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Abstract

A Wronskian (resp. Casoratian) criterion is useful to test linear dependence of elements in a differential
(resp. difference) field over constants. We generalize this criterion for invertible hyperexponential elements in a
differential-difference ring extension over a field F . The generalization also enables us to connect similarity and
F-linear dependence of invertible hyperexponential elements.

1 Introduction
Hyperexponential functions in several variables are an abstraction of common properties of exponential functions,
radical functions and hypergeometric terms. They appear in many applications such as automatic proofs of com-
binatorial identities ([10]), and factorization of finite-dimensional linear functional systems ([15]). In practice, it
is necessary to check linear dependence of hyperexponential elements. For example, to compute hyperexponential
solutions of linear functional systems, one often needs to decide whether a solution is linearly dependent on other
solutions over the constants, or over the ground field.

There are some well-known criteria for linear dependence of elements of a differential (difference) field F . If F
is an ordinary differential (resp. difference) field, then a finite number of elements of F are linearly dependent over
the constants if and only if their Wronskian (resp. Casoratian, see [3, page 271]) equals zero. If F is a partial
differential field, then a finite number of elements of F are linearly dependent over the constants if and only if
some Wronskian-like determinants vanish ([5, page 86]). However, the above criteria are not valid in general for
differential-difference rings that contain zero-divisors. The following example is from [4, Example 6.1].

Example 1.1 Let R be the ring of infinite sequences of the form (a1,a2, · · ·) for ai ∈ C, where addition and multipli-
cation are defined coordinatewise. Let I be the ideal of all sequences with at most a finite number of nonzero terms
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and let SC = R/I. The shift map σ : (a1,a2, · · ·) �→ (a2,a3, · · ·) defines an automorphism of SC. Every element c ∈ C

is regarded as a sequence (c,c, · · ·). So the set of all constants of SC with respect to σ is C. Consider two sequences
x = (x0,x1, . . .) and y = (y0,y1, . . .) in SC, where

xi =
{

1 i ≡ 0 mod 4
0 otherwise,

and yi =
{

1 i ≡ 2 mod 4
0 otherwise.

By a straightforward calculation, we have

Casoratian(x,y) =

∣∣∣∣∣ x y

σ(x) σ(y)

∣∣∣∣∣= 0.

However, the sequences x and y are linearly independent over C. Here both sequences x and y are zero-divisors.

Hyperexponential functions are usually called exponential functions in the differential case and hypergeometric
sequences in the difference case. They can be regarded as elements in differential-difference rings. The results of
this paper include a criterion for determining whether hyperexponential elements are linearly dependent over the
constants, and a method for determining whether they are linearly dependent over the ground field.

The rest of this paper is organized as follows. After introducing the notions of ∆-rings and hyperexponential
elements in Section 2, we present in Section 3 a method for determining whether hyperexponential elements (vectors)
are linearly dependent over the constants. A method is described in Section 4 for checking their linear dependence
over the ground field.

2 Hyperexponential elements
Let R be a commutative ring. A derivation δ on R is an additive map from R to itself satisfying

δ(ab) = δ(a)b+aδ(b) for all a,b ∈ R.

The pair (R,δ) is called an ordinary differential ring. For an automorphism σ of R, the pair (R,σ) is called an
ordinary difference ring. If R is a field, then (R,δ) and (R,σ) are called ordinary differential and difference fields,
respectively.

Let ∆ be a finite set of commuting maps from R to itself. A map in ∆ is assumed to be either a derivation
or an automorphism. The pair (R,∆) is called a differential-difference ring, or a ∆-ring for short. It is a ∆-field
when R is a field. Clearly, a ∆-ring is a partial differential (resp. difference) ring if ∆ contains only derivations (resp.
automorphisms).

An element c of R is called a constant with respect to a derivation δ if δ(c) = 0. An element c is called a constant
with respect to an automorphism σ if σ(c) = c. An element c of R is called a constant if it is a constant with respect
to all the maps in ∆. The set of constants of R, denoted by CR, is a subring, and it is a subfield if R is a field.

In the sequel, let F be a ∆-field. It is sometimes referred as the ground field. A commutative ring R containing F
is called a ∆-extension of F if every derivation in ∆ can be extended to a derivation of R, every automorphism in ∆
can be extended to an automorphism of R, and the extended maps commute pairwise.

A nonzero element h in a ∆-extension of F is said to be hyperexponential over F with respect to a map φ in ∆ if
φ(h) = rφh for some rφ ∈ F . The element rφ is called the certificate of h with respect to φ. An element h is said to
be hyperexponential over F if it is hyperexponential with respect to all the maps in ∆. In particular, every nonzero
element of F is hyperexponential.

Example 2.1 Consider the ∆-ring (SC, {σ}) in Example 1.1. It is a ∆-extension of C. Recall that a sequence
(an)∞

n=1 ∈ SC is rational if there exists a rational function f (x)∈C(x) such that an = f (n) for all but finitely many n∈
Z+ (see [10, Definition 8.2.1]). The set RC of all rational sequences is a ∆-field, and SC is also a ∆-extension of RC.
The sets of constants of SC and RC are both equal to C.
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One can easily verify that the sequence (a,a2,a3, . . .), where a ∈ C and a �= 0, is hyperexponential (hypergeo-
metric) over C, while the sequence (1!, 2!, 3!, . . .) is hyperexponential (hypergeometric) over RC.

Let R be a ∆-extension of F . For a first-order system

φ(z) = fφ z for all φ ∈ ∆, (1)

where fφ ∈ F , a nonzero solution of (1) in R is hyperexponential over F . Conversely, a hyperexponential element h
in R over F is a solution of a system in the form (1), where fφ is the certificate of h with respect to φ.

Example 2.2 Consider the ∆-field (C(x,k),{δ,σ}), where x and k are indeterminates, and δ = d
dx and σ is the shift

operator sending k to k + 1. Every nonzero element of C(x,k) is clearly hyperexponential. The expression k x
1
3 xk

may be understood as a solution of the first-order system{
δ(z) =

1+3k
3x

z, σ(z) =
(k +1)x

k
z
}

.

Thus, k x
1
3 xk is in some ∆-extension of C(x,k) (see [1, Theorem 1]), and is hyperexponential over C(x,k).

The product of two hyperexponential elements in a ∆-extension of F is again hyperexponential. If an invertible
element of R is hyperexponential, so is its inverse. However, the sum of two hyperexponential elements is not
necessarily hyperexponential. Consider the ∆-extension SC of C in Example 2.1. The sequences (1,1,1,1, . . .) and
(1,−1,1,−1, . . .) are both hyperexponential over C, but their sum (2,0,2,0, . . .) is not. More alarmingly, this sum is
a zero divisor in SC. Thus, in general, hyperexponential elements cannot live in a field.

Two hyperexponential elements in a ∆-extension of F are said to be similar if they are linearly dependent over F .
The similarity among hyperexponential elements is an equivalence relation.

Notation. For an integer m > 1, an element of Rm is always understood as a column vector with m entries. For
r1, . . . ,rn ∈ R, diag(r1, . . . ,rn) denotes the n×n matrix whose entries are r1, . . . , rn on the principal diagonal and are
zero elsewhere.

Consider a matrix system
φ(z) = Aφ z for all φ ∈ ∆, (2)

where z is a column vector consisting of m unknowns and the Aφ are m×m matrices over F . A nonzero solution
hv of (2), where h is hyperexponential in some ∆-extension R of F and v ∈ Fm, corresponds to a one-dimensional
submodule of the Laurent-Ore module associated with (2) (see [8, §3]). Such a submodule helps us to factorize (2)
over F . This observation motivates us to define that a nonzero vector h∈Rm is hyperexponential over F if its nonzero
entries are hyperexponential and similar to each other. We choose to exclude zero vector in our definition since it
corresponds to a trivial solution. Clearly, h ∈ Rm is hyperexponential if and only if it can be written as a product
of a hyperexponential element h of R and a nonzero vector v in Fm. For a hyperexponential vector h = hv as given
above, we have h = ( f h)

(
1
f v
)

for any nonzero element f ∈F . Moreover, if h = gu, where g∈R is hyperexponential
over F and u is in Fm, then h and g are similar over F .

3 Linear dependence over the constants
In this section we generalize a well-known classical result on Wronskian (Casoratian) determinants. Recall that
our ground field F is a ∆-field. We denote by Θ the (commutative) monoid generated by the maps in ∆ under
composition. Moreover, Θk stands for the subset of Θ consisting of maps that are composed of at most k maps in ∆.
In particular, Θ0 contains only the identity map.

Let R be a ∆-extension of F . For an element θ in Θ and r1 = (r11, . . . ,rm1)T , . . . , rn = (r1n, . . . ,rmn)T in Rm, we
form an m×n matrix whose (i, j)-entry equals θ(ri j). For brevity, we denote this matrix by (θ(r1), . . . ,θ(rn)). For
a finite subset Θ′ ⊂ Θ, (Θ′(r1), . . . ,Θ′(rn)) stands for the stacking of the blocks of the form (θ(r1), . . . ,θ(rn)) for
all θ ∈ Θ′. This m|Θ′|×n matrix has entries in R. The order to stack the blocks is insignificant in the sequel.
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Example 3.1 Let F be the ∆-field in Example 2.2 and R = F [exp(x),exp(−x),xk,x−k]. We extend the derivation δ
to R by letting δ(exp(x)) = exp(x) and δ(xk) = kxk−1, and extend the automorphism σ by σ(exp(x)) = exp(x)
and σ(xk) = xk+1. Then R becomes a ∆-extension of F. Let

h1 =
(

kxk

xk+1

)
and h2 =

(
k exp(x)
xexp(x)

)

be two vectors in R2. It is easy to verify that the two vectors are hyperexponential over F. The matrices (h1, h2),
(δ(h1), δ(h2)) and (σ(h1), σ(h2)) are

M1 =
(

kxk k exp(x)
xk+1 xexp(x)

)
, Mδ =

(
k2xk−1 k exp(x)

(k +1)xk (x+1)exp(x)

)

and

Mσ =
(

(k +1)xk+1 (k +1)exp(x)
xk+2 xexp(x)

)
,

respectively. Let Θ′ = {1,δ,σ}, where 1 stands for the identity map. Then (Θ′(h1), Θ′(h2)) equals the 6×2 matrix
formed by stacking M1,Mδ and Mσ.

The reader may find in [2] a general definition of the rank of a matrix over a commutative ring. Let h1, . . . ,hn ∈
Rm be hyperexponential. The next lemma enables us to use linear algebra over F to compute the rank of (Θ′(h1), . . . ,Θ′(hn)),
which is an m|Θ′|×n matrix over R.

Lemma 3.2 Let F be a ∆-field and R be a ∆-extension of F. Let h1, . . . ,hn be hyperexponential vectors in Rm and Θ′

a finite subset of Θ. Then there exist an m|Θ′|× n matrix AΘ′ over F and h1, . . . ,hn in R, hyperexponential over F,
such that

(Θ′(h1), . . . ,Θ′(hn)) = AΘ′ ·diag(h1, . . . ,hn). (3)

In particular, the rank of (Θ′(h1), . . . ,Θ′(hn)) is equal to that of AΘ′ if h1, . . . , hn are invertible in R.

Proof. Write hi = hi vi, where hi ∈ R is hyperexponential and vi ∈ Fm is nonzero for i = 1, . . . ,n. Applying an
operator θ ∈ Θ to hivi yields θ(hi) = hi vi,θ for some vectors vi,θ ∈ Fm, since hi is hyperexponential. Let Aθ be
the m× n matrix whose i-th column is composed of the entries of vi,θ. Then (θ(h1), . . . ,θ(hn)) is equal to Aθ ·
diag(h1, . . . ,hn). The matrix AΘ′ is constructed by stacking all the Aθ for θ ∈ Θ′. �

Note that every hyperexponential vector h can be written in the form hv in many ways, so the matrix AΘ′ in
Lemma 3.2 depends on the choices of h1, . . . ,hn.

Example 3.3 The matrix (Θ′(h1), Θ′(h2)) in Example 3.1 may be decomposed as⎛
⎜⎜⎜⎜⎜⎜⎝

k k
x x
k2

x k
k +1 x+1

(k +1)x k +1
x2 x

⎞
⎟⎟⎟⎟⎟⎟⎠ ·
(

xk 0
0 exp(x)

)
.

A generalized Wronskian (Casoratian) criterion for hyperexponential vectors is given below.

Proposition 3.4 Let F be a ∆-field, R be a ∆-extension of F, and h1, . . . ,hn be hyperexponential vectors in Rm.
Denote by Wi the m|Θi−1|× i matrix (Θi−1(h1), . . . ,Θi−1(hi)) for i = 1, . . . ,n. Then
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(i) If h1, . . . ,hn are linearly dependent over CR, then Wn has rank less than n.

(ii) Suppose that there exist invertible and hyperexponential elements h1, . . . , hn in R such that

h1 = h1v1, . . . , hn = hnvn for some v1, . . . ,vn in Fm.

If Wn has rank less than n, then h1, . . . ,hn are linearly dependent over CR.

Proof. Suppose that h1, . . . ,hn are linearly dependent over CR. Then there exist c1, . . . ,cn ∈ CR, not all zero, such
that ∑n

i=1 cihi = 0. For any θ ∈ Θ, we have ∑n
i=1 ciθ(hi) = 0. In particular,

Wn · (c1,c2, . . . ,cn)
T = 0,

thus the rank of Wn is less than n by Theorem 5.3 in [2].
We prove the second assertion by induction on n. The assertion clearly holds for n = 1. Assume that it holds

for lower values of n, and that, furthermore, any n−1 elements among h1, . . . ,hn are linearly independent over CR.
From Lemma 3.2 there exists an m|Θn−1| × n matrix An with entries in F such that Wn = An · diag(h1, . . . ,hn).
The invertibility of h1, . . . , hn implies that the rank of An equals that of Wn, and hence An has rank less than
n. There exist f1, ..., fn ∈ F , not all zero, such that An · ( f1, . . . , fn)T = 0. Setting xi = h−1

i fi, i = 1, . . . ,n, yields
Wn · (x1, . . . ,xn)T = 0. Without loss of generality, suppose that xn is nonzero. Then xn can be set to be 1 since it is
invertible. Thus

n−1

∑
i=1

xiθ(hi)+θ(hn) = 0 for all θ ∈ Θn−1. (4)

In particular,
n−1

∑
i=1

xiθ(hi)+θ(hn) = 0 for all θ ∈ Θn−2. (5)

Applying a derivation δ ∈ ∆ to (5) yields

n−1

∑
i=1

δ(xi)θ(hi)+
n−1

∑
i=1

xiδ◦θ(hi)+δ◦θ(hn) = 0 for all θ ∈ Θn−2,

which, together with (4) for δ◦θ, implies that ∑n−1
i=1 δ(xi)θ(hi) = 0 for all θ ∈ Θn−2.

If δ(xi) is nonzero for some i with 1 ≤ i ≤ n−1, then the matrix Wn−1 has rank less than n−1 by Theorem 5.3
in [2]. Accordingly, h1, . . . ,hn−1 would be linearly dependent over CR by the induction hypothesis, a contradiction.
Therefore, δ(xi) = 0 for i = 1, . . . ,n−1 and for every derivation δ ∈ ∆.

Likewise, applying an automorphism σ ∈ ∆ to (5) yields

n−1

∑
i=1

σ(xi)σ◦θ(hi)+σ◦θ(hn) = 0 for all θ ∈ Θn−2,

which, together with (4) for σ◦θ, implies

n−1

∑
i=1

(σ(xi)− xi)σ◦θ(hi) = 0 for all θ ∈ Θn−2,

therefore ∑n−1
i=1 (xi−σ−1(xi))θ(hi) = 0 for all θ ∈ Θn−2. A similar argument shows that σ(xi) = xi for i = 1, . . . ,n−1

and for every automorphism σ ∈ ∆. So x1, . . . , xn−1 are all constants, and h1, . . . , hn are linearly dependent over CR

by (4). �

The invertibility of hyperexponential elements h1, . . . ,hn is essential for the proof of the second assertion of
Proposition 3.4. So far we have failed to weaken the assumption on invertibility.
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An algebraic ideal I in a ∆-ring is said to be invariant if φ(I) ⊂ I for all φ ∈ ∆. A ∆-ring R is said to be simple
if its invariant ideals are (0) and R. Let F be a ∆-field contained in R. For every hyperexponential element h ∈ R
over F , the ideal (h) is invariant. Thus, h is invertible if R is simple. Examples for simple ∆-rings are Picard-Vessiot
extensions for finite-dimensional linear functional systems (see [11, 12] for the ordinary case, and [1] for the partial
case).

The difference ring SC in Example 2.1 is not simple (see [11, page 5]), while hyperexponential (hypergeometric)
sequences in SC over RC are all invertible.

The matrix (Θ′(h1), Θ′(h2)) in Example 3.3 has rank two, therefore by Proposition 3.4(i) the vectors h1,h2 ∈ R2

in Example 3.1 are linearly independent over CR.

Example 3.5 Let the ∆-field F be the same as in Example 2.2. Consider the system

dz
dx

= z and σ(z) = k z. (6)

The Picard-Vessiot extension R of (6) is a simple ∆-ring with CR = C (see [1, Theorem 2])). We denote a solution
of (6) in R by y, which is hyperexponential over F. Let us decide if the three vectors

h1 = (x+ k)y

( 1
k(1−k)

1
x(x+1)

)
, h2 =

y
k

(
x+1
k−1
−k
x

)
, h3 = y

(
1
k

1−k
x(x+1)

)

are C-linearly dependent. Let Θ2 = {1,δ,δ2,σ,σ2,σδ}. By Lemma 3.2

(Θ2(h1),Θ2(h2),Θ2(h3)) = A ·diag
(
(x+ k)y,

y
k
, y
)

for some 12×3 matrix A over F. A direct calculation shows that the rank of A is less than 3. Since R is simple and
y is invertible in R, then h1, h2 and h3 are linearly dependent over C by the second assertion of Proposition 3.4.

The next corollary is a “scalar” version of Proposition 3.4.

Corollary 3.6 Let F be a ∆-field, R be a ∆-extension of F and h1, . . . ,hn be invertible and hyperexponential elements
of R. Then h1, . . . ,hn are linearly dependent over CR if and only if the matrix (Θn−1(h1), . . . ,Θn−1(hn)) has rank less
than n.

Proof. Setting m = 1 and vi = 1 for i = 1, . . . ,n in the proof of Proposition 3.4 yields the corollary. �

Assume that R = F , which is a ∆-field. Proposition 3.4 is applicable to test linear dependence of vectors in Fm

over CF , because every nonzero element of F is invertible and hyperexponential over F . Proposition 3.4 specializes
to the well-known Wronskian (resp. Casoratian) when m = 1 and ∆ contains only a derivation (resp. an automor-
phism). It corresponds to Theorem 1 in [5, page 86] if ∆ contains only derivations, and to the difference analogue of
that theorem if ∆ contains only automorphisms.

4 Linear dependence over the ground field
Let F be a ∆-field and R a ∆-extension of F . We study how to determine whether a finite number of hyperexponential
elements (resp. vectors) in R (resp. in Rm) are linearly dependent over F . First, we present a generalization of
Proposition 3.3 in [7], which connects the notion of similarity with linear dependence of hyperexponential elements
over F .

Proposition 4.1 Let F be a ∆-field and R a ∆-extension of F. Assume that CR = CF. Let h1, . . . ,hn ∈ R be invertible
and hyperexponential over F. Then h1, . . . ,hn are pairwise dissimilar if and only if they are linearly independent
over F.
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Proof. If h1, . . . ,hn ∈ R are linearly independent over F , so are hi and h j with i �= j. Thus h1, . . . ,hn are pairwise
dissimilar by definition.

We prove the converse by induction on n. The proposition clearly holds for n = 2. Assume that it holds for
lower values of n. Suppose that h1, . . . ,hn are pairwise dissimilar but are linearly dependent over F . A possible
rearrangement of indices leads to

hn = f1h1 + f2h2 + . . .+ fn−1hn−1 for some f1, . . . , fn−1 ∈ F. (7)

By the induction hypothesis, h1, . . . ,hn−1 are linearly independent over F . The assumption CR = CF then implies
that f1h1, . . . , fn−1hn−1 are linearly independent over CR. From Corollary 3.6, there exist θ1,θ2 . . . ,θn−1 in Θ such
that D = det(θi( f jh j))1≤i≤n−1,1≤ j≤n−1 is nonzero. Since h1, . . . ,hn−1,hn are hyperexponential, there exist ri j in F
such that θi( f jh j) = ri jh j for all i, j with 1 ≤ i ≤ n−1 and 1 ≤ j ≤ n−1, and, moreover, rin in F such that θi(hn) =
rinhn for all i with 1 ≤ i ≤ n−1. Applying θ1, . . . ,θn−1 to (7) then yields a linear system⎛

⎜⎜⎜⎝
r11 r12 . . . r1,n−1
r21 r22 . . . r2,n−1
...

... . . .
...

rn−1,1 rn−1,2 . . . rn−1,n−1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

h1
h2
...

hn−1

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

r1nhn

r2nhn
...

rn−1,nhn

⎞
⎟⎟⎟⎠ .

Since D = ∏n−1
i=1 hi det(ri j) is nonzero, the coefficient matrix (ri j) is of full rank. By Cramer’s rule, hi = qihn for

some qi ∈ F . So hi and hn are similar for i = 1, . . . ,n−1, a contradiction. �

The assumption CR = CF in Proposition 4.1 is indispensable. For example, let F = Q, R = Q(π) and δ be the
derivation on R that maps everything to zero. Then CF = Q and CR = Q(π). The elements π+2, π+3 and π+4 are
invertible in R and hyperexponential over F . They are linearly dependent over Q but dissimilar to each other.

If the ground field F has characteristic zero and CF is algebraically closed, then Picard-Vessiot extensions of F
contain no new constants (see [1, Theorem 5]). The fields of constants of SC and of RC in Example 2.1 are both
equal to C. So Proposition 4.1 is applicable to hyperexponential elements in these two ∆-extensions.

An immediate application of Proposition 4.1 is

Corollary 4.2 Let F be a ∆-field and R a ∆-extension of F. Assume that CR = CF. Let h1, . . . ,hn ∈ R be invertible
and hyperexponential over F. Then h1, . . . ,hn are algebraically dependent over F if and only if there exist integers
e1, . . . ,en such that he1

1 · · ·hen
n ∈ F.

Proof. If he1
1 · · ·hen

n ∈ F for some e1, . . . ,en ∈ Z, then h1, . . . ,hn satisfy a nonzero n-variate polynomial over F which
has two nonzero terms. Thus h1, . . . ,hn are algebraically dependent over F .

Conversely, suppose that (h1, . . . ,hn) is a solution of some nonzero n-variate polynomial over F . Then the power
products of h1, . . . ,hn are linearly dependent over F . Proposition 4.1 implies that there exist two such power products
similar to each other over F , since all the power products of h1, . . . , hn are invertible and hyperexponential. It follows
that there exist e1, . . . ,en ∈ Z such that he1

1 · · ·hen
n ∈ F . �

Corollary 4.2 appears to be known at least in the ordinary differential and difference cases (see [13, 14]).

Example 4.3 Let SC and RC be the same as those in Example 2.1. Assume that c ∈ C is neither zero nor a root of
unity. We show that the hypergeometric sequence S = (c, c2,c3, . . .) ∈ SC is transcendental over RC. Suppose the
contrary, then Se ∈ RC for some e ∈ Z+ by Corollary 4.2. Thus, there exist a rational function f (x) ∈ C(x) and an
integer m ∈ Z+ such that cne = f (n) for all integers n with n ≥ m. It follows that ce = f (n+1)

f (n) for all integers n ≥ m.

Note that the rational function f (x+1)
f (x) can be written as p(x)

q(x) , where p(x) and q(x) are monic polynomials in C[x].
Since q(n)ce = p(n) for all integer n ≥ m, we have q(x)ce = p(x) in C[x]. Thus, ce = 1, a contradiction.
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A few words need to be said about similarity. Let F be a ∆-field and R be a ∆-extension of F with CR = CF .
Assume that h1,h2 ∈ R are invertible and hyperexponential over F . Then one can decide whether h1 and h2 are
similar by their certificates. Note that h1

h2
is hyperexponential over F , so we let fφ ∈ F be the certificate of h1

h2
with

respect to φ for φ ∈ ∆. Consider the first-order system:

φ(z) = fφ z for every φ ∈ ∆. (8)

Note that h1
h2

is a solution of (8) in R. If h1 and h2 are similar, then h1
h2

∈ F by definition, and so (8) has a nonzero
solution in F . Conversely, if (8) has a nonzero solution r ∈ F , then there exists c ∈CR such that h1

h2
= cr. Since CR =

CF , h1
h2

is in F , i.e. h1 and h2 are similar. Therefore, under the assumption given above, h1 and h2 are similar if and
only if (8) has a solution in F . One may find in [9, Proposition 6.3](see also [6, §6]) a method for determining
whether (8) has a nonzero rational solution, when F is the field of rational functions and ∆ consists of usual partial
differential and shift operators.

At last, we present how to test linear dependence of hyperexponential vectors over the ground field F . Recall
that R is a ∆-extension of F with CR = CF . Let the vectors h1, . . . ,hn ∈ Rm be hyperexponential over F . Write
hi = hivi where vi ∈ Fm and hi ∈ R for i = 1, . . . ,n. In addition, the hi are invertible and hyperexponential. A
procedure for testing the F-linear dependence of h1, . . . ,hn are outlined below.

1. Partition h1, . . . ,hn into equivalence classes H1, . . . ,Hk with respect to similarity. If k = n, then h1, . . . ,hn are
linearly independent over F .

2. Suppose k < n. Partition the set {h1, . . . ,hn} into k subsets:

Gi = {giui,1, . . . ,giui,si}, i = 1, . . . ,k.

where gi is in Hi and the ui, j are in Fm.

3. h1, . . . ,hn are linearly dependent over F if and only if there exists an integer l with 1 ≤ l ≤ k such that
ul,1, . . . ,ul,sl are linearly dependent over F .

The conclusion made in the first step is immediate from Proposition 4.1. We now prove the conclusion in the
last step. Assume that h1, . . . ,hn are linearly dependent over F . Using the notation introduced in the second step, we
have

k

∑
i=1

gi

(
si

∑
j=1

fi jui, j

)
︸ ︷︷ ︸

wi

= 0 (9)

where the fi j are in F , not all zero. If wi is a nonzero vector for some i with 1 ≤ i ≤ k, then (9) implies that g1, . . . ,gk
are linearly dependent over F , a contradiction to Proposition 4.1. Thus all the wi are zero vectors. Since the fi j are
not all zero, there exists an integer l with 1 ≤ l ≤ k such that ul,1, . . . ,ul,sl are linearly dependent over F .

When the above procedure is applicable, the CF -linear dependence of hyperexponential vectors can also be tested
by first investigating their F-linear dependence, and then checking CF -linear dependence among several groups of
vectors with entries in F . However, Proposition 3.4 is applicable to determine whether hyperexponential vectors are
CR-linearly dependent even in the case CR �= CF .

5 Concluding remarks
In this paper, we present a criterion for determining whether invertible hyperexponential elements are linearly de-
pendent over the constants. The criterion allows us to check linear dependence of a finite number of (invertible)
hyperexponential elements over the ground field, provided that we can determine the similarity of these elements.
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As part of the future work, observe that the sums of hyperexponential elements in a ∆-ring R form a ∆-subring.
It would be interesting to test the CR-linear dependence of elements in that subring.
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