复合材料学报

Acta Materiae Compositae Sinica

文章编号:1000-3851(2013)01-0130-05

纳米 Fe₃O₄ 及 Fe₃O₄-SrFe₁₂O₁₉吸波复合材料的 制备及性能

景红霞¹,李巧玲*1,叶 云²,杨晚峰¹

(1. 中北大学 理学院 化学系,太原 030051; 2. 中北大学 材料科学与工程学院,太原 030051)

摘 要: 采用共沉淀法成功制备出具有超顺磁性的纳米 Fe_3O_4 ,并将 Fe_3O_4 与 $SrFe_{12}O_{19}$ 复合制成复合吸波材料 $Fe_3O_4 - SrFe_{12}O_{19}$,利用 X 射线衍射仪(XRD)、透射电镜(TEM)、振动样品磁强计(VSM)和矢量网络分析仪 (PNA)对产物的物相、显微结构、磁性能和吸波性能进行了表征与分析。结果表明,当 Fe_3O_4 与 $SrFe_{12}O_{19}$ 质量比 为 1:0.3 时, $Fe_3O_4 - SrFe_{12}O_{19}$ 饱和磁化强度为 11.1 emu · g^{-1} ,矫顽力 0.86 Oe,剩余磁化强度 0.08 emu · g^{-1} , 其吸波性能最佳,最大吸收峰值为-17.7 dB, -5 dB 频宽为 1.3 GHz,较 Fe_3O_4 和 $SrFe_{12}O_{19}$ 的最大吸收峰值分 别提高 247%和 185%,频带分别拓宽 1.12 GHz 和 0.40 GHz。

关键词: 共沉淀法; 超顺磁性; $Fe_3O_4 - SrFe_{12}O_{19}$; 磁性能; 吸波性能

中图分类号: TB34 **文献标志码**: A

Preparation and properties of nano-Fe₃O₄ and Fe₃O₄ - SrFe₁₂O₁₉ wave-absorbing composites

JING Hongxia¹, LI Qiaoling^{*1}, YE Yun², YANG Xiaofeng¹

(1. Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China;

2. College of Material Science and Engineering, North University of China, Taiyuan 030051, China)

Abstract: The superparamagnetic nano - Fe₃O₄ was prepared by coprecipitation method. Then wave - absorbing composite material Fe₃O₄ - SrFe₁₂O₁₉ was prepared. The crystal phase, microstructure, magnetic property and wave-absorbing property of the sample were characterized by XRD, TEM, VSM and PNA. The results show that, when the mass ratio of Fe₃O₄ to SrFe₁₂O₁₉ is 1 : 0. 3, the saturation magnetization, coercive field and residual magnetization of Fe₃O₄ - SrFe₁₂O₁₉ are 11.1 emu \cdot g⁻¹, 0.86 Oe and 0.08 emu \cdot g⁻¹ respectively. It has the best wave-absorbing property, which of the maximum absorption can reach - 17.7 dB and the - 5 dB bandwidth is 1.3 GHz. Compared with Fe₃O₄ and SrFe₁₂O₁₉, the maximum absorption respectively increases by 247% and 185%, the frequency band widens 1.12 GHz and 0.40 GHz respectively.

Keywords: coprecipitation method; superparamagnetic; $Fe_3 O_4 - SrFe_{12} O_{19}$; magnetic property; wave-absorbing property

近年来,随着军用雷达探测技术的飞速发展及 手机、微波炉等民用电磁装置的推广使用,可用于 武器装备隐身设计和日常电磁辐射防护领域的吸波 材料受到了越来越广泛的重视和深入研究^[1]。我国 对吸波材料的研究与西方先进国家相比,在某些研 究方向已取得了一定的突破,如4~18 GHz 波段取 得了很大的进展,有些吸波材料已进入应用阶段, 但在 2~4 GHz 频段所使用的薄型吸波材料尚待开 发研究^[2]。

由于铁氧体材料是一种双复介质,在电磁场作

用下,具有磁损耗和介电损耗两种功能,因而是一种优良的吸波材料。但单一的铁氧体存在吸收频带 窄、吸收强度低等缺点,使其无法满足越来越高的 应用要求,而纳米复合材料可能是解决这一问题的 理想途径^[3-5],它为发展高性能新材料和提高现有 材料的性能提供了一个新的途径,成为新材料研究 的一个重要方向^[6]。

纳米 Fe₃O₄ 以其显著的磁敏、气敏特性、表面 效应等,在高密度磁记录材料、气湿敏传感器件、 磁流体复合材料、吸波材料、催化剂等方面有巨大

收到初稿日期:2011-12-20;收到修改稿日期:2012-02-02;网络出版时间:2012-10-11 17:23:46 网络出版地址:www.cnki.net/kcms/detail/11.1801.TB.20121011.1723.013.html 基金项目:国家自然科学基金(20871108,51272239);山西省青年科学基金(2010021022-3);山西省高等学校科技项目(2010115) 通讯作者:李巧玲,博士后,教授,主要研究方向:新型材料的制备及研究 E-mail:qiaolingl@163.com 的应用前景^[7-8]。纳米 Fe₃O₄ 的制备方法有共沉淀 法^[9]、溶胶-凝胶法^[10]、水热法^[11]、微波法^[12]等。 其中,共沉淀法具有操作简单、成本低廉、产物形 貌结构和性能可控等优点。本文作者采用共沉淀法 制备出具有超顺磁性的纳米 Fe₃O₄,并探讨了不同 摩尔比的 Fe³⁺ 与 Fe²⁺ 对其磁性能的影响;在此基 础上,采用界面法制备出 Fe₃O₄ - SrFe₁₂O₁₉复合材 料,在 0~6 GHz 频段范围内,其整体吸收能力提 高,有效吸收频带拓宽,较好地改善了单一材料的 吸波性能。

1 实验材料及方法

1.1 Fe₃O₄的制备

称取一定量的分析纯 FeCl₃ • 6H₂O,分别按 Fe³⁺与 Fe²⁺摩尔比为1:3、1:3.5、1:4 称取分 析纯 FeCl₂ • 4H₂O。将以上两种试样溶于 100 mL 蒸馏水中,使溶液中铁离子总浓度为 0.05 mol/L。 将该溶液置于磁力搅拌器上在 30 ℃下搅拌至完全 溶解,混合均匀后缓慢向其中滴加 NaOH 溶液至 溶液 pH 值为 10。加热升温使溶液温度为50 ℃, 恒温反应 1.5 h 后向其中加入十二烷基硫酸钠,继 续反应 0.5 h 后取出,自然冷却至室温。然后,用 磁铁在烧杯底吸住产物进行洗涤至 pH 值为 7。最 后,将产物自然风干得到 Fe₃O₄ 铁氧体。

1.2 SrFe₁₂O₁₉的制备

按照文献[13]的方法,称取一定量分析纯的 Sr(NO₃)₂,按Fe与Sr摩尔比为11.5:1,称取分 析纯的Fe(NO₃)₃·9H₂O,溶于30mL蒸馏水中, 在磁力搅拌器上加热搅拌至完全溶解;按金属离子 与柠檬酸摩尔比为1:1加入柠檬酸,混合均匀后 用氨水调节 pH值为6,继续加热搅拌2h后,将剩 余溶液用脱脂棉吸干,再将脱脂棉于90℃干燥12 h,最后将其放入1050℃的马弗炉中煅烧2h,即得 到SrFe₁₂O₁₉样品。

1.3 Fe₃O₄ - SrFe₁₂O₁₉复合材料的制备

称取一定量的 SrFe₁₂O₁₉溶于 200 mL 蒸馏水 中,于磁力搅拌器上加热搅拌 20 min 后,将其放入 超声仪中超声处理 0.5 h,使其完全分散于水中。 按照制备 Fe₃O₄ 的 Fe³⁺ 与 Fe²⁺ 最佳摩尔比(1: 3.5)称取固体 FeCl₃ · 6H₂O 和 FeCl₂ · 4H₂O,并 将其加热搅拌至完全溶解后与含有 SrFe₁₂O₁₉的水 液混合均匀,分别使混合液中 Fe₃O₄ 与 SrFe₁₂O₁₉ 质量比1:0.1、1:0.3、1:0.5。加热搅拌该混合 液,当温度达到 35 ℃时,向其中滴加 NaOH 溶液 至溶液 pH 值为 12。继续加热至 50 ℃搅拌反应 2 h,自然冷却,用磁铁在烧杯底吸住产物进行洗涤 至 pH 值为 7。最后,将产物自然风干即为 Fe₃O₄ -SrFe₁₂O₁₉复合材料。

1.4 样品性能测试与表征

用日本理学 D/max - rA 型 X 射线衍射仪(Cu 靶, K_a 射线, 镍滤波片滤波, $\lambda = 0.15418$ nm, 靶 电压 40 kV, 靶电流 200 mA, 步进扫描, 步长 0.02°, 扫描速率 4°/min, 扫描范围 20°~80°分析样 品的相结构; 利用日立 H - 800 透射电子显微镜对 样品的显微结构进行分析; 利用南京大学生产的 HH - 10 型振动样品磁强计对样品进行测试, 得出 样品的磁滞回线, 研究其磁特性; 利用南京普纳科 技设备有限公司生产的 PNA362X 型矢量网络分析 仪对样品吸波性能进行分析, 将制得粉末样品研磨 后用石蜡做粘结剂按 7:3 均匀混合, 在温度约为 60 ℃时将其混熔, 然后快速放入样品厚度为 3 mm 的圆柱形模具中, 待凝固后测试。

2 结果与讨论

2.1 样品的 XRD 和 TEM 分析

图 1 为不同质量比 Fe₃O₄ - SrFe₁₂O₁₉复合材料 的 XRD 谱图。从曲线 a 可看出, 其各衍射峰与 Fe₃O₄ PDF 标准卡片(PDF No. 19-0629)完全吻 合,表明所得产物为纯的立方反尖晶石结构的 Fe₃O₄;从曲线 e 可看出,其各衍射峰与 SrFe₁₂O₁₉ PDF标准卡片(PDF No. 24-1207)完全吻合,表明 所得产物为纯的六角晶系磁铅石结构的 SrFe₁₂O₁₉; 当 Fe₃O₄ 与 SrFe₁₂O₁₉ 质量比为 1:0.1 时, 其各衍 射峰与 Fe₃O₄衍射峰位置相同,但衍射强度相对减 弱; 当 Fe₃O₄ 与 SrFe₁₂O₁₉ 质量比为 1:0.3 时, 其 各主要衍射峰与 Fe₃O₄ 衍射峰位置相同, 衍射强度 进一步减弱,但也有 SrFe12 O19 的衍射峰出现,只是 衍射强度较弱,表明样品结构中的磁铅石相成分增 加,尖晶石相成分减少;当 Fe_3O_4 与 $SrFe_{12}O_{19}$ 质量 比为1:0.5时,与曲线 c 相比,其 SrFe12 O19 的衍射 强度增加,但是 Fe₃O₄ 的衍射峰位置与强度没有 改变。

此外,从图中还可以看到,复合材料衍射峰位置 向左移动,说明 Fe₃O₄ 粒子的晶格常数随着 Sr²⁺ 含 量的变化发生了改变。这是因为 Sr²⁺(0.144 nm)离 子半径大于 Fe²⁺(0.074 nm)离子半径,使得复合粒

Fig. 1 $$\rm XRD$$ patterns of the composite material Fe_3O_t – $SrFe_{12}O_{19}$$ with different mass ratios of Fe_3O_t to $SrFe_{12}O_{19}$

$$(a-Fe_{3}O_{4}; b-m(Fe_{3}O_{4}); m(SrFe_{12}O_{19})=1:0.1;$$

$$c-m(Fe_{3}O_{4}): m(SrFe_{12}O_{19})=1:0.3;$$

$$d-m(Fe_{3}O_{4}): m(SrFe_{12}O_{19})=1:0.5; e-SrFe_{12}O_{19})$$

子表面结构的晶面间距变大,从而导致了衍射峰位 置向左偏移^[14]。

图 2 为不同样品的 TEM 照片。可以看出,制 备的 Fe₃O₄ 为粒径在 $10 \sim 15$ nm 之间的球形颗粒; SrFe₁₂O₁₉ 为直径 $500 \sim 700$ nm 之间的棒状颗粒; Fe₃O₄ 均匀地覆盖在 SrFe₁₂O₁₉表面,形成一层均匀 的包覆层。

图 2 不同样品的 TEM 照片 Fig. 2 TEM photographs of the different samples ((a)-Fe₃O₄; (b)-SrFe₁₂O₁₉; (c)-m(Fe₃O₄): m(SrFe₁₂O₁₉)=1:0.3)

2.2 样品的磁性能分析

2.2.1 Fe₃O₄样品的磁性能分析

图 3 为不同 Fe^{3+} 与 Fe^{2+} 摩尔比 Fe_3O_4 的磁滞 回线,各个样品的磁性参数见表 1。可以看出,当 改变 Fe^{3+} 与 Fe^{2+} 摩尔比时,三者的饱和磁化强度 相差不大,但是矫顽力和剩余磁化强度却明显不

图 3 不同 Fe^{3 +}与 Fe²⁺摩尔比 Fe₃O₄ 的磁滞回线 Fig. 3 Hysteresis loop of Fe₃O₄ at the different molar ratios of Fe^{3 +} to Fe²⁺

表 1 不同 Fe^{3+} 与 Fe^{2+} 摩尔比 Fe_3O_4 的磁性参数

Table1 Magnetic parameters of Fe₃O₄ at the different

molar ratios of Fe^{3 +} to Fe^{2 +}

Molar ratio of Fe ³⁺ : Fe ²⁺	Saturation magnetization/ (emu • g ⁻¹)	Coercive field/Oe	Residual magnetization/ (emu • g ⁻¹)
1:3	11.3	12.2	2.49
1 : 3.5	12.8	0.92	0.24
1 : 4	13.1	14.4	3.00

同,当 Fe^{3+} 与 Fe^{2+} 摩尔比为1:3.5时,样品的矫 顽力和剩余磁化强度几乎为零,而当 Fe³⁺ 与Fe²⁺ 摩尔比为1:3和1:4时,样品矫顽力和剩余磁化 强度不为零,呈现出铁磁性。这是由于尺寸效应引 起的。通常,磁性物质的磁矩会沿易磁化方向排 列,由于磁性材料由许多磁畴组成,每个磁畴的易 磁化方向各不相同,因此形成了磁滞,而当磁性颗 粒减小到一定程度时,磁性粒子呈单畴状态,只表 现一个磁矩方向,由于热能的影响,磁矩不再固定 于易磁化方向,而是在各个方向上起伏,外加磁场 作用时,所有磁畴取向顺着外磁场达到饱和,当外 磁场消失时,又回到杂乱无序的状态,其剩余磁化 强度和矫顽力趋近于零,呈超顺磁性。因此可以得 出,当 Fe^{3+} 与 Fe^{2+} 摩尔比为 1:3.5时所制备的 Fe₃O₄ 粒径较摩尔比为1:3 和1:4 时所制备的样 品粒径都小。这主要是由于制备 Fe₃O₄ 的反应方 程式为

 $2Fe^{3+} + Fe^{2+} + 8OH^{-} = Fe_{3}O_{4} \downarrow + 4H_{2}O$

理论上, Fe^{3+} 、 Fe^{2+} 的比值为 2:1, 但由于 Fe^{2+} 的还原性较强, 在溶液中较易被空气中的氧气 氧化,即

 $Fe_3 O_4 + 0.25 O_2 + 4.5 H_2 O = 3Fe(OH)_3$ $Fe_3 O_4 + 0.25 O_2 = 1.5 Fe_2 O_3$

从而使制备的 Fe_3O_4 晶体不纯^[15],当 Fe^{3+} 与 Fe^{2+} 摩尔比不同时对产品性能有较大的影响。为 了制备性能优异的纯相 Fe_3O_4 ,所以本实验将 Fe^{3+} 与 Fe^{2+} 的摩尔比控制在 1:3.5,并在此基础上包 覆 $SrFe_{12}O_{19}$ 。

2.2.2 Fe₃O₄ - SrFe₁₂O₁₉复合材料的磁性能分析

图 4 为不同质量比 $Fe_3O_4 - SrFe_{12}O_{19}$ 复合材料 的磁滞回线,各个样品的磁性参数见表 2。可以看 出,当改变 Fe_3O_4 与 $SrFe_{12}O_{19}$ 的质量比时,不同样 品的饱和磁化强度相差不大,但是矫顽力和剩余磁 化强度却明显不同,当 Fe_3O_4 与 $SrFe_{12}O_{19}$ 质量比为 1:0.3 时,样品的矫顽力和剩余磁化强度几乎为零。 这是因为通过复合后, $SrFe_{12}O_{19}$ 被 Fe_3O_4 包裹进去 形成了核壳结构, $SrFe_{12}O_{19}$ 在里面,从而整个复合粒 子的磁性能基本与 Fe_3O_4 的磁性能接近。

- 图 4 Fe₃O₄ 与 SrFe₁₂O₁₉不同质量比 Fe₃O₄ SrFe₁₂O₁₉ 复合材料的磁滞回线
- Fig. 4 Hysteresis loop of composite material $Fe_3\,O_4$ $SrFe_{12}\,O_{19}$ with different mass ratios of $Fe_3\,O_4$ to $SrFe_{12}\,O_{19}$

表 2 不同质量比 Fe₃O₄ - SrFe₁₂O₁₉复合材料的磁性参数 Table 2 Magnetic parameters of composite material Fe₃O₄ - SrFe₁₂O₁₉ with different mass ratios

Mass ratio of Fe ₃ O ₄ : SrFe ₁₂ O ₁₉	Saturation magnetization/ (emu • g ⁻¹)	Coercive field/Oe	Residual magnetization/ (emu • g ⁻¹)
1:0.1	10.0	13.8	2.30
1:0.3	11.1	0.86	0.08
1:0.5	11.4	13.6	2.46

2.3 样品的吸波性能分析

图 5 为不同质量比 Fe₃O₄ - SrFe₁₂O₁₉复合材料

图 5 Fe₃O₄ 与 SrFe₁₂O₁₉不同质量比 Fe₃O₄ - SrFe₁₂O₁₉ 复合材料的吸收曲线

Fig. 5 Absorption curves of composite material Fe_3O_4 – $SrFe_{12}O_{19}$ with different mass ratios of Fe_3O_4 to $SrFe_{12}O_{19}$

的吸收曲线,相关数据列于表 3 中。可以看出,在 0~6 GHz 范围内, Fe₃O₄ - SrFe₁₂O₁₉ 复合材料的整 体吸收能力比纯 Fe₃O₄ 或 SrFe₁₂O₁₉都有提高,有 效吸收频带拓宽。这是因为 SrFe₁₂O₁₉ 与 Fe₃O₄ 同 样是磁介质,它的掺入能使材料的自然共振损耗和 畴壁共振损耗增加,同时改变了材料的共振损耗频 率^[16],从而提高了复合材料的整体吸波性能。而 且,随着 SrFe₁₂O₁₉用量的增大,Fe₃O₄ - SrFe₁₂O₁₉复 合材料的吸波峰向高频区移动,且接近 SrFe₁₂O₁₉ 愈 吸波峰形状和位置。其中,当 Fe₃O₄ - SrFe₁₂O₁₉ 愈 质量比为1:0.3 时,产物的吸波性能最佳,其最大 吸收峰值为-17.7 dB, -5 dB 频宽为1.3 GHz,覆 盖了2.13~3.43 GHz 频域,较 Fe₃O₄ 和 SrFe₁₂O₁₉ 的最大吸收峰值分别提高 247% 和 185%,频带分 别拓宽 1.12 GHz 和 0.40 GHz。

表 3 不同质量比 Fe₃O₄ - SrFe₁₂O₁₉复合材料的

吸波特性参数

Table 3 Wave-absorbing properties parameters of composite material Fe₃O₄ - SrFe₁₂O₁₉ with different mass ratios

Mass ratio of Fe ₃ O ₄ : SrFe ₁₂ O ₁₉	Absorbing peak/dB	Peak point/GHz	—5 dB bandwidth/GH	Covering frequency domain/GHz
1:0	5.1	4.30	0.18	4.20~4.38
1:0.1	12.7	2.48	0.60	2.13~2.73
1:0.3	17.7	2.83	1.30	2.13~3.43
1:0.5	6.7	5.03	1.30	4.13~5.43
0 : 1	6.2	4.63	0.90	4.13~5.03

3 结 论

(1)采用共沉淀法制备出具有尖晶石结构的纳 米 Fe₃O₄,通过对样品进行磁性能分析,发现当 Fe³⁺与 Fe²⁺摩尔比为1:3.5时,样品饱和磁化强 度为12.8 emu • g⁻¹,矫顽力为0.92 Oe,剩余磁化 强度为0.24 emu • g⁻¹,具有超顺磁性。

(2)将 Fe₃O₄ 与 SrFe₁₂O₁₉复合制成复合吸波材 料 Fe₃O₄ – SrFe₁₂O₁₉,通过对其进行磁性能和吸波性 能进行分析,发现当 Fe₃O₄ 与 SrFe₁₂O₁₉质量比为1: 0.3时,产物不仅具有超顺磁性,而且具有最佳吸波 性能,其最大吸收峰值为-17.7 dB, -5 dB 频宽为 1.3 GHz,,较 Fe₃O₄和 SrFe₁₂O₁₉的最大吸收峰值分 别提高 247%和 185%,频带分别拓宽 1.12 GHz 和 0.40 GHz。

参考文献:

- [1] 胡书春,黄真浩,金 佥,等.导电炭黑/磁性氧化物复合吸波 剂的制备与表征 [J]. 材料导报, 2011, 25(1): 135-137.
 Hu Shuchun, Huang Zhenhao, Jin Qian, et al. Preparation and characterization of composite microwave absorber of conductive carbon black and magnetic oxides [J]. Materials Review, 2011, 25(1): 135-137.
- [2] 江 红,郭 佳,赵 璐,等. LiZn 铁氧体的制备和吸波性能研究 [J]. 无机材料学报, 2010, 25(1): 73-75.
 Jiang Hong, Guo Jia, Zhao Lu, et al. Preparation and microwave absorption properties of LiZn ferrite [J]. Journal of Inorganic Material, 2010, 25(1): 73-75.
- [3] 周克省,刘 归,尹荔松,等.纳米 Fe₃O₄/BaTiO₃ 复合体系的微波吸收特性[J].中南大学学报:自然科学版,2005,36
 (5):872-876.

Zhou Kesheng, Liu Gui, Yin Lisong, et al. Microwave absorbing property of nano- $Fe_3O_4/BaTiO_3$ composite system [J]. Journal of Central South University of Technology: Science and Technology, 2005, 36(5): 872-876.

- [4] 张晏清,张 雄. 空心微珠铁氧体复合粉体的改性与吸波性能[J]. 无机材料学报, 2009, 24(4): 732-736.
 Zhang Yanqing, Zhang Xiong. Microwave absorbing property and modification of ferrite encapsulated cenosphere powder [J]. Journal of Inorganic Materials, 2009, 24(4): 732-736.
- [5] 闫方亮,方庆清,王胜男,等. Fe₃O₄/锶铁氧体复合吸波材料的制备与性能 [J]. 磁性材料及器件,2009,40(2):25-29.
 Yan Fangliang, Fang Qingqing, Wang Shengnan, et al. Preparation and properties of Fe₃O₄ - strontium ferrite composite microwave absorbing materials [J]. Journal of Magnetic Materials Devices, 2009, 40(2):25-29.
- [6] 华 杰,李海波,刘 梅,等.纳米 Co_{1-x} Zn_x Fe₂O₄/SiO₂ 复 合材料的结构和磁性 [J].复合材料学报,2010,27(6):126-129.

Hua Jie, Li Haibo, Liu Mei, et al. Structure and magnetic properties of nano- $\text{Co}_{1-x}\text{Zn}_x\text{Fe}_2\text{O}_4/\text{SiO}_2$ composites [J]. Acta

Materiae Compositae Sinica, 2010, 27(6): 126-129.

- [7] 李 享,杨海滨.纳米 Fe₃O₄ 磁性颗粒的制备进展 [J].材料 导报,2006,20(Z1):145-148.
 Li Xiang, Yang Haibin. Development on the synthesization of Fe₃O₄ nanoparticles [J]. Materials Review, 2006, 20(Z1): 145-148.
- Balakrishnan S, Gun'ko Y K, Perova T S, et al. Dendritelike self-assembly of magnetite nanoparticles on porous silicon
 [J]. Small, 2006, 2(7): 864-869.
- [9] 杨宇翔,张莉苹,梁晓娟. 纳米 Fe₃O₄ 及钴离子掺杂 Fe₃O₄: 有机碱共沉淀制备和磁性质 [J]. 无机化学学报, 2010, 26
 (4): 668-676.
 Yang Yuxiang, Zhang Liping, Liang Xiaojuan. Nano-Fe₃O₄ and Co²⁺ doped nano-Fe₃O₄: Synthesis with coprecipitation using TMAH and magnetic properties [J]. Chinese Journal of Inorganic Chemistry, 2010, 26(4): 668-676.
- [10] 任欢鱼,刘勇健,牛亚丰.醇-水共热法制备 Fe₃O₄ 磁流体
 [J].化工进展,2001,22(1):49-52.
 Ren Huanyu, Liu Yongjian, Niu Yafeng. Preparation of Fe₃O₄ magnetic fluid [J]. Chemical Industry and Engineering Progress, 2001, 22(1):49-52.
- [11] 李志利,盖利刚,张 伟.水热法制备八面体 Fe₃O₄ 亚微米晶及其影响因素 [J].材料导报,2010,24(Z1):33-37.
 Li Zhili, Gai Ligang, Zhang Wei. Hydrothermal synthesis of octahedral Fe₃O₄ submicrocrystals and its effect factors [J]. Materials Review, 2010, 24(Z1): 33-37.
- [12] 海岩冰,袁红雁,肖 丹. 微波法制备纳米 Fe₃O₄ [J]. 化学研究与应用,2006,18(6):744-746.
 Hai Yanbing, Yuan Hongyan, Xiao Dan. Preparation of Fe₃O₄ nanoparticles by microwave method [J]. Chemical Research and Application, 2006, 18(6):744-746.
- [13] 李巧玲,张存瑞,景红霞.优越磁性能的 SrFe₁₂O₁₉微管的模板法制备 [J].无机材料学报,2009,24(4):717-720.
 Li Qiaoling, Zhang Cunrui, Jing Hongxia. Preparation of superior magnetic SrFe₁₂O₁₉ microtubules with template method [J]. Journal of Inorganic Materials, 2009, 24(4): 717-720.
- [14] 方庆清,钟 伟,都有为.复合型锶铁氧体纳米晶粒的改性研究[J].物理学报,1999,48(6):1170-1173.
 Fang Qingqing, Zhong Wei, Du Youwei. Modification studies on caoting Sr ferrite nanoparticles [J]. Acta Physica Sinica, 1999,48(6):1170-1173.
- [15] 文 德,刘妙丽,李强林. 超顺磁性 Fe₃O₄ 纳米粒子的制备和 表征 [J]. 四川师范大学学报:自然科学版,2011,34(3): 385-387.
 Wen De, Liu Miaoli, Li Qianglin. Preparation and characterization of super - paramagnetic Fe₃O₄ nanoparticles [J]. Journal of Sichuan Normal University: Natural Science, 2011,34(3): 385-387.
- [16] 王翠平,陈 辉,黄 凯,等.掺杂对锶铁氧体基复合材料吸 波特性的影响[J].材料科学与工程学报,2006,24(3):451-453.

Wang Cuiping, Chen Hui, Huang Kai, et al. Doping affect on Sr hexaferrite-based microwave absorption composites [J]. Journal of Materials Science & Engineering, 2006, 24(3): 451-453.