论文 www.scichina.com csb.scichina.com

关键词

河床砂岩屑

雅鲁藏布大峡谷

裂变径迹

流域地貌

雅鲁藏布江中下游流域地貌差异演化的岩屑 磷灰石裂变径迹证据

孙东霞 ,季建清 *, 张志诚 ,龚俊峰 ,陈建军 ,庆建春 ,钟大赉

北京大学地球与空间科学学院,造山带与地壳演化教育部重点实验室,北京 100871; 中国科学院地质与地球物理研究所,北京 100029

* 联系人, E-mail: grsange@pku.edu.cn

2009-01-04 收稿, 2009-05-15 接受 中国科学院知识创新工程项目(编号: KZCX2-YW-12)和国家自然科学基金(批准号: 40472100, 40872149)资助项目

摘要 以西藏米林派为分界点, 雅鲁藏布江中下游显示了截然不同的河流特性, 下游的雅鲁 藏布大峡谷作为世界第一大峡谷, 围绕南迦巴瓦峰形成了马蹄形大拐弯, 与中游的宽谷河道 显著不同. 分析了雅鲁藏布大峡谷上游米林河段和大峡谷下游地东河段的河床砂岩屑磷灰石 裂变径迹(AFT)数据结果. 分析显示, 米林河段 AFT 年龄集中在 10.7 和 26.8 Ma, 地东河段 AFT 显示年龄集中在 2.5, 7.1 和 12.6 Ma. 由于河床砂岩屑是上游方向裂点向下到岩屑沉积点 之间流域地质体经剥蚀和水流分选平均后的产物, 据此可以推定, 米林上游到加查河段流域 的地质体和大峡谷下游地东以上到直白河段流域的地质体经历了不同的冷却历史. 从统计的 结果上看, 米林以上到加查的中游河段地质体经历了两个不同阶段的冷却, 分别为 10.7 和 26.8 Ma前后, 雅鲁藏布大峡谷所在流域地质体的冷却主要发生于 2.5 Ma前后, 这一结果证实, 以南迦巴瓦峰为核心的东喜马拉雅构造结在 2.5 Ma 以来经历了快速和独特的构造地貌演化过 程. 雅鲁藏布大峡谷与雅鲁藏布江中游河段的流域属于相同的大地构造单元, 即冈底斯岩带、 雅鲁藏布缝合带和特提斯喜马拉雅带. 但是, 二者热史演化的迥然差异显示, 雅鲁藏布大峡谷 河段流域地质体在 2.5 Ma 以来的冷却过程似乎不是区域构造作用的结果, 显示其可能与气候 因素引起的强烈剥蚀作用密切相关.

雅鲁藏布江发源于西藏西南部喜马拉雅山北麓 的杰马央宗冰川, 流向大致由西向东, 在米林县派附 近折向北东, 围绕南迦巴瓦峰形成马蹄形大拐弯后 向南流, 形成了世界第一的雅鲁藏布大峡谷, 简称大 峡谷, 后经巴昔卡流入印度境内, 改称为布拉马普特 拉河, 最后在孟加拉与恒河相汇流入印度洋¹¹¹. 以西 藏米林派为分界点, 雅鲁藏布江中下游显示了截然 不同的河谷特点, 下游的雅鲁藏布大峡谷作为世界 第一大峡谷, 河道均为深切割的峡谷, 与中游的宽谷 河道显著不同. 是怎样的地质过程造成雅鲁藏布江

中游河段与下游大峡谷河段的差异?

本文试图通过雅鲁藏布江中游米林河段和其下 游大峡谷地东河段附近的河床砂岩屑磷灰石裂变径 迹(AFT)研究,结合河流地貌和热史,探究雅鲁藏布 江不同部位的构造地貌演化,揭示造成这种河道和 流域地貌差异的原因.对于气候-地貌-构造三者之间 关系的难题,传统的研究方法难以获得可靠的证据, 在整体上更加难以把握三者之间的相互作用.利用 河流流域地质体统计特征,通过具有统计特征的河 床砂岩屑中磷灰石裂变径迹分析,探源河流流域地

引用格式: 孙东霞,季建清,张志诚,等.雅鲁藏布江中下游流域地貌差异演化的岩屑磷灰石裂变径迹证据.科学通报,2009,54:3738~3747 Sun D X, Ji J Q, Zhang Z C, et al. AFT dating of detrital apatites from the Yarlung Zangbo Great Canyon: Implications for its distinct geomorphological evolution (in Chinese). Chinese Sci Bull (Chinese Ver), 2009, 54: 3738-3747, doi: 10.1360/972008-2143 质体热史,分辨不同流域地质体的冷却历史和地表 过程,为研究地表过程中气候或构造因素的主导效 应提供了可能.这是该领域非常重要的创新思路,为 气候-地貌-构造问题的研究提供了途径.

1 地质背景与样品采集

很多学者对喜马拉雅东构造结南迦巴瓦地区的 地质单元进行了划分,该地区主要由外部的冈底斯 岛弧岩浆岩带、内部的特提斯喜马拉雅带以及呈弧形 夹在两者之间的雅鲁藏布缝合带组成^[2,3],沿米林、 羌纳、派区、大渡卡、龙悲、加热萨、旁辛、汗密一 线出露的变质基性、超基性岩块及与其共生的石英片 岩代表雅鲁藏布构造带的东延部分^[3].雅鲁藏布构 造单元呈构造岩片零星出露于冈底斯构造岩石单元 与 马拉雅构造岩石单元之间,边界以断层与冈底斯带 和特提斯喜马拉雅带分隔^[4.5].从大地构造背景上来 看,雅鲁藏布大峡谷与雅鲁藏布江中游河段流域所 在地质体属于相同的大地构造单元,为冈底斯岩带、 雅鲁藏布缝合带和特提斯喜马拉雅带(图 1).

按照河谷地貌的形态特征,将我国境内的雅鲁 藏布江分为3段:(1)上游段至里孜,全长约295km, 谷底海拔在4550m以上;(2)中游段自里孜至米林县 派附近,长约1361km,谷底海拔4550~2900m左右, 相对切割深度1000~2500m;(3)下游段自派附近至 巴昔卡,全长约435km,谷底从海拔2900m降至600 m左右,相对切割深度在2300m左右.雅鲁藏布江 中游河段河谷宽阔,其中从加查县尼娜到米林县派

以下 25 km处, 全长约 331 km, 海拔 3250~2800 m, 落差 450 m, 平均坡降比约 1.4‰, 没有明显的狭窄河 谷和深切谷. 而位于雅鲁藏布江下游河段的大峡谷, 从直白附近的大渡卡到下游的巴昔卡, 落差达到 2300 m, 平均坡降比接近 5.3‰, 河谷都为深切割的 峡谷河段, 主流河道基本都是深切的基岩河床. 中游 存在广泛连续的河流阶地, 而下游的阶地无论是高 度还是保留状态与中游相比, 差异显著^[6].

河床砂岩屑是河流流域内地质体经受剥蚀搬运 到河床的沉积物. 流域内的地质体经流水作用或其 他外营力作用风化剥蚀、搬运后、最终以岩屑形态沉 积在相对稳定的宽阔河床内.理论上讲、岩屑的源区 为整个流域. 像雅鲁藏布江这样的河流, 存在多个裂 点与沉积河段伴生, 岩屑样品的主要源区为采样点 往上至其上方裂点之间流域的地质体. 当靠近裂点 的上游为沉积河段时,相对于沉积在沉积河道的河 床砂岩屑来讲、被流水携带越过裂点到下游河道的 岩屑数量是很少的, 而再被搬运到下游沉积河段沉 积下来的数量也相应更少. 从统计意义上来说, 沉积 在宽谷河段的河床砂岩屑基本上是上游裂点至沉积 点之间流域地质体剥蚀搬运的平均产物、很可能与 相邻的其他裂点-宽阔河谷组合所在河道地质体并没 有联系,所以,对干代表某-河段地质体剥蚀搬运后 的平均产物-河床砂岩屑的研究是很重要的、它们包 含其所在地质体的构造演化信息、采用磷灰石裂变 径迹手段, 可以分析并量化其代表的流域地质体的 冷却历史.

雅鲁藏布江具有明显的分段特征,表现为裂点 与宽阔沉积型河谷组合的河道形态,干流河床纵剖 面呈阶梯状,阶梯转折处对应3个主要裂点,分别位 于海拔4500m左右、3500m左右——加查峡谷之上、 2800m左右——大峡谷入口处派附近.图3所示,由 于米林-八一存在较大范围的宽谷沉积河道,加查附 近裂点 a 至米林附近河床采样点之间流域的岩屑大 部分沉积于此,被带到大峡谷的数量极少,与大峡谷 流域强烈剥蚀、高密度水系、高坡度河道、强降雨量 剥蚀、搬运所汇集到主干河道的岩屑数量相比,从概 率上应该不具有较重要的统计意义.

依照这样的思路,本文选择两个点采集样品.第 一处采样点米林附近样品(地理坐标: 29°15′03″N, 94°16′02″E,重量约 6 kg,样品编号 ML-114)是加查

图 1 雅鲁藏布大峡谷及其邻区地质图

附近裂点 a 向下到米林之间河段所在流域 A 中的地 质体经剥蚀和水流分选平均后的产物,反映了雅鲁 藏布江中游裂点至下游采样点这一河段所在流域 A 中地质体的信息(图 2, 3); 第二处采样点地东附近样 品(地理坐标: 29°12′42.68″N, 95°05′59.63″E, 重量约 6 kg, 样品编号为 DXL)主要是大峡谷入口处直白附 近裂点 b 到地东之间河段所在流域 B 中的地质体经 剥蚀和水流分选后的汇集,可以反映雅鲁藏布大峡 谷河段所在流域 B 中地质体的信息(图 2, 3).

最新研究表明现今的雅鲁藏布大峡谷与大峡谷 上游河道在大峡谷形成之前分属不同的河流体系, 大约在距今 30 ka前后,原属于帕隆藏布江水系支流 的扎曲-直白河段因溯源侵蚀,袭夺了位于现今直白 河段上游的古雅鲁藏布江水系,使得此前向南经南 伊沟(纳伊普曲)流出高原的古雅鲁藏布江与帕隆藏 布江合二为一,雅鲁藏布大峡谷得以贯通形成现今 大拐弯式样的流域结构^[7-9].但是河流的演化对样品 采集和结果的地质意义没有影响,河流将地质体剥 蚀后的产物搬运到沉积河段沉积下来,它只是起到 对岩屑的汇集和平均作用.因此,岩屑样品中包括的 构造演化信息与河流的形态演化没有联系,即使雅 鲁藏布江下游没有袭夺上游,沉积河段的河床砂岩 屑包括的大峡谷地质体的热史和构造演化信息依然 存在.

2 测试流程

近年来,裂变径迹定年技术被广泛应用于造山 带剥露、地表剥蚀以及沉积物源区研究,可以揭示岩 体冷却(剥露)的年龄^[10,11],进而反映区域性的构造-地貌事件.裂变径迹的实验过程是取得可靠的热年 代学分析数据的基础.磷灰石裂变径迹分析的基本 实验流程为:先通过常规磁选和重液技术分离出磷 灰石单矿物,并用环氧树脂黏合磷灰石颗粒制片(颗 粒数目 500~1000 个);经打磨、抛光,磨制出观察面; 室温下(约 25)在 5 mol/L浓度的HNO₃溶液中蚀刻 20 s揭示磷灰石自发径迹;加盖低铀白云母外探测片 后将样品打包置于²³⁵U中子活化反应堆内辐照;取下 云母片在室温 40%(体积比)的HF溶液中蚀刻 20 min 来揭示出磷灰石诱发径迹^[12].裂变径迹的年龄采用 Zeta常数法进行计算,计算公式为: $T = (\lambda_d)^{-1}$ $\ln[1+\lambda_d \xi g \rho_d(\rho_s/\rho_i)],式中, \lambda_d = 1.55125 \times 10^{-10} a^{-1},为$

璃组件的诱发裂变径迹密度; ρ_s 为矿物中²³⁸U自发裂 变径迹密度; ρ_i 为云母片外探测器记录的矿物中诱发 径迹密度 [12-20].

本文采取的是岩屑样品裂变径迹年代学分析, 基本内容是利用样品岩屑单颗粒裂变径迹年龄的统 计分析确定其源区并量化源区的抬升剥露及热演化 历史. 岩屑样品可能是具有不同抬升冷却历史的蚀 源区的不同岩石风化剥蚀后的混合物. 因此, 必须要 对岩屑中的不同年龄组分进行区分, 找出究竟存在 几个年龄峰值. 年龄组分中的每个独立峰值通常对 应相应的地质源区, 每个源区则都拥有相应的冷却 年龄. 通常的做法是, 通过裂变径迹定年获得样品的 一批单颗粒年龄(统计学上通常要求 50 个颗粒以上), 将这些单一的颗粒年龄再通过高斯拟合或二项式拟 合获得最佳的颗粒年龄分布^[21-24].

对二项式峰值拟合, Brandon开发出了专门的针 对性软件BinomFit, 利用X² 检验可判定何时达到最 佳拟合或年龄分布究竟存在几个有意义的峰值. Brandon建议如果P(F)<5%, 拟合出来的峰值就具有 意义, 否则就没有意义^[17,23,25,26].本次试验中的两个 样品的P(F)均为 0, 这意味着样品的年龄不是由单一 年龄组分构成, 而是数个不同年龄组分的叠加结果. 也就是说, 分析所用的岩屑很可能来自不同的物源区.

本次裂变径迹年代学实验分析是在北京大学造 山带与地壳演化教育部重点实验室下的裂变径迹实 验室完成的,径迹的测量是在裂变径迹实验室 AUTOSCAN 测量定位装置中操作完成的,选取平行 磷灰石结晶 *c* 轴最大抛光面的颗粒,并在 ZEISS 偏光显 微镜下统计.共完成了两件样品的测试:(1) ML-114, 选择颗粒 70 个;(2) DXL,选择颗粒 168 个.先利用 TrackKey 软件对数据进行处理,得出携带沉积岩源区 信息的年龄分布图,之后使用 BinomFit 软件对数据进 行二项式拟合.两个样品所选颗粒数均大 50,足 以用来通过二项式拟合获得最佳的颗粒年龄分布, 来反映源区的热演化历史.

3 裂变径迹结果与分析

首先利用 TrackKey 软件对得出的表 1 和 2 中单 颗粒数据进行处理,得出(a)放射图、(b)年龄直方图. 从年龄直方图上可以看到大体的峰值. 然后再用 BinomFit 软件对单颗粒原始数据进行二项式拟合, 得出(a)显示最佳年龄峰值的年龄密度图、(b)最佳峰 值数量图,二项式拟合后可以得出更确切的年龄峰 值分布,同时也可以得出不同年龄峰值所占的比例, 如表 3 所示.

图 4(b)显示,在 11 Ma 附近有一个明显的主要峰 值,在 27 Ma 附近也有一个.经二项式拟合得出米林 河床砂岩屑 AFT 年龄峰值集中在 10.7 和 26.8 Ma (图 5(a)),即其代表的米林以上至加查附近裂点 a 河段所 在流域 A 中的地质体在 10.7 和 26.8 Ma 经历了两次 冷却事件.

用同样的方法对地东样品原始单颗粒数据处理,

颗粒编号	统计方格	自发径迹	诱发径迹	颗粒编号	统计方格	自发径迹	诱发径迹	颗粒编号	统计方格	自发径迹	诱发径迹
1	15	6	19	25	9	10	90	49	12	4	95
2	28	3	13	26	24	4	64	50	20	10	239
3	12	5	102	27	18	3	60	51	40	6	275
4	12	6	55	28	20	7	200	52	18	2	35
5	12	3	17	29	16	10	78	53	20	3	102
6	25	7	94	30	40	5	137	54	30	4	37
7	12	10	74	31	16	2	35	55	36	4	243
8	12	6	85	32	8	3	73	56	15	14	135
9	9	4	41	33	16	4	55	57	28	9	159
10	28	4	136	34	16	5	76	58	25	11	62
11	30	4	78	35	16	9	92	59	40	9	286
12	20	5	130	36	30	5	167	60	24	10	151
13	25	1	29	37	14	8	69	61	15	3	30
14	20	7	50	38	24	6	79	62	21	3	68
15	35	7	158	39	20	7	115	63	21	4	150
16	16	7	142	40	18	5	46	64	40	9	362
17	12	2	59	41	18	9	154	65	15	14	121
18	25	4	124	42	21	15	163	66	30	12	241
19	15	4	88	43	42	11	247	67	20	5	140
20	20	13	205	44	20	5	88	68	14	8	42
21	24	14	205	45	25	12	75	69	20	10	170
22	60	9	260	46	20	3	130	70	20	5	119
23	28	13	303	47	28	3	146				

表 1 ML-114 裂变径迹单颗粒测试结果

		论	文	
--	--	---	---	--

24	21	7	89	48	24	9	193				
				表 2 DX	L 裂变径	迹单颗粒测	则试结果				
颗粒编号	统计方格	自发径迹	诱发径迹	颗粒编号	统计方格	自发径迹	诱发径迹	颗粒编号	统计方格	自发径迹	诱发径迹
1	48	8	636	56	40	3	463	111	11	2	70
2	35	11	133	57	20	4	128	112	50	1	35
3	25	4	458	58	48	5	394	113	40	4	451
4	28	2	68	59	35	1	201	114	42	1	130
5	49	3	261	60	16	2	133	115	30	2	195
6	40	4	224	61	32	2	289	116	36	2	121
7	36	7	179	62	24	1	111	117	30	2	29
8	30	3	411	63	25	1	71	118	24	3	242
9	30	10	230	64	50	2	418	119	30	2	27
10	40	2	432	65	48	2	81	120	35	3	76
11	60	3	213	66	24	6	219	121	12	1	62
12	52	2	207	07	48	1	230	122	48	1	/4
13	50 24	10	112	08 60	20	3	284	123	24	5	122
14	24	2	94	70	56	4	204	124	27	1	222
15	42	1	212	70	40	4	4220	125	20	1	95 95
10	42	4	464	71	40 25	2	120	120	25	1	242
18	30 40	1	125	72	23 49	2	120	127	25	1	242
19	30	4	372	74	21	3	340	120	12	1	35
20	24	4	209	75	25	2	153	130	50	3	33
20	40	4	515	76	36	8	243	131	27	3	79
22	40	3	281	77	20	3	200	132	32	1	37
23	32	2	243	78	20	1	177	133	32	6	236
24	28	2	392	79	35	2	261	134	32	10	147
25	36	2	166	80	18	2	124	135	36	1	67
26	25	3	301	81	20	1	63	136	40	1	73
27	30	1	182	82	32	11	459	137	10	1	109
28	44	2	230	83	40	2	166	138	56	1	96
29	40	1	186	84	28	3	232	139	40	3	80
30	42	2	373	85	30	1	80	140	15	3	233
31	40	2	320	86	30	2	254	141	45	2	296
32	18	2	270	87	16	1	78	142	30	6	248
33	42	5	215	88	25	1	125	143	25	1	14
34	45	3	331	89	50	1	107	144	21	2	150
35	12	1	87	90	40	2	495	145	25	2	391
36	70	3	245	91	36	1	79	146	20	2	62
37	20	1	73	92	28	2	82	147	21	1	179
38	24	2	226	93	50	1	40	148	22	2	70
39	20	2	96	94	24	2	64	149	20	1	84
40	16	1	136	95	30	1	218	150	20	1	16
41	25	3	253	96	50	2	281	151	24	2	174
42	20	1	80	97	32	1	79	152	48	2	127
43	24	2	90	98	32	16	347	153	40	1	39
44	18	2	119	99	24	1	22	154	40	4	51
45	15	1	36	100	20	4	67	155	40	5	160
46	20	2	165	101	30 40	l	143	156	35 19	1	117
4/	40	3	148	102	49	6	5/	157	18	4	//
48 40	24 42	2	124	103	30 26	2	105	158	25 14	1	48 40
49 50	42 19	I Q	384	104	20 20	1	42 119	159	14	2	49
50	40 20	0	304 104	105	20 19	1	65	161	36	4	427
52	20 32	ے 1	211	100	10	3	275	162	24	1	100
53	20	2	131	107	18	1	64	163	24	1	119
54	24	- 1	111	109	60	8	303	164	30	2	99
÷ ·		-		/		0				-	~ ~

55	40	1	100 11	0 35	1 1	33			
		表 3	河床砂岩屑	样品磷灰石年	龄二项式拟合	年龄峰值	İ统计结果		
样묘문	55 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	年龄区间	$\rho_{\rm s}^{\rm a}(10^5{\rm cm}^{-2})$	$\rho_{\rm i}^{\rm c)} (10^5 {\rm cm}^{-2})$	$\rho_{\rm d}^{\rm e)} (10^5 {\rm cm}^{-2})$ 月前 年龄世			峰值/Ma(所占比	;例)
1+ 00 5	<u> ጥቧ </u>	/Ma	$(N_s^{b)})$	(N_i^{d})	$(N_{\rm d}^{\rm f)})$	1 (70)	第1组	第2组	第3组
ML-114	70	4.5~81.1	1.949(470)	35.049(8450)	12.452(7823)	0.0	10.7(70.7%)	26.8(29.3%)	
DXL	164	1.0~22.8	0.542(441)	37.04(30112)	10.251(6523)	0.0	2.5(87.5%)	7.1(9.4%)	12.6(3.0%)

a) ρ_s 为自发径迹密度; b) N_s 为自发径迹数; c) ρ_i 为诱发径迹密度; d) N_i 为诱发径迹数; e) ρ_d 为标准径迹密度; f) N_d 为标准径迹数; g) P 为 X^2 的检验概率; Zeta = 393.5±27.5

图 4 米林附近河床砂岩屑样品 ML-114 裂变径迹 TrackKey 分析图 (a) 放射图; (b) 年龄直方图

图 5 米林附近河床砂岩屑样品 ML-114 二项式拟合结果 (a) 最佳年龄峰值的年龄-密度图; (b) 最佳峰值数量图

如图 6, 7 所示, 地东附近的河床砂岩屑 AFT 分析出 的年龄峰值集中在 2.5 Ma, 表明大峡谷地东以上至 入口处附近裂点b河段所在流域B的地质体在2.5 Ma 前后经历了冷却事件. 虽然二项式拟合得出的 7.1 和 12.6 Ma 峰值不明显, 但也不排除在这两个时限存在 两次冷却事件的可能.

4 讨论与结论

河床砂岩屑是上游方向裂点向下到岩屑沉积点

之间流域地质体经剥蚀和水流分选平均后的产物, ML-114 样品反映了雅鲁藏布江中游裂点至下游采样 点这一河段所在流域 A 中地质体的信息, DXL 样品 反映了雅鲁藏布大峡谷河段所在流域 B 中地质体的 信息. 根据两个样品 AFT 分析表明: 雅鲁藏布江中 游米林以上至裂点 a 河段所在流域 A 中的地质体在 10.7 和 26.8 Ma 经历了两次冷却事件; 大峡谷地东以 上至入口处附近裂点 b 河段所在流域 B 中的地质体 在 2.5 Ma 前后经历了冷却事件, 7.1 和 12.6 Ma 也可

能存在两次冷却事件. 中游流域 A 所在地质体冷却

年龄区间为 4.5~81.1 Ma. 最年轻冷却时限为 4.5 Ma, 说明雅鲁藏布江中游加查至米林河段流域地质体在 4.5 Ma 之前冷却过程已结束,主要的冷却事件集中 在 10.7 和 26.8 Ma 前后;大峡谷流域 B 所在地质体冷 却年龄区间为 1.0~22.8 Ma,冷却时限集中在 2.5 Ma 前后,与中游样品年龄区间相比,4.5 Ma 以来已没有 交集.另外,大峡谷地质体冷却最老时限为 22.8 Ma, 而 ML-114 分析得出的年龄有比 22.8 Ma 更老的,这 说明大峡谷的剥蚀速率比中游地质体要快很多,包 含更早冷却信息的地质体基本上已被完全剥蚀掉. 两个样品代表的雅鲁藏布江中下游地质体冷却历史 截然不同,并且中游地质体总体表现出比大峡谷地 质体更早的冷却时限.

大峡谷样品DXL的TrackKey和BinomFit软件二 项式拟合分析得出, 2.5 Ma的年龄峰值最明显, 而且 集中在这一时限的颗粒比例高达 87.5%, 年龄区间也 存在 2.5 Ma以来的组分, 之所以没有形成明显的峰, 很可能是因为这些地质体在冷却过程结束后还没有 大规模出露到地表. 同样, 包含比 22.8 Ma更老的冷 却信息的地质体很可能已被快速剥蚀掉了. 龚俊峰 等人 ^[27]对东喜马拉雅构造结核心地段雅鲁藏布大峡 谷地区岩体进行了常规⁴⁰Ar/³⁹Ar年代学研究, 也得出 了集中在 2.5 Ma附近的年龄值, 表明了南迦巴瓦地 区在晚上新世的隆升事件, 也进一步证实了大峡谷 在 2.5 Ma的冷却事件. 丁林等人 ^[28]通过东喜马拉雅 构造结不同高度花岗岩的裂变径迹研究证实了其在 上新世以来的快速抬升. 这些结果都证明, 以南迦巴 瓦峰为核心的东喜马拉雅构造结在 2.5 Ma以来经历 了快速和独特的构造地貌演化过程.

雅鲁藏布大峡谷与雅鲁藏布江中游河段的流域 属于相同的大地构造单元,为冈底斯岩带、雅鲁藏布 缝合带和特提斯喜马拉雅带.但是,二者热史演化迥 然差异. 是什么导致了同一大地构造单元内的地质 体经历了差异显著的热演化历史?

雅鲁藏布江流域南侧高耸的喜马拉雅山作为气候上的屏障,暖湿的印度洋季风难于越过它直接到达雅鲁藏布江中上游地区,而只能从下游顺河谷伸入,因而降水量自东向西明显地减少,这就反映在流水的侵蚀作用是由下游向上游逐渐由强变弱的.并且整个高原,水平方向上显然由东南向西北,由高原边缘深入到高原内部,温度和降水都在逐渐下降^[6].

强大的降雨必然导致剥蚀作用的加剧,剥蚀作用对 地貌的形成起着极为重要的作用. 笔者推断,雅鲁藏 布大峡谷河段流域地质体在 2.5 Ma以来的冷却过程 似乎不是区域构造作用的结果,可能与气候因素引 起的强烈剥蚀作用密切相关. 长期的强烈迅速剥蚀 作用促使地壳均衡作用的发挥,引起地质体快速抬 升,驱使雅鲁藏布江下游河道迅速下切成为深切谷, 造成了现今的雅鲁藏布江中下游河道和流域的地貌 差异.

致谢 感谢审稿人对本文修改提出宝贵意见.

参考文献

- 1 刘宇平, Montgomery D R, Haller B, 等. 西藏东南雅鲁藏布大峡谷入口处第四纪多次冰川阻江事件. 第四纪研究, 2006, 26: 52-62
- 2 郑来林,金振民,潘桂堂,等.东喜马拉雅南迦巴瓦地区区域地质特征及构造演化.地质学报,2004,78:744-752
- 3 章振根,刘玉海,王天武,等. 南迦巴瓦峰地区地质. 北京:科学出版社,1992.1-185
- 4 刘焰, Wolfgang S, 王猛, 等. 东喜马拉雅构造结陆内变形过程的研究. 地质学报, 2006, 80: 1274-1285
- 5 耿全如,潘桂棠,郑来林,等.南迦巴瓦峰地区雅鲁藏布构造带中石英(片)岩的岩石化学特征及变质条件探讨.矿物岩石, 2004, 24:76-82
- 6 中国科学院青藏高原综合科学考察队. 西藏地貌. 北京:科学出版社, 1983. 3-6
- 7 陈建军,季建清,龚俊峰,等. 雅鲁藏布江大峡谷的形成. 地质通报, 2008, 27: 492-499
- 8 季建清, 钟大赉, 丁林, 等. 雅鲁藏布大峡谷地质成因. 地学前缘, 1999, 6: 231-235
- 9 陈建军,季建清,余绍立.雅鲁藏布江大峡谷地貌响应时间域的定量计算.第四纪研究,2008,28:264-272
- 10 Fitzgerald P G, Sorkhabi R B, Redfield T F, et al. Uplift denudation of the central Alaska Range: A case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. J Geophys Res, 1995, 100: 20175—20192[DOI]
- 11 Johnson C. Resolving denudational histories in orogenic belts with apatite fission track thermochronology and structural data: An example from southern Spain. Geology, 1997, 25: 623—626[DOI]
- 12 Fleischer R L, Price P B, Walker R M. Nuclear Tracks in Solids: Principles and Techniques. California: University of California Press, 1975
- 13 翟鹏济, 赵云龙. 裂变径迹定年法 Zeta 常数的测定. 岩矿测试, 1996, 15: 13-16
- 14 刘顺生,张峰,胡瑞英,等.裂变径迹年龄测定—方法、技术和应用.北京:地质出版社,1984.1—140
- 15 Gleadow A J W, Brown R W. Fission track thermochronology and the long-term denudational response to tectonics. In: Summerfield M J, ed. Geomorphology and Global Tectonics. Chichester: John Wiley and Sons Ltd., 2000. 57—75
- 16 Gunnell Y. Apatite fission track thermochronology: An overview of its potential and limitations in geomorphology. Basin Res, 2000, 12: 115–132[DOI]
- 17 Brandon M T. Decomposition of fission-track grain-age distributions. Am J Sci, 1992, 292: 535-564
- 18 康铁笙, 王世成. 地质热历史研究的裂变径迹法. 北京: 科学出版社, 1991. 1-112
- 19 张志诚,王雪松.裂变径迹定年资料应用中的问题及其地质意义.北京大学学报(自然科学版),2004,40:898—905
- 20 Donelick R A, O'Sullivan P B, Ketcham R A. Apatite fission-track analysis. Rev Miner Geochem, 2005, 58: 49–94[DOI]
- 21 王国灿. 沉积物源区剥露历史分析的一种新途径——碎屑锆石和磷灰石裂变径迹热年代学.地质科技情报,2002,21:35—40
- 22 Garver J I, Soloviev A V, Bullen M E, et al. Towards a more complete record of magmatism and exhumation in continental arcs using detrital fission track thermochronometry. Phys Chem Earth Part A, 2000, 25: 565—570[DOI]
- 23 Brandon M T. Probability density plot for fission-track grain-age samples. Radia Meas, 1996, 26: 663-676[DOI]
- 24 Brandon M T, Vance J A. Tectonic evolution of the Cenozoic Olympic subduction complex, Washington State, as deduced from fission track ages for detrital zircons. Am J Sci, 1992, 292: 565—636

- 25 Dunkl I. TRACKKEY: A Windows program for calculation and graphical presentation of fission track data. Comput Geosci, 2002, 28: 3—12[DOI]
- 26 Brandon M T. Decomposition of mixed grain age distributions using BINOMFIT. On Track, 2002, 24: 13—18
- 27 龚俊峰,季建清,陈建军,等.东喜马拉雅构造结岩体冷却的⁴⁰Ar/³⁹Ar 年代学研究. 岩石学报, 2008, 24: 2255-2272
- 28 丁林,钟大费,潘裕生,等.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.科学通报,1995,40:1497-1500

AFT dating of detrital apatites from the Yarlung Zangbo Great Canyon: Implications for its distinct geomorphological evolution

SUN DongXia¹, JI JianQing¹, ZHANG ZhiCheng¹, GONG JunFeng¹, CHEN JianJun¹, QING JianChun¹ & ZHONG DaLai²

¹Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, _China;

² Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

The Yarlung Zangbo Great Canyon is distinct from upstream of the Yarlung Zangbo River, with a great U turn slicing the Namche Barwa Region. This paper reports apatite fission track (AFT) ages of the fluvial sands from Milin (ML-114) at upstream and Didong (DXL-20) at downstream of the Yarlung Zangbo Great Canyon. The AFT ages of ML-114 are concentrated at 10.7 and 26.8 Ma while those of DXL-20 at 2.5, 7.1 and 12.6 Ma. Considering that the fluvial sands are the mixture of the bedrocks in drainage catchments from the knickpoint at upstream to where the rock debris deposited after denudation and transportation, it can be concluded that the two drainage terrains, one from Milin to Jiacha of the upstream and another from Didong to Zhibai of the downstream, have different cooling ages. The obtained data indicate that the eastern Himalayan syntaxis surrounding the Namche Barwa-Gyala Peri has experienced rapid and unique tectonic geomorphological evolution since 2.5 Ma. Even though the drainage catchment of the Yarlung Zangbo Great Canyon and the middle reach of the Yarlung Zangbo suture and the Tethys Himalayan belt, the different geothermal histories between the upstream and downstream sections of the Yarlung Zangbo Great Canyon did not result from the regional neo-tectonic evolution, but from the rapid denudation caused by climatic factors.

detrital apatites, AFT dating, tectonic geomorphology, Yarlung Zangbo Great Canyon

doi: 10.1360/972008-2143