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ABSTRACT
We describe differential rational normal forms of a ratio-
nal function and their properties. Based on these normal
forms, we present an algorithm which, given a hyperex-
ponential function T (x), constructs two hyperexponential
functions T1(x) and T2(x) such that T (x) = T ′1(x) + T2(x)
and T2(x) is minimal in some sense. The algorithm can be
used to accelerate the differential Gosper’s algorithm and to
compute right factors of the telescopers.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms

Keywords
Normal forms; Rational functions; Hyperexponential func-
tions; Reduction algorithms

1. INTRODUCTION
Let F be a field of characteristic 0. For a given ratio-

nal function R(x) over F, any of the well-known reduction
algorithms (see [5, Chap. 11] or [4, Chap. 2]) constructs
two rational functions R1(x), R2(x) in the field F(x) such
that R(x) = R′1(x) + R2(x) and the denominator of R2(x)
has the minimal possible degree. (The symbol ′ denotes the
usual derivation w.r.t. x.)
A nonzero T (x) is a hyperexponential function over F,

abbreviated hereafter as h.e.f., if the ratio T ′(x)/T (x) is a
rational function in F(x). This ratio is called the certificate
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of T (x). For an h.e.f. T (x), the differential Gosper’s al-
gorithm [3] determines whether there exists an h.e.f. T1(x)
such that T (x) = T ′1(x), and computes T1(x) provided that
it exists.
Given an h.e.f. T (x), we present a reduction algorithm

which constructs two h.e.f.’s T1(x), T2(x) such that T (x)
equals (T ′1(x) + T2(x)), and T2(x) is minimal in some sense.
The problem is defined so that it not only generalizes the re-
duction algorithms for rational functions, but also includes
Gosper’s algorithm as a special case, i.e., T2(x) is identically
zero if T (x) is hyperexponential integrable. This reduction
algorithm avoids computing resultants and integer roots in
Gosper’s algorithm. This leads to an efficiency improvement
(see Tables 1 and 2). The special structure of T2(x) allows
us to define the notion of a prescoper, which is a right factor
of the minimal telescoper of a bivariate h.e.f.
Inspired by the algorithm for solving the additive decom-

position problem for hypergeometric terms [1], we propose
a specific type of normal forms of rational functions. These
normal forms and their construction are given in Sections 2
and 3. In Section 4, we discuss “similarity” among h.e.f.’s.
In Section 5, we present a reduction algorithm for h.e.f.’s,
and study properties of the output of the algorithm. This
is the main section of the paper. Applications are presented
in Section 6.
For R ∈ F(x), num(R) and den(R) denote the numer-

ator and the denominator of R, respectively. Except when
mentioned otherwise, num(R) and den(R) are co-prime, and
den(R) is monic. The use of some technical terms is bor-
rowed from [1]. The algorithms presented in this paper are
implemented in the computer algebra system Maple, and
are available from

http://www.scg.uwaterloo.ca/~hqle/code/DRNF.html.

2. DIFFERENTIAL NORMAL FORMS
In this section, we define differential rational normal forms

(DRNF’s) of a rational function R(x). The construction
is based on a classification and distribution of the simple
fractions in the irreducible partial fraction decomposition
of R. These DRNFs can be considered as the differential
analogue of the RNFs in the difference case [1].
An ordered pair (a, b) ∈ F[x]×F[x] is said to be differential-

reduced if gcd(b, a−ib′)=1 for all i ∈ Z. A rational func-



tion R in F(x) is differential-reduced if (num(R), den(R)) is
differential-reduced (0 is evidently differential-reduced).

Definition 1. Let R ∈ F(x). If there are K, S ∈ F(x)
such that (i) R = K + S′/S, (ii) K is differential-reduced,
then (K, S) is a DRNF of R. We call K and S the kernel
and the shell of the DRNF (K, S), respectively.

A nonzero rational function R can be uniquely written as

R = p +
n∑

i=1

mi∑

j=1

qij

dj
i

, (1)

where n, mi are nonnegative integers, p, the di’s and qij ’s are
in F[x], the di’s are distinct, monic and irreducible, and qij

is of degree less than that of di. We call (1) the irreducible
partial fraction decomposition of R over F. By a simple
fraction we mean either a polynomial or a fraction whose
denominator is a power of a square-free polynomial b of pos-
itive degree, and whose numerator is of degree less than the
degree of b. An easy calculation shows

Lemma 1. A rational function is a logarithmic derivative
of some element in F(x) iff its irreducible partial fraction
decomposition can be written as

∑

i nip
′

i/pi where the ni’s
are nonzero integers and the pi’s are irreducible in F[x].

The following lemma describes a relation between logarith-
mic derivatives and differential-reduced rational functions.

Lemma 2. A rational function R is differential-reduced
iff, for any monic and irreducible p and nonzero integer m,
the appearance of (mp′)/p in the irreducible partial fraction
decomposition of R implies that p2 divides den(R).

Proof: Set a = num(R) and b = den(R). Suppose that (a, b)
is differential-reduced, and that mp′/p appears in the irre-
ducible partial fraction decomposition, but that p2 does not
divide b. Then the irreducible partial fraction decomposition
of a/b would be written as

a

b
=

u

v
+

mp′

p
=

up + mp′v

vp

where u, v ∈ F[x], gcd(u, v) = 1, and gcd(p, v) = 1. Since
gcd(vp, up+mp′v) = 1, we have a = (up+mp′v) and b = vp.
A direct calculation shows that p divides gcd(b, a−mb′), a
contradiction.
Conversely, suppose that (a, b) is not differential-reduced.

It suffices to prove that there exist an irreducible p and a
nonzero integer m such that (i) p2 does not divide b, and
(ii) mp′/p appears in the irreducible partial fraction de-
composition of a/b. Since (a, b) is not differential-reduced,
g = gcd(b, a − mb′) is of positive degree for some nonzero
integer m. Let p be an irreducible factor of g. Then the fact
that gcd(a, b) = 1 implies that p2 does not divide b (hence,
(i) is certified). It follows that a/b = (u/v + q/p) where
gcd(u, v) = 1, gcd(v, p) = 1 and deg q < deg p. Hence,

a = up + qv and b = vp.

As a consequence, (a −mb′) = (v(q −mp′) + (u −mv′)p).
Since p divides (a −mb′), p divides v(q −mp′), and hence
it divides (q − mp′). A degree argument implies q = mp′.
Hence, mp′/p appears in the irreducible partial fraction de-
composition of a/b.

Consider the irreducible partial fraction decomposition

R =
∑

i

ui(x)

vi(x)
. (2)

Each simple fraction ui/vi in (2) belongs to one of the follow-
ing three classes: (I) ui/vi = mi v′i/vi, mi ∈ Z\{0}, v2

i does
not divide den(R); (II) ui/vi = mi v′i/vi, mi ∈ Z \ {0}, v2

i

divides den(R); (III) ui/vi is not a logarithmic derivative of
any rational function.
Let (K, S) be a DRNF of R. Then the simple fractions in

class (I) appear in the irreducible partial fraction decompo-
sition of S′/S, not in the irreducible partial fraction decom-
position of K (otherwise, K is not differential-reduced); the
simple fractions in class (III) appear in the irreducible par-
tial fraction decomposition of K, not in the irreducible par-
tial fraction decomposition of S′/S (otherwise, S′/S would
not be a logarithmic derivative of any rational function); the
simple fractions in class (II) can appear in the irreducible
partial fraction decomposition of either K or S ′/S.

Lemma 3. Let ui/vi be a simple fraction of class (I) or
(II) in (2), then vi is irreducible.

Proof: If vi is not irreducible, then vi = ps where p is irre-
ducible and s > 1. Because ui/vi is of class (I) or (II), by def-
inition, ui/vi = mi s p′/p. Since deg p < deg vi, gcd(ui, vi)
is not trivial, a contradiction.

The following corollary follows from Lemma 3.

Corollary 1. Let the irreducible partial fraction decom-
position of nonzero R ∈ F(x) be of the form (2). For i 6= j,
if the simple fraction ui/vi is of class (I) and uj/vj is of
either class (II) or class (III), then gcd(vi, vj) = 1.

Lemma 4. The denominator of the kernel of a DRNF is
unique.

Proof: In (2), each simple fraction ui/vi of class (II) is of
the form

ui

vi
= mi

v′i
vi

, mi ∈ Z \ {0}, v2
i divides den(R).

Since v2
i divides den(R) and the denominators of the simple

fractions of classes (I) and (II) are pairwise co-prime (Corol-
lary 1), there is a simple fraction of class (III) such that its
denominator can be written as vs

i , s ≥ 2. Hence, the de-
nominator of the kernel of any DRNF is the denominator of
the sum of the simple fractions in class (III).

Example 1. Consider the rational function

R =
4

x− 2
+

4

x + 1
−

3

(x + 1)2
−

9

(x− 1)2

−
9x2 + 12

x3 + 4x− 2
+

1

(x3 + 4x− 2)2
.

The simple fractions of R are classified as follows:

(I) u1 =
4

x− 2
, (II) v1 =

4

x + 1
, v2 = −

9x2 + 12

x3 + 4x− 2
,

(III) w1 = −
9

(x−1)2
, w2 = −

3

(x+1)2
, w3 =

1

(x3+4x−2)2
.

Now we construct four different DRNF’s of R.



The first DRNF is constructed by moving both simple frac-
tions in class (II) to the shell:

(

w1 + w2 + w3,
den(u1)

4den(v1)
4

den(v2)3

)

.

The second DRNF is constructed by moving both simple
fractions in class (II) to the kernel:

(
w1 + w2 + w3 + v1 + v2, den(u1)

4) .

The third DRNF is constructed by moving v1 to the shell
and v2 to the kernel:

(
w1 + w2 + w3 + v2, den(u1)

4den(v1)
4) .

Finally, the fourth DRNF is constructed by moving v2 to
the shell and v1 to the kernel:

(

w1 + w2 + w3 + v1,
den(u1)

4

den(v2)3

)

.

3. A DIFFERENTIAL CANONICAL FORM
Among all possible DRNFs of a rational function R(x),

we select one canonical form (DRCF) whose kernel K is the
sum of the simple fractions of classes (II) and (III) in (2),
and whose shell is the rational function S such that S ′/S is
the sum of the simple fractions of class (I). By Lemma 2,
the kernel K is differential-reduced. Note that the DRCF of
a rational function also appears in [7, Chap. 8].
For the rational function R(x) in Example 1, the second

DRNF is the DRCF of R. The next theorem shows the
minimality of the shell of the DRCF.

Theorem 1. For R ∈ F(x), let S be the shell of the

DRCF of R, and S̃ be the shell of any DRNF of R. Then
den(S) divides den(S̃), and num(S) divides num(S̃).

Proof: Let R be of the form (2), A and B be the sets of
simple fractions of class (I) and class (II), respectively. Each
element f of either A or B is of the form m v′/v where v is
monic, and irreducible in F[x], and m, denoted by res(f), is
a nonzero integer. Then

S =
∏

f∈A

den(f)res(f), S̃ = S
∏

g∈J

den(g)res(g)

︸ ︷︷ ︸

W

(3)

where J is a subset of B. By Corollary 1, den(f) and den(g)
are co-prime. Hence,

num(S̃) = num(S) num(W ), den(S̃) = den(S) den(W ).

Corollary 1 and the first equality of (3) imply if (K, S)
is the DRCF of a rational function, den(K), num(S) and
den(S) are pairwise co-prime.
Although the DRCF of R ∈ F(x) can be directly read off

from the full irreducible partial fraction decomposition (1),
we can construct the DRCF without computing (1). Let S

be the shell of the DRCF of R, and the sum
∑k

i=1 mip
′

i/pi

be the irreducible partial fraction decomposition of S ′/S,
where the mi’s are nonzero integers. Let f be the product
of irreducible factors of den(R) with multiplicity one. By
the definition of DRCF’s, f is divisible by each of the pi’s.
Write R = p + g/f + v/u, where p, f, g, u, v ∈ F[x] with
den(R)=fu, deg g < deg f and deg v < deg u. It follows
that the fraction mip

′

i/pi appears in the irreducible partial
fraction decomposition of S iff it appears in that of g/f .

Consequently, a monic irreducible factor q of f is equal to
one of the pi’s iff there exists a nonzero integer m such that q
does not divide the denominator of the difference of g/f
and mq′/q. In other words, the numerator (g−mq′w) of this
difference, where w = f/q, is divisible by q. This constraint
gives rise to a system of linear equations in a single unknown.
Such an integer m exists iff it is the integral solution of the
system. In practice, this method for constructing S is less
time-consuming than that by computing (1).

4. SIMILARITY
Let T (x) be an h.e.f. with the certificate R ∈ F(x). Let the

pair of rational functions (K, S) be a DRNF of R. Then T
can be written in the form T (x) = S(x) exp

(∫
K(x) dx

)
.

Such a form is called a multiplicative decomposition of T .
Two h.e.f.’s T1 and T2 are similar if their ratio can be

written as the product of a rational function and a constant
in some extension of F, or equivalently, the difference be-
tween the rational certificates of T1 and T2 is a logarithmic
derivative of a rational function. Similarity is an equivalence
relation. If T (x) is an h.e.f., then T ′(x) is an h.e.f. similar
to T (x). Let T1(x) and T2(x) be hyperexponential such that
T1(x) + T2(x) 6= 0. Then T1(x) + T2(x) is hyperexponential
iff T1(x) is similar to T2(x). The next lemma shows the use
of DRNFs in determining the similarity of two h.e.f.’s.

Lemma 5. Let T1(x), T2(x) be two h.e.f.’s, and (K1, S1),
(K2, S2) be DRNFs of the certificates of T1 and T2, respec-
tively. If T1 and T2 are similar, then den(K1) = den(K2).

Proof: Since T1 and T2 are similar,

K1 −K2 = Q′/Q for some nonzero Q ∈ F(x). (4)

Let p be an irreducible factor of den(K1) with multiplic-
ity m. Then a simple fraction q/pm must appear in the
irreducible partial fraction decomposition of K1. If m > 1,
then there is a simple fraction q/pm appearing in the ir-
reducible partial fraction decomposition of K2, because all
simple fractions in the irreducible partial fraction decompo-
sition of Q′/Q have square-free denominators by Lemma 1.
If m = 1, then q 6= ip′ for any integer i, for, otherwise, K1

is not differential-reduced by Lemma 2. It follows from (4)
that there exists a simple fraction f/p in the irreducible
partial fraction decomposition of K2 such that the differ-
ence of q/p and f/p is a logarithmic derivative of some ra-
tional function. Therefore pm is also a factor of den(K2).
Consequently, den(K1) divides den(K2). In the same way,
den(K2) divides den(K1).

5. A REDUCTION ALGORITHM

5.1 Algorithm description
An h.e.f. T (x) over F is said to be hyperexponential in-

tegrable if there exists an h.e.f. T1 such that T = T ′1. The
reduction problem for h.e.f.’s can be specified as follows.
Given an h.e.f. T , find an h.e.f. T1 and a function T2,

which is either zero or an h.e.f. such that T = T ′1 + T2 and

(i) if T is hyperexponential integrable, then T2 = 0,

(ii) if T is not hyperexponential integrable, then T ′2/T2 has
a DRNF (K, S) such that the denominator of S has
the minimal possible degree.



This formulation agrees with that of the reduction algo-
rithms for rational functions [4, 5] since if T2 ∈ F(x) then
num(K) = 0, den(K) = 1, and den(S) = den(T2). An easy
calculation shows

Lemma 6. Let T be an h.e.f. If there are h.e.f.’s T1, T2

such that T = T ′1 + T2, then T , T1 and T2 are pairwise
similar. If (K, S) and (K, S1) are respective multiplicative
decompositions of T and T1, then the pair (K, S2) is a mul-
tiplicative decomposition of T2 where S2 = S − S′1 − S1 K.

The following lemma, which is the core of Hermite’s re-
duction algorithm for rational functions [5, page 484] will
play an essential role in our proposed algorithm.

Lemma 7. Let B(x) = r(x)/q(x)j be a simple fraction
with j>1 and deg q > 0. Then there are e, f ∈ F[x],

deg e < (deg q)− 1, deg f < deg q (5)

such that

B(x) =

(
−f(x)/(j − 1)

q(x)j−1

)
′

+
e(x) + f ′(x)/(j − 1)

q(x)j−1
. (6)

For a rational function u1(x)/u2(x), u1, u2 ∈ F[x], let the

square-free factorization of u2 be
∏k

i=1 qi
i . Then

u1(x)

u2(x)
= p +

k∑

i=1

i∑

j=1

rij

qj
i

, (7)

where for 1 ≤ i ≤ k and 1 ≤ j ≤ i, p, rij ∈ F[x] and

deg rij < deg qi if deg qi > 0, and rij = 0 if qi = 1. (8)

The main idea of our algorithm is contained in the follow-
ing theorem and its proof.

Theorem 2. (Hermite-like reduction) Let R be a nonzero
rational function with the DRCF (K, S). Write K = k1/k2

where k1, k2 ∈ F[x]. Then there are S1 ∈ F(x), u1, u2 ∈ F[x]

such that (i) S − S′1 − S1 K = u1/(u2 ki
2), i ∈ {0, 1}, (ii) u2

is square-free, (iii) gcd(k2, u2) = 1.

Proof: Let B = rij/qj
i be a simple fraction of S such that j

is maximal and greater than one. Then

S =
a

s2
+

rij

qj
i

, where a, s2 ∈ F[x] and qj
i - s2. (9)

Apply Lemma 7 to B to obtain e, f ∈ F[x] such that rela-

tions (5) and (6) hold. Set S1,1 = − f/(j−1)

q
j−1

i

. Then it follows

from Lemma 7 that

S−S′1,1−S1,1 K =
a

s2
+

e + f ′/(j − 1)

qj−1
i

+
f/(j − 1)

qj−1
i

k1

k2
. (10)

Since (K, S) is the DRCF of R (which implies den(S) and
den(K) are co-prime), and since qi divides den(S), we have
gcd(qi, k2) = 1. Hence, the left hand side of (10) can be
written as c0/t2 + c1/k2 + c2/qm

i , where t2, c0, c1, c2 ∈ F[x],
deg c2 < deg qi, and 0 ≤ m < j. In addition, qm

i does not
divide t2 if m > 0 and c2 = 0 if m = 0. Repeating this step
if necessary on c2/qm

i and on the simple fractions of c0/t2 of
the form (7) by using S1,2, S1,3, . . . , we obtain

S − (S′1,1 + S′1,2 + · · · )− (S1,1 + S1,2 + · · · )K (11)

whose denominator is of the form u2 ki
2, i ∈ {0, 1}, where u2

is square-free. The rational function (S1,1 +S1,2 + · · · ), and

the numerator of (11) are the required rational function S1,
and the numerator u1, respectively. Since gcd(k2, s2) = 1
and u2 | s2, we have gcd(k2, u2) = 1.

Let (K, S) be a multiplicative decomposition of an h.e.f. T .
Lemma 6 and Theorem 2 allow one to construct two sim-
ilar h.e.f.’s T1(x), T2(x) with multiplicative decompositions
(K, S1) and (K, S2), respectively, where S2 = u1/(u2 ki

2),
i ∈ {0, 1}, u1, u2, S1 are as defined in the proof of Theo-
rem 2 such that T (x) = T ′1(x) + T2(x). If k2 exists in the
denominator of S2, one can rewrite T2(x) in a simpler form
by removing the factor k2 in the denominator of S2:

T2 =
u1

u2
exp

(∫

(k1 − k′2)/k2 dx

)

.

It is easy to check that the rational function (k1 − k′2)/k2 is
differential-reduced. This leads to the following theorem.

Theorem 3. Let T be an h.e.f. Then there exists an
h.e.f. T1 similar to T such that the difference (T − T ′) is
either zero or an h.e.f. whose the rational certificate has a
DRNF (K, S) which satisfies the following two properties:
(i) den(S) is square-free, and (ii) gcd(den(K), den(S)) = 1.

Definition 2. A pair of rational functions (K, S) is in-
decomposable if K is differential-reduced, den(S) is square-
free, and gcd(den(K), den(S)) = 1.

An algorithmic description of Theorem 2 is

Algorithm ReduceCert

input: D, U ∈ F(x) where (D, U) is the DRCF
of some R ∈ F(x);

output: U1, K, S ∈ F(x) such that
1. K + S′/S = D + U ′2/U2, U2 = U − U ′1 − U1D,
2. (K, S) is indecomposable.

U1 := 0; U2 := U ; u2 := den(U2);

let U =
∑k

i=1

∑i
j=1 rij/qj

i be the square-free
decomposition of U ;

for i from 1 to k do
for j from i downto 2 do

if qj
i |u2 then

write U2 = a/ũ2 + b/qj
i , a, b, ũ2 ∈ F[x];

apply Lemma 7 to R = b/qj
i to compute

e, f ∈ F[x] such that (5), (6) hold;

Ũ1 := −(f/(j − 1))/qj−1
i ;

U2 := U2 − Ũ1
′

− Ũ1D;
U1 := U1 + Ũ1; u2 := den(U2);

fi;
od;

od;
k1 := num(D); k2 := den(D); s1 := num(U2); s2 := u2;
if k2 | s2 then

s2 := s2/k2; k1 := k1 − k′2;
fi;
return (U1, k1/k2, s1/s2).

Example 2. For T =
1

(x− 1)2x3
exp

(∫
2x− 7

(x + 4)2
dx

)

,

(D, U) = DRCF(T ′/T ) =

(
2x− 7

(x + 4)2
,

1

(x− 1)2x3

)

.



Applying algorithm ReduceCert to (D, U) results in a triple
of rational functions (U1, K, S) which equals
(

−
89x2 − 41x− 16

32(x− 1)x2
, −

15

(x + 4)2
,
89x2 − 1424x− 1225

32(x− 1)x

)

.

Hence, T (x) is decomposed into two similar h.e.f.’s T1(x)
and T2(x) such that T (x) = T ′1(x) + T2(x) where

T1 = −
89x2 − 41x− 16

32(x− 1)x2
exp

(∫
2x− 7

(x + 4)2
dx

)

,

T2 =
89x2 − 1424x− 1225

32(x− 1)x
exp

(∫

−
15

(x + 4)2
dx

)

.

5.2 Integrability
Let T be hyperexponential integrable. Applying the re-

duction algorithm in Section 5.1 to T yields

T = U ′ + S exp

(∫

K

)

︸ ︷︷ ︸

H

(12)

where U is hyperexponential and the pair (K, S) is indecom-
posable. What special properties does (K, S) satisfy ? The
following theorem provides a partial answer.

Theorem 4. Let T and T1 be h.e.f.’s such that T = T ′1.
Let (K, S) and (K, S1) be multiplicative decompositions of T
and T1, respectively. If the pair (K, S) is indecomposable,
then both S and S1 are polynomials.

Proof: Let s1 = num(S), s2 = den(S), k1 = num(K) and
k2 = den(K). The assumption

s1

s2
exp

(∫
k1

k2

)

=

(

S1 exp

(∫
k1

k2

))
′

implies that

S′1 +
k1

k2
S1 =

s1

s2
. (13)

First, we show that s2 = 1. Suppose the contrary. Then s2

has a root r in some algebraic extension of F. Since s2 is
square-free, the order of s1/s2 at r is one. Since s2 and k2

are co-prime, the order of K at r is zero. Let m be the order
of S1 at r. If m > 0, then the order of the left hand-side
of (13) is equal to m + 1 which is greater than 1. If m = 0,
then the order of the left-hand side of (13) equals 0 which is
less than 1. Hence, deg s2 = 1, i.e., S ∈ F[x].
The proof that S1 is a polynomial is a variant of that of

the theorem in [3, page 577]. Rewrite (13) as S ′1+
k1

k2
S1 = s1.

Let S1 = a/b, a, b ∈ F[x], gcd(a, b) = 1. Then

a′b− ab′

b2
+

k1

k2

a

b
= s1. (14)

Clearing denominators of (14) yields

k2 a′ b− k2 a b′ + k1 a b = k2 s1 b2. (15)

Suppose that deg b ≥ 1. For some h ∈ N \ {0}, let

b = Ah b̄, degA ≥ 1, gcd(A, b̄) = 1, gcd(A, A′) = 1. (16)

It follows from (15) and (16) that

A
(

k2 a′ b̄−k2 a b̄′+k1 ab̄−k2 s1 Ah b̄2
)

= k2 a h A′b̄. (17)

Since gcd(A, A′ b̄ a) = 1, (17) implies that A | k2. Write

k2 = A k̄2, k̄2 ∈ F[x]. (18)

It follows from (17) and (18) that

A
(

k̄2 a′ b̄− k̄2 a b̄′ − k̄2 s1 Ah b̄2
)

= −a b̄
(
k1 − h k̄2 A′

)
.

Since A does not divide (−a b̄), A | (k1 − h k̄2 A′). Addition-
ally, A | (−h A k̄′2). Hence, A | (k1 − h k′2) by (18), a contra-
diction since A | k2 and (k1, k2) is differential-reduced.
In order to decide if T is hyperexponential integrable, we

only need to decide if H is so according to (12). By The-
orem 4, we may conclude that H is not hyperexponential
integrable if S is not a polynomial in F[x]; otherwise, we
need to find a polynomial solution S1 of the equation (13).
If such a solution S1 exists, then den(K) |S1, because S is a
polynomial. Hence, we compute a polynomial f such that

den(K)f ′ + (den(K)′ + num(K))f = S (19)

and set S1 = fden(K). Note that (19) is of the same form
as (G8) in [3]. So the special techniques developed in [3] can
be directly applied to finding polynomial solutions of (19).
The combination of ReduceCert and Theorem 4 allows one

to design an algorithm which solves the reduction problem
for h.e.f’s as specified at the beginning of Section 5.1.

Algorithm ReduceHyperexp

input: an h.e.f. T ;
output: two h.e.f.’s T1, T2 such that T = T ′1 + T2 and

(i) if T is hyperexponential integrable, T2=0;
(ii) otherwise, T ′2/T2 has a DRNF (K, S)

with den(S) of minimal degree;

(D, U) := DRCF (T ′/T );
(U1, K, S) := ReduceCert(D, U);
if deg den(S) > 0 then

return
(
U1 exp

(∫
D
)
, S exp

(∫
K
))
;

else
if (19) has a polynomial solution f then

return
(
U1 exp

(∫
D
)
+ fden(K) exp

(∫
K
)
, 0
)
;

else return
(
U1 exp

(∫
D
)
, S exp

(∫
K
))
;

fi;
fi.

Example 3. Applying algorithm ReduceHyperexp to

T =
2x4 − x3 + x2 − 2x− 1

x2(x + 1)2
exp

(∫
x

(x + 1)2
dx

)

yields a triple of rational functions (U1, K, S):
(

1

2x
, −

3x + 4

(x + 1)2
, x4 +

3

2
x3 +

1

2
x2 −

1

2
x− 1

)

.

Since S is a polynomial, and since the equation (19) admits

f = (x3
−x2

−4x−1)
2

as a polynomial solution, T is hyperexpo-
nential integrable, and T = T ′1 where

T1 =
x4 − x3 − 4x2 − x + 1

2x
exp

(∫

−
3x + 4

(x + 1)2
dx

)

.

5.3 Algorithm verification
We verify that the algorithm ReduceHyperexp solves the

reduction problem specified at the beginning of Section 5.1.
The output of the algorithm has property (i) by Theorem 4,
and has property (ii) by the next theorem, which also has
applications in Section 6.2.



Theorem 5. Let the h.e.f.’s T , T1, T̃1 be such that

T2 = T − T ′1, T̃2 = T − T̃ ′1.

Let (K, S) and (K̃, S̃) be multiplicative decompositions of T2

and T̃2, respectively, where both K and K̃ are differential-
reduced. If (K, S) is indecomposable, then den(S̃) is divisible
by den(S).

Proof: Since T2 and T̃2 are similar by Lemma 6, Lemma 5
implies that den(K) = den(K̃), which is denoted by f . The

similarity between T2 and T̃2 implies that (K̃ −K) is equal
to r′/r for some r ∈ F(x). Hence den(r′/r) is a factor of f .
One can verify that den(r′/r) is the product of the square-
free parts of num(r) and den(r). Consequently, both num(r)
and den(r) are factors of some power of f . Hence

exp

(∫

K̃

)

=
h

fk
exp

(∫

K

)

(20)

where h ∈ F[x]. Write S = s1/s2 and S̃ = s̃1/s̃2, where
s1, s2, s̃1, s̃2 ∈ F[x], gcd(s1, s2) = 1 and gcd(s̃1, s̃2) = 1.

We construct a suitable multiplicative decomposition of T̃2

so that Theorem 2 is applicable. Write s̃2 = uw where
gcd(u, f) = 1 and w is a factor of fm for some nonnega-
tive integer m. Then the fraction s̃1

s̃2
= e

ufm , where e is a
polynomial co-prime to u, and

T̃2 =
e

u
exp








∫ (

K̃ −
mf ′

f

)

︸ ︷︷ ︸

Gm








. (21)

Note that u is a factor of s̃2, Gm is differential-reduced and
gcd(u, f) = 1. Apply ReduceHyperexp to the right-hand
side of (21) to get

T̃2 = T ′3 +
w1

w2fn
exp

(∫

K̃

)

(22)

where T3 is an h.e.f., w1, w2 ∈ F[x], gcd(w1, w2) = 1, w2 is
square-free, gcd(w2, f) = 1 and n is either m or (m + 1).
The reduction process implies that w2 is a divisor of the
square-free part of u. So w2 | s̃2. Therefore it suffices to
show s2 |w2.

Note that T̃2 = T ′3 +
w1h

w2fn+k exp
(∫

K
)
by (20) and (22).

Since (T2 − T̃2) is a derivative of some h.e.f.,

G =

(
s1

s2
−

w1h

w2fn+k

)

exp

(∫

K

)

is a derivative of some h.e.f. Now we construct a multiplica-
tive decomposition of G so that Theorem 4 is applicable.
Let g = gcd(s2, w2) and write s2 = pg and w2 = qg. Then

G =
s1f

n+kq − w1hp

pqg
exp








∫ (

K −
(n + k)f ′

f

)

︸ ︷︷ ︸

Gn+k








.

Since Gn+k is differential-reduced, pqg is square-free, and
gcd(f, pqg) = 1, by Theorem 4, (s1f

n+kq−w1hp)/(pqg) is a
polynomial. Hence p | (s1f

n+kq − w1hp), and consequently
p | (s1f

n+kq). Since gcd(p, s1fq) = 1, deg p = 0. Hence,
s2 = g which is a factor of w2. As w2 | s̃2, s2 | s̃2.

6. APPLICATIONS

6.1 Differential Gosper’s algorithm
In this section we compare the differential Gosper’s algo-

rithm in [3] and our reduction algorithm ReduceHyperexp,
both are implemented in Maple 9 1 (see also the function
contgosper in [8]).
The differential Gosper’s algorithm constructs the equa-

tion (G8), which is of the same form as (19), by three cal-
culations: calculating Sylvester’s resultant of den(R) and
(num(R)− zden(R)′), where R is the certificate of T and z
is an indeterminate, finding the nonnegative integer roots of
the resultant (regarded as a polynomial in z), and comput-
ing gcd’s of polynomials. The reduction algorithm also con-
structs (19) by three calculations: finding the DRCF (K, S)
of R, computing the square-free partial fraction decomposi-
tion of S, and performing a Hermite-like reduction on the
partial fractions of S. We applied these two algorithms to
h.e.f’s generated in various ways.
In the first suite, the rational function Rj is the ratio

of randomly generated polynomials r1j and r2j , where the
range of the integral coefficients of rij is from −100, 000 to
+100, 000, and deg r1j = j, deg r2j = j + 1. We applied the
two algorithms to Tj = exp

(∫
Rj dx

)
. Usually, the shell of

the DRCF of Rj is equal to one. So the three calculations
to obtain (19) in the reduction algorithm are often trivial.
However, Gosper’s algorithm still needs to calculate the re-
sultant to get the equation (G8). Consequently, the reduc-
tion algorithm is much faster than Gosper’s algorithm. Note
that Tj is usually not hyperexponential-integrable. Next,
Gosper’s algorithm and the reduction algorithm are applied
to T ′j , which is hyperexponential-integrable. The rational
certificate of T ′j usually has the DRCF (Rj , Rj). So the first
calculation in the reduction algorithm is nontrivial. How-
ever, the last two are often trivial because the shell Rj has
a square-free denominator. Twelve sets of tests were used.
Table 1 shows the average time requirement for the input T ′j
(G is for Gosper’s algorithm, and R is for the reduction al-
gorithm.)

Table 1: Average time requirement of G and R

Timing (seconds)
j G R j G R
50 3.233 0.410 110 43.299 2.621
60 5.734 0.606 120 60.545 3.263
70 9.144 1.060 130 80.459 4.091
80 14.384 1.319 140 106.264 4.761
90 21.917 1.725 150 138.043 6.173
100 31.661 2.197 160 174.174 6.899

In the second suite, the rational function Qj is equal to
Rj + S′j/Sj , where Rj , Sj are rational functions generated
in the same way as in the first suite. The shell of the DRCF
of Qj is usually equal to Sj and Tj = exp

(∫
Qjdx

)
is usu-

ally not hyperexponential-integrable. Since den(Sj) is often
square-free, the last two calculations in the reduction algo-
rithm take little time, and the third rational function in the
output of ReduceCert often has a nontrivial denominator.

1All the reported timings were obtained on a 1Ghz Compaq
Deskpro Workstation with 512Mb RAM.



Theorem 4 then tells us that Tj is not hyperexponential-
integrable. Hence, we do not need to compute the polyno-
mial solutions of (19). On the other hand, Gosper’s algo-
rithm would have to perform all the three calculations and
to compute the polynomial solutions of (G8). Empirical
data shows that the reduction algorithm is much more effi-
cient than Gosper’s algorithm for h.e.f’s of this kind. Next,
Gosper’s algorithm and the reduction algorithm are applied
to T ′j , which is hyperexponential-integrable. The rational
certificate of T ′j usually has a DRNF (Rj , SjRj + S′j). So
the three calculations in the reduction algorithm are all non-
trivial. Twelve sets of tests were used. Table 2 shows the
average time requirement for the input T ′j .

Table 2: Average time requirement of G and R

Timing (seconds)
j G R j G R
50 23.300 15.535 110 334.726 157.582
60 41.053 23.778 120 453.496 210.189
70 72.146 40.537 130 619.422 294.178
80 107.800 59.946 140 815.346 370.196
90 160.642 83.393 150 1047.920 463.027
100 237.471 117.254 160 1319.165 584.567

6.2 Minimal prescopers
In this section, unless otherwise mentioned, by an h.e.f. T

we mean an h.e.f. in both x and y, i.e., both the x-certificate
∂xT/T and y-certificate ∂yT/T belong to F(x, y). Recall
that a telescoper of T is a nonzero linear differential op-
erator L in F(x)[∂x] such that the application L(T ) of L
to T is hyperexponential integrable w.r.t. y. A telescoper is
minimal if it is of minimal degree in ∂x. We shall show that
the reduction algorithm ReduceHyperexp in Section 5.2 may
help us factor minimal telescopers.
Following [2], define a pair (P, Q) ∈ F(x, y) × F(x, y) to

be differentially compatible if ∂yP = ∂xQ. For R ∈ F(x, y),
den(R) and num(R) denote the denominator and numerator
of R, respectively. They belong to F[x, y] and are co-prime.
The next lemma describes a relation between the denomi-
nators of P and Q.

Lemma 8. If P and Q in F(x, y) are differentially com-
patible, then den(P )/den(Q) = f(x)/g(y) for some f(x)
in F[x], and g(y) in F[y].

Proof: Let den(P )=amb where a is square-free, and a, b are
co-prime, num(P ) = c, den(Q) = aku with gcd(a, u) = 1,
and num(Q) = v. Then

∂yP =
(∂yc)ab−mcb(∂ya)− ca(∂yb)

am+1b2
, (23)

∂xQ =
(∂xv)au− kvu(∂xa)− va(∂xu)

ak+1u2
. (24)

Since a and c b(∂ya) are co-prime, am+1 divides den(∂yP ).
Hence, am+1 divides ak+1 by ∂yP = ∂xQ and (24), and
consequently, am divides den(Q).
Suppose further that degx a > 0 and that k is the mul-

tiplicity of a in Q. Switching the roles of P and Q, we
find m ≥ k by ∂yP = ∂xQ and (23). The factor a has the

same multiplicities in both P and Q if degx a and degy a are
positive. Write

den(P ) = f1(x)g1(y)h1(x, y), den(Q) = f2(x)g2(y)h2(x, y),

where fi ∈ F[x], gi ∈ F[y] and hi ∈ F[x, y] whose contents
w.r.t. x and w.r.t. y are trivial. The conclusions reached in
the last two paragraphs imply g1|g2, f2|f1 and h1 = h2.
An h.e.f. can be expressed as

T (x, y) = exp

(∫

P (x, y) dx + Q(x, y) dy

)

, (25)

where the pair (P, Q) ∈ F(x, y) × F(x, y) are differentially
compatible. In fact, P and Q are the x- and y-certificates
of T , respectively. Two h.e.f.’s with the same certificates can
differ by a multiplicative constant. The reduction algorithm
is applicable to an h.e.f. w.r.t. y when we use the following
rule to modify integrands: for R ∈ F(x, y) and T in (25),

RT = exp

(∫ (

P+
∂xR

R

)

dx+

(

Q+
∂yR

R

)

dy

)

. (26)

This rule keeps the certificates differentially compatible.
Let (K, S) be the DRCF w.r.t y of Q in (25). By (26),

T = S exp

(∫ (

P −
∂xS

S

)

dx + K dy

)

︸ ︷︷ ︸

H

.

By Theorem 2 there are R ∈ F(x, y), u, v ∈ F(x)[y] with u
being square-free, gcd(u, v) = 1 and gcd(u, den(K)) = 1,
such that S − ∂yR − RK = v

u den(K)i , where i ∈ {0, 1}.

Hence, we have

T = ∂y(T1) +
v

u
T2, (27)

where T1 = RH, T2 = H if i = 0, and T2 equals

exp

(∫ (

P−
∂x(S den(K))

S den(K)

)

dx+

(

K−
∂yden(K)

den(K)

)

dy

)

,

if i = 1. By Theorem 4, T is not hyperexponential integrable
w.r.t. y if degy u > 0. This observation motivates us to
define the notion of prescopers.

Definition 3. A differential operator L ∈ F(x)[∂x] is
called a prescoper of an h.e.f. T w.r.t. y if L(T ) can be
written as a sum ∂yT1 + p T2 where T1, and T2 are h.e.f.’s,
the y-certificate of T2 is differential-reduced w.r.t. y, and p
belongs to F(x)[y]. A nonzero prescoper of minimal degree
in ∂x is called a minimal prescoper.

Clearly, a telescoper is a prescoper.
We define a sequence of mappings Ri from F(x, y) to itself

recursively. Let R0 send everything to one, and Ri send an
element r ∈ F(x, y) to ∂x(Ri−1(r)) + rRi−1(r) for i ∈ Z+.
An easy induction shows that ∂i

x(T ) in (25) equals Ri(P )T .

Lemma 9. Let L belong to F(x)[∂x], T be an h.e.f. given
in (25), and r in F(x, y). Then L(rT ) equals aT where a
is in F(x, y) and den(a) is a factor of the product of some
power of den(r) and some power of den(Q) over F(x).

Proof: Observe that L(rT ) is an F(x)-linear combination of
the products of ∂i

xr, Rj(P ) and T , where i, j ∈ N. Hence,
the lemma holds since den(P ) = den(Q)/g for some g in
F(x)[y] by Lemma 8.
The following proposition implies that minimal prescopers

are right factors of minimal telescopers.



Proposition 1. Let T be an h.e.f. and IT be the set of
prescopers of T . Then IT is a left ideal of F(x)[∂x]. In
particular, the minimal prescoper of T is a right factor of
the minimal telescoper of T .

Proof: Let L be a prescoper of T . Then

L(T ) = ∂yH + p G (28)

where H, G are h.e.f.’s, the y-certificate of G is differential-
reduced w.r.t. y, and p belongs to F(x)[y]. For any ele-
ment M ∈ F(x)[∂x], we need to show that ML is in IL.
Denote by Q the y-certificate of G. By Lemma 9 and the
commutativity of ∂y with any element of F(x)[∂x], apply-
ing M to (28) yields ML(T ) = ∂y(M(H)) + qG, where q is
in F(x, y) and den(q) is a factor of den(Q)m for some non-
negative integer m. Thus, for some r ∈ F(x)[y],

ML(T ) = ∂y(M(H)) +
r

den(Q)m
G = ∂y(M(H)) + rG̃,

where G̃ is an h.e.f. with differential-reduced y-certificate.
The operator ML is a prescoper.
It is a more involved to show that IT is closed under ad-

dition, because we need to specify constants more explicitly
when adding up two similar h.e.f.’s. Let L1 and L2 be dif-
ferential operators in IT . By Definition 3 we get

L1(T ) = ∂y(T1) + p1H1 and L2(T ) = ∂y(T2) + p2H2, (29)

where T1, T2, H1, H2 are h.e.f.’s, H1 and H2 have differential-
reduced y-certificates, and p1, p2 belong to F(x)[y]. Since H1

and H2 are similar when treated as h.e.f.’s in y, their y-
certificates have the same denominator, say p, by Lemma 5,
and the denominator of their ratio H1/H2 is a factor of pk

for some nonnegative integer k by (20). There then exist
a constant c w.r.t. y and a polynomial q in F(x)[y] such
that H1 = cqH2/pk. So the equalities in (29) imply

(L1 + L2)(T ) = (∂yH) +
f

pk
H2 = (∂yH) + fH̃2, (30)

where f is in F(c, x)[y], H and H̃2 are h.e.f.’s w.r.t. y, and

the y-certificate of H̃2 is differential-reduced. Now, applying
the reduction algorithm to (L1 + L2)(T ), we get

(L1 + L2)(T ) = (∂yG) + uH3 (31)

where G and H3 are h.e.f’s, and u is in F(x, y). However, u
has to be a polynomial by (30) and Theorem 5. It follows
from (31) that (L1 + L2) is a prescoper.
Since IL is a left ideal of F(x)[∂x], it is principal with the

minimal prescoper as the generator, which is a right factor
of any element of IL.
Due to the page limitations, we merely outline an idea on

constructing the minimal prescoper M of an h.e.f. T . Apply
the reduction algorithm to T to get (27). Clearly, M is also
the minimal prescoper of H = v

u
T2 given in (27). If degy u

is zero, M is equal to 1 and we gain nothing. If degy u is
positive, M is nontrivial by Theorem 5. For m = 1, 2, . . . ,
we apply the differential operator

Lm = ∂m
x + am−1∂

m−1
x + · · ·+ a0,

where the ai’s are unspecified functions in F(x), to T . Apply
the reduction algorithm to Lm(T ) to get

Lm(T ) = ∂y(T1) +
t

s
T2,

where T1, T2 are h.e.f’s, s belongs to F(x)[y] and t belongs
to F(x)[y, a0, . . . , am−1]. Note that the ai’s appear linearly
in t. The assumption that s | t over F(x) results in a linear
system Sm in am−1, . . . , a0. The first consistent Sm gives M .
The existence of prescopers implies that we will reach an
integer m with the consistent Sm.

Example 4. Compute the minimal prescoper and tele-

scoper of rT , where T=exp
(

x2
−y2

(y−1)2

)

, r=
(

1
(y−x2)x2−

1
yx2

)

.

the reduction algorithm returns (T1, T2) = (1, rT ). The min-
imal prescoper M of rT is:

∂2
x+

19x2−2+11x6−24x4−2x8

x(5x2−4x4−2+x6)
∂x−

4(x6−4x4+2x2+2)

x2(x4−3x2+2)
.

Since the minimal telescoper of M(rT ) is

L = ∂x +
x3(5x2 − 7)

5x2 − 4x4 − 2 + x6
,

the minimal telescoper of rT is equal to LM .
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