长江三角洲主要超级稻 CH₄ 排放特征 及其与植株生长特性的关系*

闫晓君'王丽丽'江瑜'邓艾兴²田云录³张卫建^{1,2} ('南京农业大学应用生态研究所,南京 210095;²中国农业科学院作物科学研究所农业部作物生理生态与栽培重点开放实验 室,北京 100081;³南京农业大学水稻研究所,南京 210095)

> 摘 要 采用盆栽试验研究了长江三角洲 14 个主要超级稻品种(6 个粳型超级稻和8 个籼型 杂交超级稻)CH₄排放特征及其与植株生长特性之间的关系.结果表明: 粳型和籼型超级稻全 生育期 CH₄排放均呈双峰模式,排放峰值分别出现在分蘖盛期和孕穗期. 粳型超级稻的平均 CH₄排放总量比籼型超级稻高 37.6% (P<0.01),品种间排放差异主要出现在生长后期.虽然 两种类型超级稻的 CH₄排放总量均与最大叶面积呈显著正相关,但 CH₄排放与其他生长特性 的关系因品种类型而异.在株高上,粳型超级稻 CH₄排放总量与株高呈显著正相关,而籼型超 级稻的相关不显著.在生产力上,籼型超级稻 CH₄排放总量与其总生物量、籽粒产量和收获指 数呈显著负相关,而粳型超级稻的相关不显著. 籼型超级稻 CH₄排放量低主要是由于其根系 生物量显著高于粳型超级稻.

关键词 气候变暖 粮食安全 温室气体 生产力 超级稻 长江三角洲 文章编号 1001-9332(2013)09-2518-07 中图分类号 S181 文献标识码 A

 CH_4 emission features of leading super-rice varieties and their relationships with the varieties growth characteristics in Yangtze Delta of China. YAN Xiao-jun¹, WANG Li-li¹, JIANG Yu¹, DENG Ai-xing², TIAN Yun-lu³, ZHANG Wei-jian^{1,2} (¹Institute of Applied Ecology, Nanjing Agricultural University, Nanjing 210095, China; ²Ministry of Agriculture Key Laboratory of Crop Physiology, Ecology & Production, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; ³Institute of Rice, Nanjing Agricultural University, Nanjing 210095, China). -Chin. J. Appl. Ecol., 2013, 24(9): 2518–2524.

Abstract: A pot experiment was conducted to study the CH_4 emission features of fourteen leading super-rice varieties (six Japonica rice varieties and eight Indica hybrid rice varieties) and their relationships with the varieties growth characteristics in Yangtze Delta. Two distinct peaks of CH_4 emission were detected during the entire growth period of the varieties, one peak occurred at fulltillering stage, and the other appeared at booting stage. The average total CH_4 emission of Japonica rice varieties was 37.6% higher than that of the *Indica* hybrid rice varieties (P < 0.01), and the differences in the CH_4 emission between rice types occurred at the post-anthesis phase. For all the varieties, there was a significant positive correlation between the total CH_4 emission and the maximum leaf area, but the correlations between the CH_4 emission and the other growth characteristics varied with variety type. The total CH_4 emission of Japonica rice varieties had a significant positive correlation with plant height, while the correlations between the total CH_4 emission of *Indica* hybrid rice varieties and their plant height were not significant. The total CH₄ emission of Indica hybrid rice varieties had significant negative correlations with the total aboveground biomass, grain yield, and harvest index, but the correlations were not significant for Japonica rice varieties. The lower CH₄ emission of *Indica* hybrid rice varieties was likely due to their significantly higher root biomass, as compared with Japonica rice varieties.

Key words: climate warming; food security; greenhouse gas; productivity; super-rice; Yangtze Delta.

^{*} 国家"十二五"粮食丰产科技工程项目(2011 号 BAD16B14)、中央级公益性科研院所基本科研业务费专项和南京农业大学青年科技创新基 金项目(KJ2012002)资助.

CH₄是大气中仅次于 CO₂的重要温室气体,单 位质量的 CH₄在百年尺度上的增温潜势是 CO₂的 25 倍^[1].稻田是大气 CH₄的重要排放源之一,约占全球 CH₄排放总量的 5.3%~19%^[2].水稻是我国最重要 的口粮作物,全国 60% 以上的人口以稻米为主食. 随着人口增长和经济发展,我国的粮食需求仍将呈 现持续刚性增长.到 2030年,我国的水稻产量必须 较现有水平提高 20%,才能满足需求^[3].在现有稻 田面积不减少的前提下,进一步提高水稻单产是确 保粮食安全的必由之路.目前我国碳排放总量已居 世界首位,其中水稻种植每年排放 CH₄达7.2~9.5 Tg^[4],有关我国稻田 CH₄排放的问题倍受国际关注. 因此,在确保水稻持续增产的同时,能否实现稻田 CH₄显著减排,是我国现代水稻生产面临的新挑战.

近年来,超级稻以其显著的产量优势在我国的 推广面积迅速增加.2011年在全国的示范推广面积 达到 733 万 hm²,占全国水稻种植面积的 24.7%^[5]. 大量研究表明[6-7],与常规水稻相比,超级稻的增产 优势主要表现在叶面积指数较大、光合速率高、根量 大、根系活性强及物质生产力高等方面. 而 Lindau 等[8]研究发现水稻干物质量、根体积、根系干物质 量、分蘖数及产量均与稻田 CH₄排放量呈正相关;黄 耀等^[9]研究发现,水稻的物质生产力与稻田 CH,排 放量也呈正相关.因此,超级稻的生产力优势是否将 成为 CH₄ 排放优势,成为学界和公众广泛关注的新 焦点. 目前有关不同水稻品种 CH4 排放特征及其与 植株生长特性的关系研究,大多集中在常规水稻品 种方面[10-11].关于超级稻的研究主要集中在品种选 育^[12]、产量和品质形成的生理生态机制及高产栽培 技术等方面^[13-14],而有关其 CH₄ 排放方面的研究较 少.至今,人们对超级稻的 CH,排放特征及其与植株 生长特性关系的认识尚不很清楚. 长江三角洲是我国 的高产稻作区[15],超级稻发展迅速.为此,本研究收 集了该区域广泛种植的主要超级稻品种,监测不同类 型超级稻品种的稻田 CH₄排放特征,并探讨了 CH₄排 放与植株生长特性的关系,以期为长江三角洲及类似 区域的高产低碳稻作创新提供理论和技术支撑.

1 材料与方法

1.1 供试材料

供试水稻品种为近几年经过省或国家审定的长 江三角洲主要超级稻品种14个,包括6个粳型超级 稻(宁粳3号、扬粳4038、新稻18、淮稻9号、宁粳1 号和武运粳24),8个籼型杂交超级稻(II优084、新 两优6号、扬两优6号、丰两优香一号、徽两优6号、 中浙优1号、内2优6号和新两优6380).所用种子 分别购自于相应的种子公司或来源于品种育成 单位.

1.2 试验设计

在 2011 年完成预备试验,掌握各品种的基本特 性之后,于 2012 年在南京农业大学南京牌楼试验基 地进行盆栽试验. 盆高 22 cm,底部直径 19 cm.所用 土壤取自南京市南京农业大学江浦实验农场稻田土 壤,土壤 pH 值为 6.75,碱解氮为 96.8 mg·kg⁻¹,全 氮为 2.1 g·kg⁻¹,有机质为 30.7 g·kg⁻¹.土壤晒干 后粉碎过筛(孔径为 3 mm),每盆装土 7 kg,并于 6 月 18 日加水浸泡.稻种于 5 月 27 日播种育秧,6 月 25 日移栽.每盆 3 穴,每穴 1 苗,每个品种种植 15 盆. 6 月 23 日每盆施复合肥(N: P₂O₅: K=12:6:7) 3.5 g 作基肥,7 月 4 日每盆施尿素 1 g 作分蘖肥.全 生育期保持浅水灌溉,并按照实际情况及时防治病 虫害,确保植株生长良好.

1.3 测定指标与方法

1.3.1 植株特性观测 在分蘖盛期、抽穗期、成熟期 每个品种取3盆,分别观测分蘖数,测定株高、叶面积、地上部生物量、根系生物量和籽粒质量等指标. 其中根系取样方法为:取出整盆水稻根系,用自来水 小心清洗掉土壤和杂质,尽量获得完整根系.

1.3.2 温室气体观测 采用密闭静态箱法采集温室 气体^[16].采样箱为圆柱体,由 PVC 材料制成.箱底 直径 30 cm,高度随植株高度而增加.测定时,把水 注入箱体底槽,实现密封.水稻移栽后第 12 天开始 采样,每个品种监测 3 盆.每隔 7 d 采样 1 次,采样 时间固定在 9:00—11:00. 抽气时间分别为罩箱后 的 0、5、10、15 min,每次抽取 50 mL 气体样品.气体 样品用 Agilent 7890A 气相色谱仪分析,标准气体由 国家标准物质中心提供.气体排放率由 4 个气体样 品浓度值经线性回归分析得出. CH₄排放通量计算 方法见文献[11],并以内插积分求和法计算全生育 期 CH₄排放总量.

1.4 数据处理

试验结果均以3次重复的平均值表示,采用 Microsoft Excel 2003 软件对数据进行处理和绘图, 采用 SPSS 11.5 统计软件中的单因素方差分析,使 用 Pearson 相关系数评价其相关性. 图 2、图 3 和图 4 所用数据均为相对值. 相对值计算方法:相对值=单个品种某个指标的观测值/该类型所有品种该指标观测值的平均值.

2 结果与分析

2.1 稻田 CH₄ 排放通量的动态特征

梗型超级稻和籼型杂交超级稻的 CH₄排放通量 曲线均呈现双峰趋势,峰值分别出现在分蘖盛期和 孕穗期,季节变化特征相似(图1).在分蘖期,随着 水稻生长发育进程,CH₄排放通量呈递增趋势.梗型 超级稻和籼型杂交超级稻分别在 7 月 29 日和 7 月 22 日出现第 1 个 CH₄排放高峰,两类品种的平均峰 值分别为 10.1 和 10.3 mg·m⁻²·h⁻¹,品种类型间 差异不显著.分蘖末期后,CH₄排放通量出现一个先 下降后上升的过程,粳稻和籼稻分别在 8 月 19 日和 8 月 26 日出现第 2 个排放高峰,平均排放通量分别 为 11.9 和 5.9 mg·m⁻²·h⁻¹,粳稻的峰值为籼稻的 2.0 倍.第 2 个峰值过后,两类品种的 CH₄排放通量 呈现稳定下降趋势.

2.2 不同生育期 CH₄排放总量及其比例

从表1可知,两种类型超级稻品种的 CH₄排放 量在不同生育期的比例呈现类似的变化趋势,即苗 期-分蘖期 CH₄排放量占排放总量的比例较大,粳稻 和籼稻分别为 49.7% 和 64.4%.随后,两类超级稻 各生育期的 CH₄排放量占总排放量的比例显著下 降.粳型和籼型超级稻的 CH₄排放总量分别为 10.9 和 6.8 g·m⁻²,前者比后者高 37.6% (*P*<0.01).两 类超级稻 CH₄排放总量上的差异主要出现在分蘖期 -抽穗期及抽穗期-成熟期.分蘖期-抽穗期粳型超 级稻 CH₄排放量是籼型杂交超级稻的 1.9 倍,抽穗 期-成熟期该比值为 2.7 倍.

2.3 超级稻 CH₄排放与植株地上部生长特性的相关性

图1 粳型超级稻(a)和籼型杂交超级稻(b)全生育期 CH₄ 排放通量

Fig. 1 CH_4 emission fluxes of *Japonica* super-rice (a) and *Indica* hybrid super-rice (b) during entire growth period.

NJ3:宁粳3号 Ningjing 3; YJ:扬粳4038 Yangjing 4038; XD:新稻18 Xindao 18; HD:淮稻9号 Huaidao 9; NJ1:宁粳1号 Ningjing 1; WYJ: 武运粳24 Wuyunjing 24; IIY:II优084 II you 084; XY:新两优6号 Xinliangyou 6; YY:杨两优6号 Yangliangyou 6; FY:丰两优香一号 Fengliangyouxiang 1; HY:徽两优6号 Huiliangyou 6; ZY:中浙优1号 Zhongzheyou 1; NY:内2优6号 Nei 2 you 6; XY6:新两优6380 Xin-liangyou 6380.

两种类型超级稻的 CH₄排放总量均与最大叶面 积呈显著正相关,与最高分蘖数相关不显著,粳稻的 CH₄排放总量与株高呈显著正相关,籼稻的 CH₄排 放总量与株高呈负相关,但不显著(图 2、表 2).从 水稻生长特性看(表 2),两种类型超级稻的平均最 高分蘖数无显著差异,籼型杂交超级稻的株高和最 大叶面积的平均值均显著高于粳型超级稻.籼稻的 平均株高是粳稻的 1.3 倍,平均最大叶面积比粳稻 高 43% (P<0.01).

2.4 超级稻 CH₄排放与根系生长的相关性 两种类型超级稻的CH₄排放总量均与根冠比呈

表1 粳型超级稻和籼型杂交超级稻不同生育期 CH₄排放总量

 Table 1
 Total methane emissions and their contribution rates of Japonica super-rice and Indica hybrid super-rice at different growth stages

超级稻类型	排放总量	苗期-分蘖期 Seeding-tillering stage		分蘖期	–抽穗期	抽穗期–成熟期 Heading-maturity stage		
Super rice type	Total			Tillering-h	eading stage			
	emission	排放量	贡献率	排放量	贡献率	排放量	贡献率	
	$(\mathbf{g} \cdot \mathbf{m}^{-2})$	Emission	Contribution	Emission	Contribution	Emission	Contribution	
		$(g \cdot m^{-2})$	rate (%)	$(\mathbf{g} \cdot \mathbf{m}^{-2})$	rate (%)	$(g \cdot m^{-2})$	rate (%)	
梗稻 Japonica rice	10.9	5.4	49.7	2.5	23.1	3.0	27.2	
籼稻 Indica rice	6.8	4.4	64.4	1.3	18.5	1.1	17.1	

表 2	粳	型超级稻和籼型杂交超级稻主要品种特性及其与 ${f CH}_4$ 排放总量的相关性
Table	2	Relationship between plant growth characteristics and total CH ₄ emissions of Japonica super-rice and Indica hybrid
super-	rice	e

超级稻类型		株高	最大叶面积	最高分蘖数	最大根生物量	根冠比	总生物量	籽粒产量	收获指数
Super rice type		Plant height (cm)	$\begin{array}{c} \text{Maximum} \\ \text{leaf area} \\ (\ \text{cm}^2 \ \boldsymbol{\cdot} \\ \text{plant}^{-1} \) \end{array}$	Maximum tiller No. (tillers • plant ⁻¹)	$\begin{array}{l} Maximum\\ root \ biomass\\ (\ g \ \cdot \ plant^{-1} \) \end{array}$	Root- shoot ratio	Aboveground biomass $(g \cdot m^{-2})$	Yield $(g \cdot m^{-2})$	Harvest index
粳稻	均值 Mean	81.7	733.6	10.2	5.3	0.33	1920.2	962.5	0.5
Japonica rice	r	0.466 *	0.492 *	0.046	0.158	-0.085	0.003	0.115	0.175
籼稻	均值 Mean	106.8	1287.2	11.0	9.1	0.35	2537.0	1158.1	0.5
Indica rice	r	-0.392	0.444 *	0.045	-0.634 *	-0.494	-0.466 *	-0.684 * *	-0.567 * *

* P<0.05; * * P<0.01.

Fig. 2 Relationships between total CH_4 emission and plant height (*H*) and maximum leaf area (*A*₁) of *Japonica* super-rice (a) and *Indica* hybrid super-rice (b).

负相关,但不显著,与最大根生物量的相关性不一 致.其中,籼稻的 CH₄排放总量与最大根生物量呈显 著负相关,粳稻的 CH₄排放总量与最大根生物量呈 正相关,但不显著(图 3、表 2).从水稻生长特性看 (表 2),两种类型超级稻的平均根冠比无显著差异, 但籼型杂交超级稻的平均最大根生物量显著高于粳 型超级稻,是粳稻的 1.7 倍(*P*<0.01).

2.5 超级稻 CH₄排放与干物质生产的相关性

由图4可知,两种类型超级稻品种的 CH₄排放 量与植株生产力之间的相关性不一致. 粳型超级稻 成熟期地上部生物量和籽粒产量均与 CH₄排放总量 呈正相关,而籼型杂交超级稻成熟期地上部生物量 和籽粒产量均与 CH₄排放总量呈负相关. 籼稻的生 产力显著高于粳稻,其中成熟期地上部生物量是粳

图3 粳型超级稻(a)和籼型杂交超级稻(b)CH₄排放总量 与根系生长特性的关系

Fig. 3 Relationships between total CH_4 emission and root growth characteristics of *Japonica* super-rice (a) and *Indica* hybrid super-rice (b).

Br:根生物量 Root biomass; R/S:根冠比 Root-shoot ratio.

稻的 1.3 倍(P<0.01), 籽粒产量比粳稻高 17% (P<0.05)(表 2). 综合表 1、表 2 可知, 粳稻和籼稻单位 产量 CH₄排放量分别为 11.4 和 6.2 g CH₄·kg⁻¹, 两 者差异达到极显著水平. 粳型超级稻 CH₄排放总量 与收获指数相关不明显, 籼型杂交超级稻 CH₄排放 总量与收获指数呈极显著负相关.

3 讨 论

3.1 超级稻 CH₄排放特征

本研究发现,超级稻 CH₄ 排放通量季节变化呈 双峰模式,这与常规稻的 CH₄ 排放特征基本类 似^[17-18].不同水稻类型间 CH₄ 排放量存在显著差异 (图 1).现有研究表明^[19-20],常规稻 CH₄ 排放量显 著高于杂交稻品种,这与本研究结果基本一致.本研

图4 梗型超级稻(a)和籼型杂交超级稻(b)CH₄排放总量 与干物质生产的关系

Fig. 4 Relationships between total CH_4 emission and plant productivity of *Japonica* super-rice (a) and *Indica* hybrid super-rice (b).

Ab:总生物量 Aboveground biomass; Y:产量 Yield.

究发现,两种类型水稻品种 CH₄排放差异主要出现 在分蘖期至抽穗期以及抽穗期至成熟期. 苗期至分 蘖期两种类型水稻品种 CH₄ 排放量无明显差异,水 稻生长前期植株较小,根系及通气组织均不发达, CH₄ 排 放 量 主 要 受 土 壤 因 素 和 环 境 因 素 的 影 响[17-18]. 分蘖期至抽穗期粳型超级稻的 CH₄排放量 显著高于籼型杂交超级稻. 粳型超级稻在抽穗期地 上部生物量(数据未列出)和根系生物量(表2)都 显著低于籼型杂交稻,而根系分泌物的数量与植物 的根量(r=0.919)和地上部生物量(r=0.954)呈正 相关^[21],因此籼型杂交超级稻的 CH₄产生力可能显 著高于粳型超级稻,但籼型杂交超级稻排放量低于 梗型超级稻. 说明两种类型水稻品种 CH₄排放差异 关键因子是 CH4氧化能力而不是 CH4产生能力. 在 水稻生长后期,气温较低,水稻生长衰退,根表皮层 渗透性下降,通气组织堵塞,CH₄传输能力下降,期 CH₄排放较小. 但粳型超级稻从抽穗至成熟的时间 较籼型杂交超级稻长(粳稻平均57d,籼稻平均42 d).因此,抽穗期至成熟期粳型超级稻的 CH₄排放 量显著高于籼型杂交超级稻.

3.2 超级稻植株特性与 CH₄ 排放量的关系

水稻植株是强烈影响稻田 CH₄排放的重要植物 载体,其生长发育影响 CH₄的产生、氧化和传 输^[22-23]. Gogoi 等^[24]研究报道,水稻植株的分蘖数、 株高、叶面积均与 CH₄排放量呈显著正相关. 但本研 究发现,超级稻的叶面积与 CH₄排放呈显著正相关, 分蘖数与 CH₄排放量的相关性不明显,株高和根生 物量与排放量的相关性因水稻类型而异. 粳型超级 稻株高与 CH₄排放量呈显著正相关,根生物量与 CH₄排放量呈正相关趋势,而籼型杂交超级稻的株 高与 CH₄排放量呈负相关趋势,根生物量与 CH₄排 放量呈显著负相关. 主要原因可能是不同类型水稻 品种对 CH₄产生、氧化和传输的影响不同^[25-26]. 粳 型超级稻株高和根系较小,对 CH₄的产生和传输效 应可能大于氧化效应,而籼型杂交超级稻株高和根 系较大,对 CH₄的氧化效应可能大于产生和传输效 应. 有关水稻植株特性对稻田 CH₄产生与排放的影 响机理还有待进一步研究.

目前关于水稻干物质生产对 CH₄排放量的影响 仍存在较大争议.有研究发现,稻田 CH4季节性排放 总量随水稻生产力水平的提高而增加^[9,27].物质生 产力大的水稻品种能分配更多的光合产物到根系. 通过根系分泌物、根系脱落物等为产 CH₄ 菌提供更 多的基质,促进了 CH₄的产生. 而另有研究表明,稻 田 CH, 排放与水稻的生物量呈负相关, 生物量大的 水稻品种通过发达的根系分泌更多的 0,到根际,促 进 CH₄的氧化,减少 CH₄排放^[10,20].本研究结果表 明. 粳型超级稻 CH。排放量与物质生产力呈正相关, 但不显著;而籼型杂交超级稻 CH₄排放量与物质生 产力呈显著负相关. CH₄排放与水稻根系以及干物 质生产力的关系因品种类型而异,但两种类型的超 级稻品种 CH₄ 排放与根冠比均呈正相关(表 2). Das 等^[28]研究认为,稻田 CH₄ 排放与水稻的光合产 物分配有关,光合产物分配到根系多的水稻品种 CH,排放量大.主要是因为分配到根系的光合产物 有一部分以根际沉积的形式转移到土壤^[29],进而促 进了 CH₄的产生.

4 结 论

粳型超级稻和籼型杂交超级稻排放动态都呈现 双峰模式,但粳型超级稻 CH₄排放总量显著高于籼 型杂交超级稻,尤其是在水稻生长发育中后期.可能 原因是籼型杂交超级稻的根系生物量显著高于粳型 超级稻.超级稻的植株生长特性与 CH₄排放存在一 定的相关性,且因品种类型而异.两种类型超级稻的 最大叶面积均与 CH₄排放总量呈显著正相关,但最 高分蘖数与 CH₄排放总量相关不明显. 粳型超级稻 的株高与 CH₄排放总量呈显著正相关,而籼型杂交 超级稻的株高与 CH₄ 排放总量呈负相关. 粳型超级 稻成熟期地上部生物量、产量和收获指数与 CH₄ 排 放总量相关不明显,但籼型杂交超级稻 CH₄ 排放总 量与成熟期地上部生物量、产量和收获指数呈显著 负相关.上述结果表明,在高产低碳的超级稻品种筛 选上,籼型杂交超级稻品种可能更具潜力.

参考文献

- Forster P, Ramaswamy V, Artaxo P, et al. Changes in atmospheric constituents and in radiative forcing// Solomon S, Qin D, Manning M, eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007: 129-234
- [2] IPCC. Climate Change 2007: Couplings between Changes in the Climate System and Biogeochemistry [EB/OL]. (2007-11-17) [2012-12-15]. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter7.pdf
- [3] Peng SB, Tang QY, Zou YB. Current status and challenges of rice production in China. *Plant Production Science*, 2009, **12**: 3–8
- [4] Zhang G-B (张广斌), Ma J (马 静), Xu H (徐华), et al. Literature review on estimation of methane emission from paddy fields in China. Acta Pedologica Sinica (土壤学报), 2009, 46(5): 33-42 (in Chinese)
- [5] Ministry of Agriculture of the People's Republic of China (中华人民共和国农业部). Deploy of Ministry of Agriculture the National Super Rice Research and Extension Work in 2012[EB/OL]. (2012-05-19) [2012-12-15]. http://www.moa.gov.cn/ztzl/cjn/gzbs/201206/t20120604_2724875.htm
- [6] Wang X (王 熹), Tao L-X (陶龙兴), Yu M-Y (俞 美玉), et al. Physiological model of super hybrid rice Xieyou 9308. Chinese Journal of Rice Science (中国水 稻科学), 2002, 16(1): 38-44 (in Chinese)
- [7] Xu M (许 明), Jia D-T (贾德涛), Ma D-R (马殿 荣), et al. Correlation of root physiology and leaf photosynthesis characteristics in Northern Chinese Japonica super rice. Acta Agronomica Sinica (作物学报), 2010, 36(6): 1030-1036 (in Chinese)
- [8] Lindau CW, Bollich PK, DeLaune RD. Effect of rice variety on methane emission from Louisiana rice. Agriculture, Ecosystems & Environment, 1995, 54: 109-114
- [9] Huang Y (黄 耀), Sass RL, Fisher FM, et al. Contribution of rice biomass production to CH₄ emission from irrigated paddy soils. Agro-Environmental Protection (农 业环境保护), 1999, 18(4): 150-154 (in Chinese)
- [10] Fu Z-Q (傅志强), Huang H (黄 璜), Zhu H-W

(朱华武), et al. Relativity between CH₄ and N₂O emission and rice plant characteristics. Journal of Hunan Agricultural University (Natural Sciences) (湖南农业大学学报·自然科学版), 2011, **37**(4): 356-360 (in Chinese)

- [11] Fu Z-Q (傅志强), Zhu H-W (朱华武), Chen C (陈灿), et al. Research on the correlation between the greenhouse gases emission from paddy field and the biological characteristics of rice root system. Journal of Agro-Environment Science (农业环境科学学报), 2012, 30(12); 2416-2421 (in Chinese)
- [12] Chen W-F (陈温福), Xu Z-J (徐正进), Zhang W-Z (张文忠), et al. Advances and prospects in research of rice breeding for super high yield in China. Journal of Shenyang Agricultural University (沈阳农业大学学 报), 2007, 38(5): 662-666 (in Chinese)
- [13] Wu W-G (吴文革), Zhang H-C (张洪程), Wu G-C (吴桂成), et al. Preliminary study on super rice population sink characters. Scientia Agricultura Sinica (中国农业科学), 2007, 40(2): 250-257 (in Chinese)
- [14] Zou Y-B (邹应斌), Ao H-J (敖和军), Wang S-H (王淑红), et al. Studies on San-Ding cultivation method for super rice. I. The concept and the principle. *Chinese Agricultural Science Bulletin* (中国农学通报), 2006, 22(5): 158-162 (in Chinese)
- [15] Zhao Y-W (赵言文), Shi Y-C (施毅超), Hu Z-Y (胡正义), et al. Cultivated land protection based on national food security in Yangtze River Delta. Resources and Environment in the Yangtze Basin(长江流域资源与 环境), 2007, 16(4): 461-465 (in Chinese)
- [16] Wang W-Q (王维奇), Lei B (雷 波), Li P-F (李 鹏飞), et al. Application of static chamber method on methane emission and strategy of methane reduction in paddy field. Experimental Technology and Management (实验技术与管理), 2011, 28(7): 53-56, 78 (in Chinese)
- [17] Tyagi L, Kumari B, Singh SN. Water management: A tool for methane mitigation from irrigated paddy fields. Science of the Total Environment, 2010, 408: 1085-1090
- [18] Das K, Baruah KK. A comparison of growth and photosynthetic characteristics of two improved rice cultivars on methane emission from rainfed agroecosystem of northeast India. Agriculture, Ecosystems and Environment, 2008, 124: 105-113
- [19] Fu Z-Q (傅志强), Huang H (黄 璜), He B-L (何 保良), et al. Correlation between rice plant aerenchyma system and methane emission from paddy field. Acta Agronomica Sinica (作物学报), 2007, 33(9): 1458-1467 (in Chinese)
- [20] Fu Z-Q (傅志强), Huang H (黄 璜), Xie W (谢 伟), et al. Effects of high-yielding rice cultivars and cultivation pattern on methane emission from paddy

field. Chinese Journal of Applied Ecology (应用生态学报), 2009, 20(12): 3003-3008 (in Chinese)

- [21] Wassmann R, Aulakh MS. The role of rice plants in regulating mechanisms of methane missions. *Biology and Fertility of Soils*, 2000, **31**: 20–29
- [22] Yan L-N (阎丽娜), Li X (李 霞). Effects of rice on methane emission from paddy fields. *Chinese Agricultur*al Science Bulletin (中国农学通报), 2008, 24(10): 471-476
- [23] Zhang X-Y (张晓艳), Ma J (马 静), Li X-P (李小平), et al. Reviews on methane transport in rice paddy field. Soils (土壤), 2012, 44(2): 181-187 (in Chinese)
- [24] Gogoi N, Baruah KK, Gogoi B. et al. Methane emission characteristics and its relations with plant and soil parameters under irrigated rice ecosystem of northeast India. Chemosphere, 2005, 59: 1677–1684
- [25] Ding W-X (丁维新), Cai Z-C (蔡祖聪). Effect of plants on methane production, oxidation and emission. *Chinese Journal of Applied Ecology* (应用生态学报), 2003, 14(8): 1379-1384 (in Chinese)
- [26] Jia Z-J (贾仲君), Cai Z-C (蔡祖聪). Effects of rice

plants on methane emission from paddy fields. *Chinese Journal of Applied Ecology*(应用生态学报), 2003, 14 (11): 2049-2053 (in Chinese)

- [27] Ren L-X (任丽新), Wang G-C (王庚辰), Zhang R-J (张仁健), et al. Methane emissions from rice fields in the Chengdu Plain of China. Chinese Journal of Atmosphere Sciences (大气科学), 2002, 26(6): 731-743 (in Chinese)
- [28] Das K, Baruah KK. Association between contrasting methane emissions of two rice (*Oryza sativa* L.) cultivars from the irrigated agroecosystem of northeast India and their growth and photosynthetic characteristics. *Acta Physiologiae Plantarum*, 2008, **30**: 569–578
- [29] Lu Y, Watanabe A, Kimura M. Input and distribution of photosynthesized carbon in a flooded rice soil. *Global Biogeochemical Cycles*, 2002, 16: 321-328

作者简介 闫晓君,女,1987 年生,硕士.主要从事稻田温室 气体研究. E-mail: yanxiaojun73@163.com

责任编辑 张凤丽