and

the unsaturated hydraulic conductivity are considered to be
single-valued functions of the water content of a soil. Klute (17)
applied the principle of continuity of mass to Darcy's Taw and '
explicitly derived a diffusion-type partial differential equation
- describing unsteady, unsaturated flow through porous media.
Philip (25) developed a procedure for obtaining an approximate
solution of Kiute's equation for the case of one-dimensional infil-
tration into a homogeneous soili initially at a constant moisture
content. A more recent approximate solution is given by Singh (31).
A related but simplified mathematical model of one-dimensional
infiltration into a homogeneous soil has been developed by Fok and
Hansen {12).
Although the Klute model applies to water movement in three di-
mensions, to the writer's knowledge no solution is vet available

for two-dimensional infiltration subject to the boundary conditions
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present in irrigation furrows. The problem of describing infiltra-
tion into an agricultural soil is complicated by tﬁe fact that the
sofl typically consists of layers having different properties.
Consequently, for engineering purposes, infiltration data are often
described by empirical equations of varijous forms (20, 26).

One particular equation form which describes the intake
behavior of irrigation furrows under a wide range of conditions is
the Kostiakov-Lewis equation,

= o
y kto . 4.1

in which y is the cumulative intake in cubic feet per foot of
furrow iength, t0 is the time in minutes since the soil was
wetted, and o and k are constants. For some soils the Horton
equation as reported by Philip and Farrell (26) may describe infil-
tration data more accurately when the time range during which
infiltration occurs is large.

During furrow irrigation water 1nf11tratés into the sides of
the furrow as well as vertically. In addition, the flow itself
disturbs the soil surface and this may affect infiltration. There-
fore, some doubt exists concerning the adequacy of ring or
blocked-furrow infiltrometer data (34).

Finkel and Nir (10) have proposed a graphical procedure for
deducing the infiltration rate from rate of advance data. The

Philip and Farrell solution (26) of the Lewis-Milne volume-balance
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equatien provides analytical tools for relating the irrigation
stream advance and infiltration.

In the following a simple procedure is outlined for estimating
the constants in Eduation 4.1 when advance data are available. The

Philip and Farrell solution (26) for the advance of an irrigation

stream is

ox E: (ktse)r(1va))]

+ Ja) 4.2

~
o

In this discussion ¢ 1is the constant average area of surface
storage, in square feet; Q 'is the constant inflow into the furrow,
in cubic feet per minute; x is the distance the wetting front has
advanced, in feet; t 1is the time since the water was turned on, in
minutes; r is the Gamma function; and j s an integer. The
remaining variables are defined the same as for Equation 4.1, The
asymtotic expansion for Equation 4.2, far large values of kt%/c,

also obtained by Philip and Farrell, is

ﬁ?:' =-Z 1 : 4.3

Jml-kt7edr (1 + @) Pr(2 - a)

A dimensionless graphical representation of Equations 4.2 and
4.3 (40) for 0 s kt%/c = 10 is shown in Fig. 4.1. Inspection of
Equation 4.3 reveals that as the value of kt %c increases, a
logarithmic plot of x versus t should approach a straight Tine

having slope 1-a, as illustrated by the data shown in Fig. 4.2
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The value of k can then be estimated from Equation 4.3 when all
but the first one or two terms of the infinite series are disre-
garded, If advance data are not available for large enough values
of kt%/c, a first estimate of o can still be obtained from a
Togarithmic plot of x versus t. Then valuesuof k are computed
using Fig. 4.1. for several values of x and t. If the values of
k are not approximately equal, a slightly different value of o is
assumed and new values of k determined until the values of k do
become nearly equivalent. This process is illustrated in the
following example. The data for the example are the same as shown
in Fig. 4.2.

Example: Furrow 3, Border Field, Etter 1966,

Q=2.42 cfm, ¢ = 0,093 ft 2, a = 0.46 (estimated from

Fig. 4.2.)
kt%/c

t _X_ Qt/cx (Fig. 4.1.) k
30 300 2.60 2.13 .0414
75 600 3.25 3.05 .0390
155 900 4.48 4.60 .0419
345 1500 5.97 6.50 L0412

y=0.0a1 ¢t -4, 4.4

If the time range required for the desired amount of water to

infiltrate into the soil during irrigation is considerably greater
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than time range for which advance data can be obtained, then data
from blocked- furrow infiltrometers may provide a better estimate of
the values of o and k. The average surface storage, c, is not
always constant but generally increases slightly with time and
approaches a constant valye. The value of ¢ can be determined by
the method proposed by Smerdon and Hohn (34), who found that the
value of ¢ 1is approximately 77 per cent of the cross-sectional

area of flow at the upstream end.
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CHAPTER vV

FINITE DIFFERENCE TECHNIQUES

A Dimensionless Form of the Equations of Motion

The number of variables which must be considered can be reduced
by writing the equations of motion in dimensionless form.

Because flow depths occurring in irrigation furrows are usually
less than 0.2 feet, the wetted perimeter can be approximated using
only the first term in Equation 3.11. Thus, it follows that:

b-1

R = A/P:blhb/bblh = h/b = D, 5.1

With the substitution of D for R and the assumption of a
constant value of Chezy's C, the equations for furrow slope and
friction slgpe are
e ul,nl

S = VO/C D0 5.2
and ‘

sF = vZ/c%. 5.3
VO and Do are the normal flow velocity and hydraulic depth corres-
ponding to an initial flow rate, QI.

The following dimensionless variables can be defined:

Xy = x/DO; t, = tVo/DO; V, = V/VO; D, = D/DO; and

tox = toyo/Do' _ 5.4

Written in dimensionless form, Equations 2.46 and 2.47 become:
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dx,/dt, = V,+ /D /Fr 5.5
and
d(V, + 2b /D,/Fr)/dt, = r(1 - V¥p,)
a-1,.b -
+2{t . 7/0,) (V, F /D/Fr), 5.6
in which
Fr = vo/Vapo
r= g/C2 s
and
7 =

. (Dolt*=1)/V0AD=DO).

Equations 5.5 describe ¢ - and ¢~ - characteristic lines in the

Xa~ty plane (7). Equations 5.6 are valid along these character-

istic lines. *

Initial and Boundary Conditions

Initially no flow exists along the furrow bed. Saint-Venant
(28) and Schoklitsch (29) have studied the initial propagation of a
surge on a dry bed whén water stored behind a vertical wall is
suddenly released onto a horizontal bed., Their results indicate
that critical flow exists at the point of release. Chen (4) has
suggested critical flow as an initia] upstream condition. Kruger

and Bassett (18) found that the depth of flow at the upstream end
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rapidly approaches normal depth. They utilized normal flow as the
initial upstream condition, as did Olsen (24).

The selection of boundary conditions for t,>0 depends on the
description of the flow at the wetting front. Chen (4) has dis-
cussed this problem. If one assumes that the depth at the leading
edge of the wetting front is single-valued and equal to 2zero, then
the ¢t - and " —characteristics at the wetting front are both
defined by the equation,

dx,/dt, = V,. 5.7

For this case the curve of the wetting front advance apparently
represents an envelope of the ¢t - and C -characteristics. The
pattern of characteristics for this case is shown in Fig. 5.1,
Equations 5.6 are not defined, however, if D,.=0.

The leading edge of the wetting front is an approximately
vertical wall of water. One might Togically assume, therefore,
that critical flow exists at the wetting front, with depth greater
than zero, and, as suggested by Keulegan {16), that the front is
propagated with speed 2/gD. Thus, at the wetting front

dx,/dt, = 2V, = V_ + /D,/Fr. 5.8

For this case, the position of the "leading" ct -characteristic
describes the advance of the wetting front. Equations 5.6 are
defined since D,>0. The infiltration dependent term disappears

from the the first of Equations 5.6, eliminating the necessity
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of defining the infiltration rate when the opportunity time is
zero.

The rapidity with which flow conditions change in the immediate
vicinity of the wetting front adds to the computational difficul-
ties, The flow occurring only a short distance behind the front
usually more nearly resembles normal flow than critical flow.

Kruger and Bassett (18) and Olsen (24) assumed that the rate of
advance of an irrigation stream is equal to the velocity of flow in
a segment of flow immediately behind the wetting front. 1f this
assumption is chosen, then the curve in the x,-t, plane describing
the advance of the wetting front is neither a characteristic curve
nor an envelope of the two sets of characteristic curves. In order
to advance a solution in time either the flow depth or some relation

between depth and velocity must be assumed at the wetting front.

The Solution at Interior Grid Points

The procedure used in advancing the solution to a typical grid
point H, illustrated in Fig. 5.2, is the same for all cases. In

finite difference form Equations 5.5 become:

Xx = Xy ' .
_H Gy s B Fr | 5.9
Ho g
and
Xg = Xy
ifﬂ—:—;—ﬂ-= v, - /O, /Fr. 5.10
* * M M
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The values of x, and t, are obtained from Equations 5.9 and
H H

5.10. Addition and subtraction of Equations 5.11 and 5.12 result

in two equations for V., and D, » respectively.
H H

The values of the integrals in Equations 5.11 and 5.12 must be
evaluated numerically, either explicitly from the values of the
variables at points G and M alone or, as proposed. by Liggett and
Woothiser (22), using the solution at G and M in conjunction with

1ncréasingly fmproved estimates of V, and D, . Following Liggett
H H

and Woolhiser, let the integral in Equation 5.11, for example, be

approximated By the expression,

t"H ] t*e (1 -v2 /0, ) + 2(¢* Y0P (v /B 7Fr)
____'2_____._.. r - *G *G z O*G/ *G *G - *G/ r

(1= V5, )+ 222708 v, - . 5,13
H H *H H H H
If the integrals in Equations 5.11 and 5.12 are evaluated from
expresstons of this form, increasingly improved estimates of the

values of V, and D, can be obtained by the technique proposed
H H

by Liggett and Woolhiser (22) or by the generalized Newton-Raphson

technique.

Computational schemes for numerically integrating the equations
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of motion by the method of characteristics were devised for two

cases,

Computational Techniques

, The first case is that for which critical flow exists at the
wetting front and the position of the "leading"” C+—characterist1c
describes the advance of the wetting front. Assuming that critical
flow exists initially at two upstream points; the solution may then
be advanced according to the point numbering system 11lustrated in

Fig. 5.3. The first ¢' -characteristic is extended using Equations
5.9 and 5.11 until D,=0. If the initia] infiltration rate is great,
the grid points must be closely spaced in order to initiate a
solution. - Succeeding ct -characteristics are originated at x,=0.
Values of x,, t,, V,, and D, at interior grid points are compu ted
from Equations 5.9 through 5.12. A particular ¢’ -characteristic,
after it overtakes the preceding one, is extended using Equations
5.9 and 5.11 and the assumption Vi, = /D /Fr, ﬁntil D,=0. Points of
intersection of ¢~ -characteristics and the line X4=0 are located
using Equation 5.10. Values of V. and D, at points on the line
X4,=0 are obtained from Equation 5.10 and the assumption of a
constant inflow, Q=0DVW,

The convergence of characteristic lines in the neighborhood of
the wetting front creates computational problems. Due to the high
infiltration rate and small flow depths occurring near the wetting

front, calculations may generate negative values of D, at interior
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gfid points behind the front. Improper crossing of the ¢t - o ¢~
-characteristics may also occur.

The second case is that for which the rate of advance is equal
to the velocity of flow at the wetting front and the curve
describing the advance of the wetting front is not a characteristic
line. Two conditions of flow must be specified at the ups tream
boundary. Normal flow is assumed. Thus, V,=1 and D,=1. One flow
condition must be spetified at the wefting front. If critical flow
1s assumed, many of the computational difficulties associated with
the previous case reappear. An alternative is to assume that the
depth of flow at the wetting front is constant. The sequence aof
calculations is illustrated by the point numbering system in
Fig. 5.4,

Predictions of wetting front positions obtained using the com-
putational procedures jhst described did not compare well with
measured positions. A reliable method for coping with the computa-
tional difficulties which occur due to the rapid change of flow
conditions near the wetting front needs to be developed,

The region influenced by flow entering the furrow.at x4=0 and

t,=t, 1s bounded by the ¢' -characteristic originating at that
1

pofnt: Consequently, if irrigation is to be designed to prevent
Toss of water past the downstream end of the furrow, the rate of
Inflow at x,=0 might have to be reduced before the wetting front

reaches the end of the furrow. A solution of the equations of
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motion obtained using the method of characteristics would, therefore,
be much more useful than one obtained using a rectangular finite
difference grid.

Two procedures for estimating the manner in which furrow inflow

must be reduced in order to prevent tatlwater losses are presented

tn the next chapter.
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CHAPTER VI
ESTIMATING CUTBACK FLOW RATES

In order to achieve a uniform distribution of the appiied water,
the opportunity time, i.e., the time the soil has been wetted, must
be the same at al) points along the furrow iength. In other words,
the curve describing the recession or disappearance of an irrigation
stream must be paraliel to the curve describing the advance of the

wetting front, A perfectly uniform distribution can often be

achiaved by shortening the furrows to an uneconomical length or by

applying a high rate of inflow at the upétream end. As the rate of
inflow {s increased, the amount of runoff, which must be recircu-
lated or lost, increases correspondingly. Runoff losses can be
avotded by reducing the inflow after the wetting front nears or
reaches the downstream end of the furrow. Ideally the inflow rate
should be "cut back" contihuously or in increments in such a manner

as to prevent flow past the downs tream end,

Determination of Initial Inflow

Because the time of recession is generally less than the time
of advance, the most uniform distribution of the applied water is
obtained when the advancing wetting front traverses the furrow
length in the minimum possible time. Thus, the pProper choice of an

initial upstream inflow rate fs the maximum nonerosive flow rate,
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One frequently used criterion for choosing a maximum nonerosive flow

rate 1s the empirical relationship proposed by Criddle et ql. (8),
Q=0.1/5, 6.1

in which Q is the flow rate in gallons per minute and S 1is the

furrow slope in feet per foot. However, the erosion resistance of

a soil varies with the soil's texture and structure. Soil properties

do tnfluence the choice of a maximum nonerosive flow rate if the

flow rate is chosen so that the shear exerted on the soi] does not

exceed the critical tractive shear, Tc' which will cause erosion,

i.e.,

Tc = YROS 6.2

where Tc is the frictional force exerted on a unit area of the
furrow bed by the moving water, y is the unit weight of water, and
RO is the normal hydréu]ic radius corresponding to the upstream

flow rate. Given the furrow slope and shape and a permissible value
of Tc' the maximum nonerosive flow rate can be computed from Equation

6.2 and either Manning's or Chezy's uniform flow equation,

The Volume Balance Procedure for the Case, ¢ = 0

Often the advance of a furrow irrigation stream can be approxi-
mated by an empirical equation of the form
X = alt ’ 6.3

in which x 1is the distance, in feet, that the wetting front has

advanced from the upstream end of the furrow, t is the time, in
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minutes, since the water was turned on, and a, and a are

constants. A plot of t versus x on logarithmic paper will approxi-

mate a straight 1ine having slope a.

5
The volume of water, in cubic feet, in the furrow above the

soil surface divided by the length of the wetted portion of the
furrow, in feet, can be called the average area of surface storage,
c. Soon after the water is turned on, the value of ¢ generally
approaches a constant value. In many cases after irrigation is
essentially complete the volume of water remaining on the soil
surface is small compared to the volume of water which has infil-
trated into the soil. Suppose that the ratio of surface storage to
infiltrated water is sufficiently small that the value of ¢ can be
assumed to be zero. For this case, ¢ = 0 and x = alta » Philip and
Farrell (26) have shown that the amount of water which has infil-
trated at any point aloné‘the run can be estimated by an equation

having the form of Equation 4.1,
- o
y = kto R 4,1

in which y 1is the accumulative infiltration at a point, in cubic
feet per foot of furrow length; t0 is the time, in minutes, that
the surface at that point has been wet; and k and o« are
constants which are related to the constants a; and a by the
equalities,

a=1]1-aq. 6.4

and
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a = QI/(kr(1 + o)r(2 -a)]. 6.5

QI ¥s the initial inflow rate, which is maintained until the
water reaches the end of the furrow, in cubic feet per minute, and
r 1is the symbol for the Gamma function.

Calculation of cutback flow rate. Fig. 6.1 shows an arithmetic

plot of a typical irrigation stream advance as a function of time.
Based on the previous assumptions, the opportunity time at any point

along the run is

t =t - (x/a,)V/2,

o 1) 6.6

The volume of infiltrated water per foot of furrow length at any
point, x, is

y(x, t) = k(t - (x/al)I/aI“. 6.7
The rate of 1nf11trationrat that point is

Ixy t) = dy/dty = aktZ™! = okt « (x7a)V/2)"L, 6.8

The rate of total water infiltration per unit of time along the

entire furrow length, IL. is

IL.jl I(x, t) dx, 6.9
0

in which L 1s the length of furrow, in feet, and IL is measured

in cubic feet per minute,

Substitution of Equation 6.8 intg 6.9 yields

L
(0 = ekt [ 1= (e Yoy, 6.10
0
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In order to avoid any runoff, the inflow, Q, should be contin-
uously cut back to match the total infiltration rate, IL. For the
special case, t = t, where_tL is the time required for the wetting
front to reach the end of the furrow, in minutes, the cutback stream

size can be determined by integrating Equation 6.10 to obtain

« Ueal(l - a)rle)r(l - o) -
Q(tL) r(1 + a)r(; - a) at.

6.11
Nhgn c = 0, the above result is expected because at each instant the
infiltration must equal the inflow.

Equation 6.10 was integrated numerically for various values of
the dimensionless terms, Q/QI, tL/t, and a. These results are shown
in Fig. 6.2, and provide a ready estimate of cutback stream size as
a function of time for many irrigation situations. The assumptions,
¢ =0and x = alta,generally are not valid for small time increments,
for soils having very slow infiltration rates, or for unusually large

furrows or stream sizes.

Determination of water distribution efficiency. Additional

approximate information about the performance of an irrigation system
can be obtained when the above assumptions apply.
Define a dimensionless application ratio

Y = y/.va. 6.12

in which y 1is the amount of infiltration at any point and Y, is

the desired average application along the run, and is given by

y. = kt%, 6.13
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t is the time required for the desired average application to
infiltrate, Substitution of Equations 6.7 and 6.13 into Equation
6.12 yields

kIt - (x/a))1/3)°

- - _ 1/a o
Y " = [t/t, (x/al) A 6.14
a

Let tr be the time of recession after the advance has reached

the end of the field so that

to=t-t. 6.15
Then
- _ 1/a a
L N L AN C R RS
or
Y= 11 - xMy tr/tall_a , 6.16

in which T is a dimensionless time ratio, T = tL/ta, and X is

the dimensioniess distance ratio, X = x/L,

By definition (32)

1
-[- Y dX = 1, 6.17
0

If a horizontal recession is assumed, where tr is constant

at all values of x, then

1
-[ [T(1 - xH3) 4 t/t 17 ax = 1, 6.18
0

When a, tL' and ta are known, tr can be estimated by a trial

and error process from successive numerical integrations of Equation
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6.18 using various values of tr' It should be noted that tr/ta <1
for any real situation. The results of this procedure are presented
in Fig. 6.3,

Water distribution efficiency has been definea by the equation
(14)

Eq = 100(1 - d7y ), 6.19

where d is the average numerical deviation from Ya and obtained

from

1
a=J'|y-y|dx. 6.20
0 a

Thus
1
Eq = 100(1 -jo |y -y, | dwy,)
or

1 .
Ey = 100(1 J | Y - 1] dx). 6.21
0 :

The results of a nume?ical evaluation of Equation 6.21 are
presented in Fig. 6.4, If the desired application, Yy is known and
the values of a and t are determined from a plot of the advance,
ta can be estimated using Fig. 6.3. The approximate water distri-
bution efficiency can then be obtained from Fig. 6.4,

If a cutback flow rate, as given in Fig, 6.2, is applied after
the water reaches the end of the furrow, Tittle runoff should occur.
If a constant flow rate, QI, is maintained for the entire time t,

then the approximate volume of runoff, in cubic feet, leaving each

furrow is
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QL t - yaL. 6.22

The analysis presented above is based on several restrictive
assumptions which are never exactly found in nature. The procedure
usually does not work well for border irrigation because the amount
of surface storage is generally not small compared to the amount of
infiltrated water., This procedure does, however, provide a
rational estimate of cutback stream size for preventing excessive
runoff from irrigation furrows.

Several methods for estimating cutback flow rates for the case,

¢ > 0, were investigated.

The Hydrologic Routing Procedure

If the surface storage is greater than zero but still small
compared to the amount of infiltrated water, estimates of cutback
flow rates can be obtaiﬁed by a hydrologic routing procedure.

Assume that a constant inflow rate, QI, is maintained until the
wetting front reaches the end of the furrow, and further assume that
the cumulative infiltration is described by an equation of the form,
y= ktg . Divide the furrow length into p equal increments. After
the wetting front reaches the end of the furrow at t - tL' a constant
reduced flow rate, Q, is applied during a time increment at. The
value of At is chosen large enough so that at the end of the time
fncrement normal flow exists at x = 0, The assumption can be made

that the average surface storage, ¢, is approximately three-fourths
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of the area of flow at x = 0, This assumption is verified by
Smerdon and Hohn (34) who found that the ratio of the average area
of surface storage to the upstream cross-sectional area is about
0.77. The volume of water entering the furrow during time at is
equated to the volume of water which infiltrates into the soil minus
the reduction in surface storage, i.e.,

Q at = ay ax + Lac. 6.23
More specifically,

p
(... »~ &) r (y "y Y (L/p)e (e, ~ e Y.
R L Wity e
6.24
where
c = 0.75 (A ), 6.25
tisl 0.t 4
(AR?/3) = q;n/(1.48651/2), 6.26
0,t i
i+1
and
b
A= bh”; R = hyb, 6.27

Rearrangement of Equations 6.24 through 6.27 results in an
implicit equation for Qi from which the value of Q; can be computed
using the Newton-Raphson technique,

Sample results of this hydrolegic routing procedure are
presented in Fig. 6.5. If the value of kt%c is small, the value

L
of At must be large so that the infiltration occurring during at
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is greater than the surface storage at the start of the time incre-
ment. If this condition is not met, the inflow during that time
increment must be negative. No knowledge of how to reduce the
inflow before water reaches the end of the furrow is obtained by

this hydrologic routing method.

The Normal Flow Procedure

If the position of the particuiar ¢* -characteristic which

terminates at x = L and t = tL were specified, then the exact time

at which reduction in inflow should begin would be known also. [f
it is assumed that normal flow exists at points along c*

-characteristics which intersect the line x = L after time t = ¢t

L»
then along each ¢t -characteristic
dx/dt = Vv + /g0 6.28
and *
d(V + 2b /gb)/dt = (1/A)(V - /gu). 6.29
- Also
v« 1386 p2/3:1/2 3.2

If a particular flow rate fs chosen at x = L such that

‘ stL <<: Qx=0 » the runoff will be negligible and the values of
V and D at preceding points along a C+ ~characteristic can be
computed, The calculated flow rate at x = 0 is an estimate of the
desired cutback flow rate. Sample results of the procedure are

- shown in Fig. 6.5, Due to the assumption of normal flow and/or
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due to computational errors, estimates of cutback flow rates obtained
using this method do not compare well with estimates obtained using

other methods,

The Steady Flow Procedure

After the flow reaches the end of the furrow, the flow profile
changes slowly with time. If the time derivatives are eliminated
from Equations 2,13 and 2.32, two ordinary differential equations

are pbtained

dA , , dv _
VR AL, 6.30

and
(1/1-:)% + (V/g)35 = S - SF + VI/Ag 6.31

Given the assumption of zero velocity and a particular depth at the
downstream end of the furrow, values of V and A can be computed
explicitly at a serfes of ﬁpstream points until x = 0. Cutback flow
rates for two steady flow cases are presented in Fig. 6.5 and compare
well with the results of the hydrologic routing procedure,

Suggested design curves were prepared using the steady flow
procedure and are presented in Figs. 6.6, 6.7, and 6.8. The values
of Ed and ta/tL shown were taken from Figs. 6.3 and 6.4 and are
based on the assumption of a horizontal recession occurring when
the furrow inflow is stopped. The relationships presented in Figs.
6.6, 6.7, and 6.8 were obtained using an assumed permissible

tractive shear value of 0.05 pounds per square foot. Values of
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maximum nonerosive initial inflow rates deteymined using this value
of Tc are generally less than flow rates obtained from Equation
6.1 for slopes greater than three per cent and greater than flow
rates obtained from Equation 6.1 for slopes less than three per
cent,

The time at which the reduction in inflow should begin can be
obtained from an estimate of the time interval required for a flow
disturbance to traverse the furrow length, i.e., At =

L/(Vo + /gDo).

The use of Figs. 6.6, 6.7, and 6.8 in the design of a "cut-
back" irrigation system and the accuracy of the suggested design

curves are illustrated in sample problems appearing in Appendix B.
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CHAPTER VII
SUMMARY AND RECOMMENDAT IONS

A derivation of the characteristic form of the equations of
motion describing flow in irrigation furrows is Presented. Tech-
niques for numerically 1ntegrating the equations are discussed,

Computational difficulties were encountered in attempting to
determine the flow depth and velocity at points near the wetting
front, The region near the wetting front s characterized by a

high infiltration rate and rapid changes in flow depth and
velocity; therefore, predictions of wetting front advance positions
obtained using these techniques were not accurate,

The region in the x-t plane influenced by flow originating
at time t and at x = 0 is bounded by the ¢t ~characteristic origi-
nating at that point. Therefore, a solution of the equations of
motion by the method of chafacteristics would be very useful in
determining how to vary the inflow in order to prevent tailwater
losses,

A reasonable estimate of Manning's n for 40-in. irrigation
furrows in Texas is 0.046, However, variation in the roughness
parameter does occur when other flow Parameters vary. An accurate
field study of furrow roughness is needed. Such a study should
include independent measurements of flow velocity,

A voTume balance Procedure is proposed for determining furrow
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infiltration rates from measurements of surface storage and wetting
front advance positions for the case, y = ktg. Repetitive values
of o and k determined by this procedure, although approximate,
generally exhibit less variability than values of o and k oab-
tained using a blocked-furrow infiltrometer.

Design curves providing estimates of cutback flow rates for
preventing tailwater losses are presented. Sample problems
illustrate how these relationships can be utilized to obtain an
efficient use of irrigation water., 1In order to reduce the number
of independent variables so that these design relationships could
more easily be presented in graphical form, a relationship between
furrow slope and initial furrow stream size is assumed, t.e., Tc
= 0.05 pounds per square foot. Similar curves could be developed
for other erosion resist%nce criteria.

Field experiments for the verification and/or adjustment of
these theoretical design relationships shouid be conducted. Design
of an automated irrigation distribution system which can apply a
desired amount of water uniformly along the length of an irrigation

furrow without causing taiiwater Tosses will then be possible,
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APPENDIX A
NOTATION

cross-sectional area of flow
empirical constants in a power equation describing

wetting front advance, x = alta

empirical constants in a power equation describing

furrow shape, A = blhb

Chezy's roughness parameter

characteristic directions in the x-t plane

average area of surface flow during the time of wetting
front advance

constants of proportionality

hydraulic depth, D = A/W

[

normal hydraulic depth for Q = QI

dimensioniess length ratio, D, = D/D0

distance from channel bed to the center of gravity of

flow

water distribution efficiency

unbalanced force acting on a fluid element
gravity force acting on a fluid element
pressure force acting on a fluid element

viscous force acting on a fluid element
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Froude number, Fr = VO/(gDO)!E

Darcy-Weisbach friction factor
acceleration of gravity
depth of flow

normal depth of flow for Q = Q1

distance from the free surface to the center of gravity
of flow

infiltration rate

total infiltration rate occurring along the entire
furrow length

integer of summation

empirical constant in a cumuiative infiltration

equation, y = ktg
height of surface roughness elements

furrow length

differential equations of motion

mass of a fluid element

Manning's roughness parameter
wetted perimeter of flow

flow rate, volume per unit of time
initial flow rate entering furrow

hydraulic radius, R = A/P
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Reynold's number, Re = 4RV/v

normal hydraulic radius for Q = QI

dimensionless roughness parameter, r = g/C2
furrow slope
friction slope

dimensionless time ratio, T = tL/ta

critical tractive shear, force per unit area,

Tc = YROS

time

time required for an average application of water to
infiltrate

time required for the wetting front to reach the end of
the furrow

opportunity .time; time the soil at a point has been
wetted

time of recession after the advance has reached the end

of the furrow

dimensionless time ratio, t, = tVO/D0
dimensionless time ratio, tox = tOVO/D0

velocity of flow

normal flow velocity for Q = QI

dimensionless velocity parameter, V, = V/V0
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top width of flow
dimensionless distance ratio, X = x/L
distance measured from the upstream end of the furrow

dimensionless distance ratio, x, = x/D0
dimensionless application ratio, Y = y/ya

cumulative infiltration, volume per unit ltength of

furrow

average application, volume per unit length of furrow

dimensionless ratio, z = (Dolt*=1)/(voAD=D0)

constant in the cumulative infiltration equation,
- o

y-= kt0

symbol for the Gamma function

unit weight of water

angle between the furrow bed and a horizontal plane, in

radians

functional coefficients of L1 and LZ' respectively

kinematic viscosity of water
fluid density

a variable dependent on x and t: ¢ = o(x, t)
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APPENDIX B
ILLUSTRATIVE DESIGN PROBLEMS

Problem 1

An irrigator wishes to apply an average of three inches of
water to cotton planted in 40-inch rows. The cumulative infil-
tration as a function of time is given by the equation, y =
0.132t2'3. in which y 1{s the application in cubic feet per
Tinear foot of furrow length and t, is the opportunity time in
minutes. The furrow slope is one per cent and the furrows are
2,600 feet long. How should the flow rate vary with time to
prevent excessive runoff? What will be the approximate water
distribution efficiency? Assume that the maximum permissible
tractive shear of the soil which will not cause excessive erosion

in the furrows, TC. is 0.05 pounds per square foot.

Step 1: Determination of the average application, Vg and of the
time, ta' required for the average application to infiltrate into
the soil, i.e.,

3 in, (40/12) ft2

3
= = 0.833 ft"/ft,
a 12 in./ft 1 linear ft of furrow fe/

y

Obtain ta from the infiltration equation,

1/a

t, = (y,/k)7* = (0.833/0.132)%33 = 460 min.

Step 2: Determination of the maximum allowable upstream hydraulic

radius (based on the size of the furrow stream which will not cause



86

excessive erosion). From Equation 6.2,

0.05 1b/ft2 i
(62.4 1b/¢t3)(0.01)

Ry = T_/yS = 0.08 ft,

Step 3: Determination of the upstream Cross-sectional area of flow
and of the upstream depth of flow. Furrow shape relationships for
typical cotton irrigation furrows in Texas are presented in Figs.
3.1 and 3.2. Fronm Fig. 3.2

P =6.35 h0-675¢

From Fig. 3.1 and Equation 3.9

A = 3.6nt 672

Ry = A/P = (3.6/6.35) h%-9%¢¢ - o g £t
h = 0.14 ft.
A =0.135 ft2.

Step 4: Estimation of the average area of surface storage, c.
Estimate the average area of surface storage to be three-foyurths
of the upstream cross-sectional area of flow (Smerdon and Hohn
(34) determined the average area of surface storage to be 0.77

times the upstream cross-sectional area of flow).

c=0.75 A = 0.101 £t
Step 5: Determination of the upstream flow velocity. Assume the
value of Manning's n to be 0.046 as obtained from Fig. 3.5. Then,

using Manning's equation, Equation 3.2,
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Vo= l;%ﬁé R%/3s1/2 _ 4 60 fi/sec.

Step 6: Determination of the initial furrow stream size,

QI = AV = 0.081 ft3/sec = 4.85 ft/min.
Step 7: Determination of the time required for the wetting front

to reach the end of the furrow, tL. Try various values of t, until

L
the value of kt'/c obtained from Fig. 4.1 is equal to the com-

puted value of ktE/c. Values of k and o are: k = 0.132 and

o = 0.3, Values of ¢ and QI were determined in Steps 4 and 6,

respectively.

¢, ar ¢t ktt/c ktf/c
min cL - computed Fig., 4.1
300, 5.54 7.24 5.62
400, 7.38 7.88 7.90
390, 7.20 7.84 7.68
398, 7.35 7.86 7.87

Use tL = 398 min,

Step 8: Estimation of the time at which the cutback flow rate
should begin. In order to reduce the inflow soon .enough to prevent
flow past the downstream end of the furrow, .the irrigator can esti-
mate the path of the.particular ct ~characteristic which reaches
the point; x = L, at time, t = tL. From Equation 2.46

dx/dt = V + /gb.
The maximum value of dx/dt occurs at the upstream end of the

furrow where V = 0.60 ft/sec and h = 0.14 ft (v/gb = vgh/b =
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1.64 ft/sec). Thus the minimum time required for the c'-
characteristic 1in question to traverse the furrow length of 2,600

feet is

2,600 ft _ 2,600 ft _ 1,160 sec = 20 min.

(V+ /D) o 2.26 ft/sec

If the reduction in inflow is initiated not more than twenty
minutes before the wetting front reaches the point, x = L, then
the wetting front should definitely reach the end of the furrow

and insure that the entire furrow length is wetted, Therefore,

begin to reduce the inflow at
t= tL - 20 min = 378 min

or

- 398
tL/t = 378 = 1.05.

Step 9: Determination of the time at which inflow should be

terminated. Using the results of Steps 1 and 7

. 460
ta/tL ~ 398

1.155.
From Fig. 6.6 or from Fig. 6.3 and Equation 6.15, the time at
which inflow is terminated is
tL/t = 0.718
or
t = 554 min.

The relationship utilized in determining this value is based on the

assumption of a horizontal recession occurring at the time inflow
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is terminated. Because the recession is not instantaneous it may
be desirable to terminate the inflow sooner,

e

Step 10: Estimation of the water distribution efficiency, Ed.
From Fig. 6.6

E, = 90%.

Step 11: Determination of the variation in cutback flow rate with

time.

From Step 7
ktt/c = 7.86,

Using Fig. 6.6, interpolate between the design curves for ktE/c »
2 and ktf/c = 10 to obtain the flow rate, Q, as a function of
time as shown in Fig. B.1.

2,230 ft3.

]

Total water applied

(0.833 £t°)(2,600 ft)

2,160 fto.

Desired app]icatién: yaL

Estimated surface storage at time of inflow termination {See
Step 4.): ¢ = 180 ft°. ‘
Step 13: Determination of the application amounts at the ends of
the furrow. At the upstream end the final opportunity time is
approximately equal to the time the water is turned on,

t = 554 min,
°x=0

T 0.3
Yy=0 kto 0.132(554)

0.88 ft3/ft

3.17 in. of applied water.
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The minimum possible final opportunity time at the downstream end
1s the time water is turned on minus the time required for the

wetting front to reach the end of the furrow.

0.3 3
Yy=2.600 ft > 0-132(554 - 398) 0.60 ft°/ft

2.16 in. of applied water.

Problem 2
What distribution efficiency could be obtained in Problem 1
if the furrow length were reduced to 1,700 feet? How should the

flow rate be reduced to prevent excessive runoff?

Step 1: y, = 0.833 ft3/ft; t, = 460 min.
Step 2: R0 = 0.08 ft.

. = . - 2
Step 3: he_o = 0.14 ft; A-g = 0.135 ft°.
2

-
F3

Step 4: ¢ = 0.101 ft

Step 5: Veeg = 0.60 ft/sec.

Step 6: QI = 4.85 ft3/min.
Step 7: t; = 225 min; ktf/c = 6.65.

Step 8: Begin inflbw rate reduction at t = 212 min or

tL/t = 1.06.
Step 9: Terminate inflow at t /t = 0.45,

Step 10: E, = 95%.

d
Step 11: Obtain Q as a function of time from Fig. 6.6 for ktE/c
= 6.65.
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Step 12: Volume of water applied equals 1,535 ft3. Desired appli-

cation, yaL, equals 1,416 ft3. Surface storage at time of inflow
3

)

termination equals 44 ft

Step 13: Yy=0 = 0.85 ft3/ft = 3.06 in. of applied water;

Yy=t > 0.71 fts/ft = 2.56 in. of applied water.

Problem 3

An irrigator wishes to apply three inches of water to cotton
planted in 40-inch rows. The cumulative infiltration as a
function of time is given by the equation, y = 0.0268t2'585, in
which y is the application in cubic feet per foot of furrow
length and t0 is the opportunity time in minutes. The furrow
siope is 0.5 per cent and the furrows are 2,600 feet long. How
should the flow rate vary with time and what will be the approxi-

mate water distribution efficiency? The permissible tractive

shear, Tc, is 0.05 pounds per square foot,

Step 1: y_ = 0.833 ft/ft; t, = 353 min.
Step 2: R = 0.16 ft.

i _ i 2
Step 3: h o= 0.28 ft; A = 0.432 ft2.
Step 4: ¢ = 0.324 ft’,
Step 5: Vx=0 = 0.677 ft/sec.

Step 6: QI = 17.5 ft3/min.
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Step 7: t, = 83 min; ktE/c = 1.1.
Step 8: Begin inflow reduction at tL/t = 1.22.
Step 9: Terminate inflow at tL/t = 0,236,

Step 10: E, ~ 97%.

d
Step 11: Determine flow rate as a function of time for o = 0,585
and kt?/c = 1.1 by interpolation from Figs. 6.7 and 6.8,

Step 12: Applied water equals 2,546 £t3, Desired application,

yaL. equals 2,160 ft3. Estimated surface storage at time of inflow

termination equals 200 ft3.

Step 13: y _; = 0.83 ft3/ft = 3.0 in. of applied water

Yye > 071 Ft3/Ft = 2.6 in. of applied water

Problem 4 .
An irrigator wishes to apply an average depth of five inches
of water to cotton planted in 40-inch rows, The cumulative infil-
tration as a function of time is given by the equation,
y = 0.015tg‘7, in which y is the application in cubic feet per
foot of furrow length and to is the opportunity time in minutes.
The furrow slope is one per cent and the furrows are 1,000 feet
Tong. The maximum permissible tractive shear is 0.05 pounds per
square foot. What distribution efficiency can be obtained if a

cutback flow is applied?

Step 1: y, = 1.39 ft3/ft; t, = 650 min,
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Step 2: R0 = 0.08 ft,

- = 2 = 2
Step 3: hx=0 = 0.14 ft; Aieg = 0.135 £t°,

Step 4: ¢ = 0.101 ftz.

Step 5: V=g = 0.60 ft/sec.
Step 6: QI = 4.85 ft3/min.
Step 7: t, = 57 min; ktf/c = 2.5,

Step 8: Begin inflow reduction at tL/t = 1.14,
Step 9: Terminate inflow at tL/t > tL/ta = 0.088.

Step 10: E, = 99%,

d
Step 11: Determine flow rate as a function of time for « = 0.7

and ktf/c = 2.5 by interpolation from Fig. 6.8.

Step 12: Applied water equals 1,430 ft3. Desired application
equals 1,390 ft3. Estimated surface storage at time of inflow

termination equals 35 ft3.

Step 13: y __=1.4 ft3/ft = 5.0 in. of applied water;
x=0

YL 2 1.3 ft3/ft = 4.7 in, of applied water.
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