: 文 www.scichina.com csb.scichina.com

Shor 整数分解量子算法的加速实现

付向群, 鲍皖苏*, 周淳

解放军信息工程大学电子技术学院,郑州 450004 * 联系人, E-mail: 2004bws@sina.com

2009-08-24 收稿, 2009-11-28 接受 国家自然科学基金资助项目(批准号: 10501053)

摘要 基于半经典量子 Fourier 变换的实现方法,提出了整数 k 的 3 元二进制表示生成向量和生成函数概念,构造了生成函数的真值表,证明了由其逐比特生成的整数 k 的 3 元二进制表示向量是整数 k 的一种 NAF 表示,且表示中非 0 元个数的最大值 为 [($\lceil \log k \rceil + 1$)/2],并基于此重新设计了 Shor 算法的量子实现线路.与 Parker 的 Shor 算法量子实现线路相比,计算资源大体相同(所需的基本量子门数量均为 $O(\lceil \log N \rceil^3)$,所需的量子比特数量前者较后者多 2 量子比特),但实现速度提高了 2 倍.

关键词 Shor 量子算法 半经典量子 Fourier 变换 量子比特 基本量子门

NAF 法

迄今为止, 经典公钥密码体制一般都是建立在 难解的数学问题基础之上, 目前国际上广泛认可和 使用的三类数学难题是整数分解问题、有限域上离 散对数问题和椭圆曲线上离散对数问题. 在经典计 算机上, 求解这三个问题的最好算法的计算复杂性 要么是亚指数时间的, 要么是指数时间的. 比如: 目 前解决整数分解问题的最优经典算法是数域筛法, 其计算复杂性是亚指数时间的, 即

$$O\left(e^{(1.923+o(1))(\ln N)^{1/3}(\ln \ln N)^{2/3}}\right).$$

1994年, Shor^[1]利用量子计算机强大的并行计算 能力,提出了在多项式时间内求解整数阶的量子计 算算法,并将整数分解问题和离散对数问题归约为 求解整数阶问题. Shor 算法的提出对经典公钥密码体 制的安全性产生了重要的影响,促进了量子计算机 的研究. 自此以后,量子算法的优化和实现方法研究 引起了国内外学者的广泛关注,取得了许多重要的 研究成果^[2~6].

1996年, Vedral 等人^[7]设计了一个量子线路, 该 线路需要 7n+1个量子比特和 O(n³) 基本量子门就可 以实现模幂运算(n是所分解整数的比特长),如果利 用 Toffoli 门代替用于存储运算过程中产生的中间态 的 n 比特量子寄存器, 可将所需量子比特数降为 4n+3,同年,Beckman 等人^[8]对此作了进一步分析, 如果所需的 Toffoli 门数量不受限制, 那么实现模幂 运算只需要 4n+1个量子比特. 1998 年, Zalka^[9]给出 一个需要 3n+O(log n) 个量子比特实现整数分解的算 法. 2000 年. Parker 等人^[10]基于 Griffiths 等人^[11]提出 的半经典量子 Fourier 变换,设计了一个量子线路, 该线路只需要 n+1个量子比特就可以完成整数分解. 与此同时,国内学者在此研究领域也取得了卓有成 效的研究成果, 2004年, Long^[12]给出了利用经典并行 加速量子计算算法的思想,并于 2007 年基于对偶量 子计算机^[13]实现了 Shor 整数分解量子算法^[14].

到目前为止,对 Shor 算法实现方法的优化都是 基于算法实现所需的量子比特数和基本量子门数量,

英文版见: Fu X Q, Bao W S, Zhou C. Speeding up implementation for Shor's factorization quantum. Chinese Sci Bull, 2010, 55, doi: 10.1007/s11434-010-0039-0

即从算法实现所需的资源考虑,还没有从提高算法 的实现速度方面去研究 Shor 算法的优化.如何在量 子计算模式下提高 Shor 算法的实现速度,就其应用 而言具有重要的意义.

本文针对半经典量子 Fourier 变换输入逐比特的 特点^[11],提出了整数 k 的 3 元二进制表示生成向量和 生成函数概念,构造了生成函数的真值表,证明了其 逐比特生成的整数 k 的 3 元二进制表示是整数 k 的一 种 NAF 表示,且该表示中非 0 元个数的最大值为 $\left[\left(\left\lceil \log k \right\rceil + 1\right)/2\right]$,并基于此重新设计了 Shor 算法的 量子实现线路.与文献[10]中 Shor 算法量子实现方法 相比,所需的计算资源大体相同(所需的基本量子门 数量均为 $O\left(\left\lceil \log N \right\rceil^{3}\right)$,所需的量子比特数量前者较 后者多 2 量子比特),但实现速度提高 2 倍.

1 基础知识

定义1 量子 Fourier 变换^[2,3] 如果在一组标准正 交基 $|0\rangle$, $|1\rangle$,…, $|N-1\rangle$ 上的一个线性算子在基态上的 作用 U_F 为

$$U_F: \left| j \right\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega_N^{jk} \left| k \right\rangle$$

那么对任意量子态的作用可以表示为

$$U_{F}:\sum_{j=0}^{N-1} x_{j}\left|j\right\rangle \mapsto \frac{1}{\sqrt{N}}\sum_{k=0}^{N-1}\sum_{j=0}^{N-1} x_{j}\omega_{N}^{jk}\left|k\right\rangle$$

称 U_F 为量子 Fourier 变换, 其中" \mapsto "表示为该变换 是可逆变换.

在文献[10]中, Parker 等人首次将半经典量子 Fourier 变换应用于 Shor 算法实现,其量子线路如图 1 所示,其中,H为 Hadamard 门, $R'_{j} = \begin{pmatrix} 1 & 0 \\ 0 & \phi_{j} \end{pmatrix}, \phi_{j} =$ $e^{-2\pi i \sum_{k=2}^{j} m_{j-k}/2^{k}}$, U_{a} 由一个控制比特控制,其变换为

 $cU_a |r\rangle |x\rangle = |r\rangle |a^r x \mod N\rangle$,最终观测得到的结果

图 1 基于半经典量子 Fourier 变换的 Shor 算法实现线路

 $c = \sum_{i=0}^{L} 2^{L-i} m_i, \quad L = 2\lceil \log N \rceil + 1, \lceil \log N \rceil 是 比 \log N 大$ 的最小整数.

由于半经典量子 Fourier 变换是逐比特输入的^[11],因此,图 1 中用于控制 U_a 变换的存储控制比特的寄存器可以循环使用,使得 Shor 算法实现只需 $\lceil \log N \rceil + 1 \land \pm 2$ 比特^[10],并且需要 $O(\lceil \log N \rceil^3)$ 基本量子门.

2 逐比特输入的整数 k 的 NAF 表示法求解 方法

在 Shor 整数分解量子算法中需要运行两次量子 Fourier 变换和一次模幂运算,文献[9]中指出运行一 次量子 Fourier 变换需要 $O(n^2)$ 基本量子门,运行一 次模幂运算需要 $O(n^3)$ 基本量子门,因此模幂运算是 Shor 算法实现中最耗时的.

在经典运算中通常通过研究整数 k 的表示法来 提高模幂运算 $a^k \mod N$ 的运算速度,如整数 k 的 NAF 法^[15]. NAF 表示法之所以能提高模幂运算的实 现速度,关键是整数 k 的 NAF 表示法中的非 0 元的 个数比二进制表示法中少.但是,在现有的求整数 k 的 NAF 表示法的算法^[15]中, k 的所有比特信息是 一次输入的,而在半经典量子 Fourier 变换中输入是 逐比特的,并且对输入前的比特信息不做存储,否则 会增加所需的量子比特数,因此针对这种逐比特信 息获取的整数 k,利用文献[15]的方法求不出整数 k的 NAF 表示,那么如何给出它的最终 NAF 表示?

定义 2 设布尔函数 $f(x, y, z) = (u_1, u_2)$, 整数 k 的 二进制表示形式为 $(a_0, a_1, \dots, a_{\lfloor \log k \rfloor})_2$, 即 k= $\sum_{i=0}^{\lfloor \log k \rfloor} a_i 2^i$,

 $\diamondsuit c_{-1} = 0 , \ a_{[\log k]+1} = a_{[\log k]+2} = 0 , \ \curlyvee$

$$\begin{cases} f(c_{i-1}, a_i, a_{i+1}) = (b_{1i}, b_{2i}) \\ h(c_{i-1}, a_i, a_{i+1}) = c_i \end{cases},$$
(1)

再令

$$b_i = \begin{cases} -b_{2i}, & b_{1i} = 0, \\ b_{2i}, & b_{1i} = 1, \end{cases}$$
(2)

其中 $i = 0, 1, \dots, [\log k] + 1$,则称 $(b_0, b_1, \dots, b_{[\log k]+1})$ 是整数 k 的 3 元二进制表示生成向量,其对应的整数为

 $k' = \sum_{i=0}^{\lfloor \log k \rfloor + 1} b_i 2^i$, f(x, y, z) 和 h(x, y, z) 称为生成函数.

由定义2可知, 生成函数 f(x,y,z) 和 h(x,y,z) 的 结构决定了整数 k 的 3 元二进制表示生成向量的最 终形式.

定理 1 设整数 *k* 的二进制表示形式为 $(a_0, a_1, \dots, a_{\lfloor \log k \rfloor})_2$, $k = \sum_{i=0}^{\lfloor \log k \rfloor} a_i 2^i$, *k* 的 3 元二进制表示生成向 量 为 $(b_0, b_1, \dots, b_{\lfloor \log k \rfloor + 1})$, $k' = \sum_{i=0}^{\lfloor \log k \rfloor + 1} b_i 2^i$, 生成函数 $f(x, y, z) = (u_1, u_2)$ 和 h(x, y, z) = v 的真值表如表 1,表 2 所示,则 $(b_0, b_1, \dots, b_{\lfloor \log k \rfloor + 1})$ 是 *k* 的一种 NAF 表示.

证明: 由 f(x, y, z) 和 h(x, y, z) 的真值表可知, 整数 k 的 3 元二进制表示生成向量 $(b_0, b_1, \dots, b_{\lfloor \log k \rfloor + 1})$ 中 $b_i = 0$ 或 ± 1 , $i = 0, 1, \dots, \lfloor \log k \rfloor + 1$, 因此要证明 $(b_0, b_1, \dots, b_{\lfloor \log k \rfloor + 1})$ 是 k 的一种 NAF 表示, 只需证明 k = k'. 采用数学归纳方法证明.

当整数 $k \ge 1$ 比特时,显然有 k = k'.

设整数 $k \neq j+1$ ($j \geq 1$)比特时,结论成立,即 k = k'.

如果整数 k 是 j+2 比特的,其二进制表示形式 为 $(a_0, a_1, \dots, a_j, a_{j+1})_2$. 当 $a_{j+1} = 0$ 时,由假设可知, k'=k;当 $a_{j+1} = 1$ 时,记 k"的二进制表示形式为 $(a'_0, a'_1, \dots, a'_j)_2$, k"的3元二进制表示生成向量为

x	у	Ζ	u_1	u_2
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	0	1
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	0	0

表1 f(x, y, z)的真值表

表 2 h(x, y, z) 的真值表

x	У	Ζ	v
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

 $(b'_0, b'_1, \dots, b'_j, b'_{j+1})$,其中 $a'_i = a_i$, $i = 0, 1, \dots, j$,那么由 定义 2 和生成函数的真值表可知, $b'_{j+1} = f(c_j, a'_{j+1}, a'_{j+2})$,其中 $a'_{j+1} = a'_{j+2} = 0$,故 b'_{j+1} 的取值只能为0或1.

不妨设整数 *k* 的 3 元二进制表示生成向量为 $(b_0, b_1, \dots, b_j, b_{j+1}, b_{j+2})$,易知其前 *j* 比特与整数 *k*" 的 3 元二进制表示生成向量 $(b'_0, b'_1, \dots, b'_j, b'_{j+1})$ 的前 *j* 比特 相同,即 $b_i = b'_i$, $i = 0, 1, \dots, j - 1$.

如果 $b'_{j+1} = 0$, 则 $c_j = h(c_{j-1}, a_j, 0) = 0$, 从而 (c_{j-1}, a_j) 的取值为 (0,0) 和 (0,1) 或 (1,0).

当 $(c_{j-1}, a_j) = (0,1)$ 时, 可得 $(b'_{1j}, b'_{2j}) = f(c_{j-1}, a_j, a'_{j+1}) = (1,1)$, 即 $b'_j = 1$, 此时 $(b_{1,j}, b_{2,j}) = f(c_{j-1}, a_j, a_{j+1}) = (0, 1)$, $c'_j = h(c_{j-1}, a_j, a_{j+1}) = 1$, 因此 $(b_{1,j+1}, b_{2,j+1}) = f(c'_j, a_{j+1}, a_{j+2}) = (0,0)$, 从而 $c'_{j+1} = h(c'_j, a_{j+1}, a_{j+2}) = 1$, $(b_{1,j+2}, b_{2,j+2} = f(c'_{j+1}, a_{j+2}, a_{j+3}) = (1,1)$, 其中 $a_{j+2} = 0$, $a_{j+3} = 0$.

同理,当 $(c_{j-1},a_j) = (1,0)$ 时, $b'_j = 1$, $b_j = \overline{1}$, $b_{j+1} = 0$, $b_{j+2} = 1$,其中 $\overline{1} = -1$;当 $(c_{j-1},a_j) = (0,0)$ 时, $b'_j = 0$, $b_j = 0$, $b_{j+1} = 1$, $b_{j+2} = 0$.

即
$$k' = \sum_{t=0}^{j+2} b_t 2^t = \sum_{t=0}^{j+1} a_t 2^t$$
,故 $k' = k$.
如果 $b'_{j+1} = 1$,则同理可证 $k' = k$.

综上所述, k' = k, 即 $(b_0, b_1, \dots, b_{\lfloor \log k \rfloor + 1})$ 就是 k 的 一种 NAF 表示. 证毕.

在定理1的证明中,由于

$$\begin{cases} f(c_{i-1}, a_i, a_{i+1}) = (b_{1i}, b_{2i}), \\ f(c_i, a_{i+1}, a_{i+2}) = (b_{1,i+1}, b_{2,i+1}). \end{cases}$$

当 $(c_{i-1}, a_i, a_{i+1}) = (0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1) 时,$ $(b_{1i}, b_{2i}) = (0, 0), 即 b_i = 0, 所以 b_i b_{i+1} = 0.$

当 $(c_{i-1}, a_i, a_{i+1}) = (0, 1, 0)$ 时, 可得 $c_i = h(c_{i-1}, a_i, a_{i+1}) = 0$,又由于 $(b_{1,i+1}, b_{2,i+1}) = f(0, 0, a_{i+2})$,根据生成 函数 f 的真值表可知, $(b_{1,i+1}, b_{2,i+1}) = (0, 0)$ 与 a_{i+2} 的取 值无关,即 $b_{i+1} = 0$,所以 $b_i b_{i+1} = 0$.

当 $(c_{i-1}, a_i, a_{i+1}) = (0, 1, 1), (1, 0, 0)$ 或(1, 0, 1)时, 同理

可得, $b_i b_{i+1} = 0$.

因此,根据定理 1,所求出的整数 k 的 3 元二进制表示生成向量 $(b_0, b_1, \dots, b_{\lfloor \log k \rfloor + 1})$ 中相邻两个分量的乘积为零,即任何两个非零分量不相邻.

以下分析这种逐比特求出的整数 k 的 NAF 表示 中非 0 元个数的最大值.

定理 2 设整数 *k* 的二进制表示形式为 $(a_0, a_1, \dots, a_{\lfloor \log k \rfloor})_2$, $k = \sum_{i=0}^{\lfloor \log k \rfloor} a_i 2^i$, 则由定理 1 求出整数 *k* 的 3 元 二进制表示生成向量 $(b_0, b_1, \dots, b_{\lfloor \log k \rfloor + 1})$ 的非 0 元个数 最大值为 $\lceil (\lceil \log k \rceil + 1)/2 \rceil$.

证明:根据定理 1,求得的 $(b_0, b_1, \dots, b_{\lfloor \log k \rfloor+1})$ 是将 $(a_0, a_1, \dots, a_{\lfloor \log k \rfloor})_2$ 中连续两个或两个以上 1 的情况作如下变换

$$\underbrace{111\cdots111}_{j} \Rightarrow \overline{1}\underbrace{00\cdots00}_{j-1} 1 \quad (j \ge 2).$$

如果 $(a_0, a_1, \dots, a_{\lfloor \log k \rfloor})_2$ 中含有 i 个 1, $i < [(\lceil \log k \rceil + 1)/2]$,则 $(b_0, b_1, \dots, b_{\lfloor \log k \rceil + 1})$ 中含有少于 $[(\lceil \log k \rceil + 1)/2]$ 个非零元素.

如果 $(a_0, a_1, \dots, a_{\lfloor \log k \rfloor})_2$ 中含有 $\left[(\lceil \log k \rceil + 1)/2 \right]$ 个 1, 且不存在" $\underbrace{111\cdots 111}_{j}$ " $(j \ge 2)$ 形式,则当 $\lceil \log k \rceil$ 为 奇数时, $(a_0, a_1, \dots, a_{\lfloor \log k \rfloor})_2 = (1010\cdots 01)_2$,当 $\lceil \log k \rceil$ 为 偶数时, $(a_0, a_1, \dots, a_{\lfloor \log k \rfloor})_2 = (1010\cdots 10)_2$ 或 $(0101\cdots 01)_2$,所以 $(b_0, b_1, \dots, b_{\lfloor \log k \rfloor}) = (a_0, a_1, \dots, a_{\lfloor \log k \rfloor})_2$ 且 $b_{\lfloor \log k \rfloor + 1} = 0$,即含有 $\left[(\lceil \log k \rceil + 1)/2 \right]$ 个非零元素.

如果 $(a_0, a_1, \dots, a_{[\log k]})_2$ 中含有 $[(\lceil \log k \rceil + 1)/2] + 1$ 个 1,则必定存在"111"形式,这些比特位在 $(b_0, b_1, \dots, b_{[\log k]+1})$ 中对应的数为 $\overline{1001}$,即 $(b_0, b_1, \dots, b_{[\log k]+1})$ 中含有至多 $[(\lceil \log k \rceil + 1)/2]$ 个非零元素.

同理,如果 $(a_0, a_1, \dots, a_{\lfloor \log k \rfloor})_2$ 中含有*i*个 1,*i*> $\left[(\lceil \log k \rceil + 1)/2 \right] + 1$,则 $(b_0, b_1, \dots, b_{\lfloor \log k \rceil + 1})$ 中含有至多 $\left[(\lceil \log k \rceil + 1)/2 \right]$ 个非零元素.

综上, $(b_0, b_1, \dots, b_{\lceil \log k \rceil + 1})$ 中非 0 元素个数的最大

值为 $\left[\left(\left\lceil \log k \right\rceil + 1\right)/2\right]$. 证毕.

定理1中给出的生成函数f(x,y,z)和h(x,y,z)能 否在量子计算机实现,直接关系到逐比特输入的整数 k的 NAF 表示法求解方法能否利用量子线路实现.

根据定理1中f(x,y,z)和h(x,y,z)的真值表,可 以求出其布尔函数表达式为

$$f(x, y, z) = (x'yz' \oplus xy'z', x'y \oplus xy'),$$
$$h(x, y, z) = xy'z \oplus yz \oplus xyz',$$

其中 y'=1+y, z'=1+z, ⊕ 是模 2 加运算.因此 f(x,y,z) 和h(x,y,z) 的量子实现线路可以按如图 2、 图 3 方式设计,其中 M 是乘法运算, A 是模 2 加运算, N 是非运算, M,A 和 N 运算的具体量子线路可参见文 献[7]. 从图 2,3 中可以看出,实现 f(x,y,z)需要 3 次 乘法运算、3 次非运算和 1 次模 2 加运算,h(x,y,z)需 要 3 次乘法运算、2 次非运算和 1 次模 2 加运算,而实 现这 3 个运算所需的基本量子门数量均为 O(1),即 f(x,y,z),h(x,y,z)可由规模为 O(1) 基本量子门实现.

图 2 f(x, y, z)的量子实现线路图

图 3 h(x, y, z) 的量子实现线路图

3 新的 Shor 整数分解量子算法实现量子线 路及分析

基于逐比特输入的整数 k 的 NAF 表示法求解方法,本文设计的 Shor 整数分解量子算法的量子线路如图 4 所示.

图 4 的相关说明:

(1) N是所要分解的整数;

(2) H 是 Hadamard 门^[10]; $R'_j = \begin{pmatrix} 1 & 0 \\ 0 & \phi'_j \end{pmatrix}$ 且 $\phi'_j =$

 $e^{-2\pi i \sum_{k=2}^{J} m_{j-k}/2^{k}}, \ U_{\alpha}^{u_{2^{i}}} \triangleq 的上方两个输入 u_{1}, u_{2} 是控制 u$ 的值,其中 $u = \begin{cases} u_{2}, & u_{1} = 1, \\ -u_{2}, u_{1} = 0; \end{cases}$

(3) 假设 $U_{\alpha}^{u^{2^{i}}}$ 黑盒的左端输入是*A*,那么输出的 结果是 *A*· $\alpha^{u^{2^{i}}}$ mod *N*,其中 $\alpha^{\pm 2^{i}}$ mod *N* 在经典计算机 上预计算;

(4) 图 4 中刚开始输入的 4 个量子寄存器中, |1⟩是 [log N] bit, 其余都是 1 bit;

(5) D是探测器,最终观测到的结果为 $m = \sum_{i=1}^{L} 2^{L-i} m_i$;

(6)
$$|s_i\rangle = \begin{cases} |0\rangle + |1\rangle, 0 \le i \le L-1 \\ |0\rangle, L-1 < i \le L+1 \end{cases}$$
,图4中的量子

从图 4 中可以看出, 新的 Shor 整数分解量子算 法实现量子线路需要 $\lceil \log N \rceil$ +3 量子比特.因为运算 一次 *f*, *h* 需要 *O*(1) 基本量子门,所以新的量子线 路中完成 *L*+1 次 *f* 和 *L*+1 次 *h* 的运算需要 *O*(*L*) 基 本量子门.而实现 *L*+1 次模幂运算需要 *O*($\lceil \log N \rceil^3$) 基本量子门,量子 Fourier 变换需要 *O*($\lceil \log N \rceil^2$)基本 量子门,因此,新的量子线路整体需要 *O*($\lceil \log N \rceil^3$) 基本量子门.与文献[10]相比,所需的基本量子门均 为 $O(\lceil \log N \rceil^3)$,但所需量子比特数前者较后者多 2 量子比特.

对于 *x* 的所有取值 $p_1, p_2, \dots, p_{2^{L}-1}$,由于量子计算 机 计 算 的 并 行 性 , 即 $\alpha^{p_1} \mod N, \alpha^{p_2} \mod N, \dots, \alpha^{p_{2^{L}-1}} \mod N$ 是同时计算出来的,因此, $\alpha^{p_1} \mod N$, $\alpha^{p_2} \mod N, \dots, \alpha^{p_{2^{L}-1}} \mod N$ 中最耗时的模幂运算的运 行时间算就是整个模幂运算 $\alpha^x \mod N$ 的运行时间.

在现有的公开文献中, Shor 算法中模幂运算 $\alpha^x \mod N$ 的实现是按如下方式进行的.

先将 x 展开为二进制表示

$$x = x_{L-1} 2^{L-1} + x_{L-2} 2^{L-2} + \dots + x_0,$$

然后计算

$$\alpha^{x} \operatorname{mod} N = \left(\alpha^{2^{L-1}}\right)^{x_{L-1}} \left(\alpha^{2^{L-2}}\right)^{x_{L-2}} \cdots \left(\alpha\right)^{x_{0}} \operatorname{mod} N,$$

当 $x_j = 1$ 时, 就乘上 α^{2^j} (α^{2^j} 是预计算的, 在经典计 算机上完成^[10]), 否则, 就乘上 1, 因此, 最多用 *L* 步 就能计算出 $\alpha^x \mod N$.

如果整数 k 用二进制表示,那么 $\alpha^{2^{L-1}} \mod N$ 的运行时间就被用来刻画 Shor 整数分解算法中模幂运算的运行时间.实现一个乘法运算需要 n 次加法运算(加法运算是两个 n 比特的数相加, $n = \lceil \log N \rceil$), 实现一次模幂运算需要 L 次乘法运算^[9],因此用于实现 Shor 算法模幂运算需要 nL 次两个 n 比特数的加法运算,需要预计算 $\alpha \mod N$. $\alpha^2 \mod N$ $\alpha^{2^{L-1}} \mod N$.

如果整数 k 用 3 元二进制表示, 那么根据定理 2, 当逐比特输入求出的幂指数 x 的 3 元二进制表示中 含非 0 元个数为[(L+1)/2](记 x'的 3 元二进制表示向

图 4 基于逐比特输入的整数 k 的 NAF 表示法的 Shor 整数分解量子算法实现线路

量中非 0 元素的个数为[(L+1)/2])时, $\alpha^{x^{r}} \mod N$ 的运行时间用来刻画 Shor 整数分解算法中模幂运算的运行时间,因此,用于实现 Shor 算法模幂运算需要n[(L+1)/2]次的两个 n比特数的加法运算,需要预计算 $\alpha^{\pm 1} \mod N, \alpha^{\pm 2} \mod N, \dots, \alpha^{\pm 2^{L+1}} \mod N$.

对于函数 *f*,*h*而言,均需要 12次加法运算(两个 3 比特的数相加),而非运算的运行时间与加法运算 相比,可以忽略不计,因此新量子线路中运行 *L*+1 次*f*和*L*+1次*h*需要 24*L*次的两个 3 比特数的加法运 算,与模幂运算相比,其时间可以忽略不计.考虑到 在量子线路中 H 门和 *R*_i门与模幂运算是并行的,它 们是 1 比特门,实现它们比模幂运算省时,所以新的 量子线路整体所需时间可以用模幂运算的运行时间 来刻画.

综上,与文献[10]相比,新的量子线路的运行速 度提高约2倍,预计算增加约1倍.

4 结论

本文针对半经典量子 Fourier 变换的实现方法, 提出了整数 k 的 3 元二进制表示生成向量和生成函数 概念,并构造了生成函数的真值表,通过这种生成函 数求出的 3 元二进制表示生成向量是一种新的 NAF 表 示,根据该生成向量重新设计了 Shor 算法的量子实 现线路,与文献[10]相比,其所消耗的资源大体相同, 实现速度提高了 2 倍.在经典公钥密码体制中有许多 提高模幂运算实现速度的方法,如何将这些方法与 Shor 量子算法相融合,有待进一步研究.

参考文献

- 1 Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput, 1997, 26: 1484—1509
- 2 Childs A M, Dam W V. Quantum algorithms for algebraic problems. Arxiv: quant-ph/08120380v1, 2008
- 3 方细明, 朱熙文, 冯芒, 等. 核磁共振实现量子分立 Fourier 变换. 科学通报, 2000, 45: 140-145
- 4 何雨果, 孙吉贵. 基于 Haar 小波的多尺度分析量子电路. 科学通报, 2005, 50: 2314-2316
- 5 Mehring M, Müller K, Averbukh I S, et al. NMR experiment factors fumbers with Gauss sums. Phys Rev Lett, 2007, 98: 120502
- 6 Mahesh T S, Rajendran N, Peng X H, et al. Factoring numbers with the Gauss sum technique: NMR implementations. Phys Rev A, 2007, 75: 062303
- 7 Vedral V, Barenco A, Ekert A. Quantum networks for elementary arithemetic operations. Phys Rev A, 1996, 54: 147-153
- 8 Beckman D, Chari A N, Devabhaktuni S, et al. Efficient networks for quantum factoring. Phys Rev A, 1996, 54: 1034-1063
- 9 Zalka C. Fast versions of Shor's quantum factoring algorithm. Arxiv: quant-ph/9806084v1, 1998
- 10 Parker S, Plenio M B. Efficient factorization with a single pure qubit and logN mixed qubits. Phys Rev Lett, 2000, 85: 3048-3052
- 11 Griffiths R B, Niu C S. Semiclassical fourier transform for quantum computation. Phys Rev Lett, 1996, 76: 3228-3232
- 12 Long G L, Xiao L. Parallel quantum computing in a single ensemble quantum computer. Phys Rev A, 2004, 69: 052303
- 13 Long G L. General quantum interference principle and duality computer. Commun Theor Phys, 2006, 45: 825-844
- 14 Wang W Y, Shang B, Wang C, et al. Prime factorization in the duality computer. Commun Theor Phys, 2007, 47: 471-473
- 15 Solinas J A. Efficient arithmetic on Koblitz curves. Designs Codes Cryptography, 2000, 19: 195-249