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Abstract

This paper presents a modular algorithm for computing the
greatest common right divisor (gcrd) of two univariate Ore
polynomials over Z[t]. The subresultants of Ore polynomi-
als are used to compute the evaluation homomorphic images
of the gcrd. Rational number and rational function recon-
structions are used to recover coefficients. The experimen-
tal results illustrate that the present algorithm is markedly
superior to the Euclidean algorithm and the subresultant
algorithm for Ore polynomials.

1 Introduction

Ore polynomials establish a general mathematical setting to
describe linear operational polynomials, for example, linear
differential, difference, and g-difference polynomials. Re-
cent years have seen a rapid development of the algorithms
for the manipulation of the functions that are annihilated
by linear operational polynomials [1, 2, 12} 151. This de-
velopment motivates us to design an efficient algorithm for
computing the gcrd of two Ore polynomials over Z[t]. The
gcrd-calculation plays an important role in the computa-
tion of linear operational polynomials. For instance, if L1
and L2 are two linear differential operators, then their gcrd
corresponds to the intersection of the solution spaces of Ll
and L2. To represent the sum of the two solution spaces, one
needs the least common left multiple of LI and L.2, which is
expressible as a determinant with entries being the deriva-
tives of coefficients of L1 and Lz, as long as the gcrd is
obtained [8]. The greatest common iefi divisor of& and L2
can be obtained from the gcrd of their adjoint operators.

Non-modular gcrd algorithms such as: the Euclidean af-
gorithm and subresultant algorithm, cause severe interme-
diate expression swell, as seen in the case for bivariate com-
mutative polynomials. We will extend the techniques used
in modular gcd algorithms as much as we can (see [3, 6]),
Two new problems that cannot be tackled by the classical
techniques, are that
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. evaluation mappings are not Ore ring homomorphisms

. the normalization of leading coefficients is different
from that in the algebraic modular algorithm.

The first problem will be solved by the subresultant the-
ory for Ore polynomials; the second one by rational num-
ber and rational function reconstructions. To the authors’
knowledge the present algorithm is the first modular algo-
rithm for computing gcrds. The non-modular algorithms
are the Euclidean algorithm [11] and the subresultant al-
gorithm [8]. Grigor’ev [7] presents a method for computing
the gcrds for several linear differential operators by Gaussian
elimination.

This paper is organized as follows, In Section 2, we
review some basic results from Ore polynomial rings and
specify the notation that will be used later. The outline
and detailed description of the modular method are given
in Sections 3 and 4, respectively. Some experimental results
are given in Section 5.

2 Preliminaries

This section has two parts: Section 2.1 concerns Ore polyno-
mial rings and notation, Sect ion 2.2 concerns modular and
evaluation mappings. The reader is referred to [11, 1, 2] for
more details about Ore rings.

2.1 Ore polynomial rings

Let R be a commutative domain and rr an injective endo-
morphism of 7?, which is called conjugate operator by Ore.
An endomorphism 6 of the additive group %! is called a
pseudo-derivation with respect to u if

r5(ab) = a(a)~(b) + J(a)b, for afl a, b E 7?. (1)

The (non-commutative) multiplication in ‘R[X] is defined by
the commutation rule

Xa = u(a)X + J(a), for all a E R?. (2)

The triple (7Z[X], u, b) is cafled an Ore polynomial ring. For
A, B ~ R.[X], the product of A and B is denoted by AB and
the degree of AB is equal to the sum of the degrees of A
and B. The conjugate operator u and pseud~derivation r5
can be uniquely extended to the quotient field of ‘R by letting
u(a/b) = rr(a)/u(b) and c$(a/b) = (bJ(a) – a~(b)) /(u(b) b),
fora, b~lZwithb#O.
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For .4. C’ E ‘R[.Y], wc say that C is a right factor of A
if therr exist non-zero elements r 6 R and B E 73[X] such
that r.4 = BC. A common right factor of A and B, with
the highest degree, is called a gcrd of .4 and B.

Example 1 Let, the identity mapping and differential op-
erator # be the conjugate operator and pseudo-derivation
on Z[t], respectively. Let X be an indeterminate over Z[t],
Then the Ore polynomial ring Z[t][X] is Z[t]-isomorphic to
tbe ring of linear differential operators over Z[t], If

.4 = -1-’ and B = (t2 – t).Y3 – 3tX + 6,
then (t.1’ – 2) is a gcrd of A and B. Observe that

/2.4 = (fX3 –.Y’)(t.Y–2) and B = ((t– 1)X2 –3)(t.Y– 2).
Hence thr product of two primitive polynomials is not neces-
sarily primitive, and there does not exist an Ore polynomial
F in Z[t][.Y] such that .-t = F(tx – 2).

Example 2 Let E be the endomorphism of Z[t] over Z that
sends t to (t + 1). Let, E and the null mapping be the con-
jugate operator and pseudo-derivation on Z[t], respectively.
Thrn the Ore polynomial ring Z[t] [x] is Z[t]-isomorphic to
tbe ring of linrar shift operators over Z[t]. If

.4 = t(t + 1)X2 – 2t(t + 2)X + (t + l)(t+ 2)
and

B= (t – 1).Y2– (3t –2)X+2t,

then tX – (t+ 1) is the primitive gcrd of A and 1? w.r.t, X,

lVe shall work in Ore polynomial rings whose ground do-
mains are univariate polynomial rings over the integers or
over a finite field. Throughout the paper, p is a prime, and
Z,, is the Galois field with p elements. For an indetermi-
nate t, Z[t] and 2P [t] are the rings of usual commutative
polynomials in t over Z and 2P, respectively. Let X be
ii new indeterminate. We regard Z[t][X] (ZP[t][X]) as a
left Z[t]-module (ZP[t]-module), For non-zero F in Z[t][X]
or ZP[t][x], the leading coefficient of F in X is denoted
by Ic(F), the leading coefficient of Ic(F) in t is called the
head coefficient of F and denoted by he(F), the degree of F
in .Y is denoted by deg F, and the degree of F in tby degt F.

From now on, we assume that the triple (Z[t][X], u, J)
is an ore polynomial ring over Z[t]. For brevity we denote
this triple by Z[t][.Y], If .4, B c Z[t] [x], then the normalized
gcrd of .4 and B is the gcrd of .4 and B that is in Z[t][X]
and primitive with respect to .Y, and has positive head coef-
ficient. If A and B are in the Ore polynomial ring ZP[t][X],
then the normalized gcrd of .4 and B is the gcrd of A and B
that is in ZP[t] [x] and primitive with respect to X, and
has head coefficient 1. The normalized gcrd of A and B,
where .4 and B are either in Z[t][X] or ZP[t] [X], is denoted
by gcrd(A, B).

2.2 Modular and evaluation mappings

A modular mapping 4P : z[i?][X] -+ ZP[t][X] is a left-
module homomorphism (over Z[t]) defined for p by

o,(4) = .4 modp, for A E Z[t][X].
An evaluation mapping ~~ : ZP[t][.Y] -+ ZP[X] is a left-
rnodu]e homomorphism (over ZP[t]) defined for k c 2P by

@~(.4(t, X)) = A(/c,.Y), for A E Zp[t][X].

Note that @, and Ok are also ring homomorphisms from Z[t]
to Zp[t] and from ZP[t] to 2P, respectively. Thus, these two
module homomorphisms are well defined. Unlike the usual
commutative case it is not obvious that & and @k are ore
ring homomorphisms

Lemma 2.1 If p is not a divisor of hc(u(t)), then the triple
(ZP[t][X], UP,b,) is an Ore polynomial ring and @P is a ring
homomorphism, where UPand 6P are defined by the respec-
tive rules:

uP(4JP(~)) = IA(cW) and ~p(dp(~)) = #P(W)), \ c Z[t].

Proof The mappings UPand 6P are well-defined because u
and J are endomorphisms of the additive group Z[t].

First, we show that UPis a monomorphism of Zp[t]. Since
u(m) = m, for m E Z, we have degt a(t) >0. Let

.f=fntn +.fn-ltn-’++frl E Z[t].
If ap(q5P(f)) = O, then the definition of crPimplies

4P (~n”(t)n + fn-la(t)n-’ + + f,) =0,

Since @P(hc(cr(t))) # O, @P(u(t))is of positive degree in t.
Hence, @P(~,) = O for z = O,..., n, thus, @P(~) = O.

Applying 4P to (1), we see that 6P is a pseudwderivation
with respect to Op, hence, that (Zp[t][X], up, Jp) is an Ore
polynomial ring.

To show that @P is a ring homomorphism, we need only
to show that &(Xa) = X@P(a), for a E Z[t]. Applying @p
to (2) yields this assertion. ❑

Lemma 2.1 says that modulaz homomorphisms are ring
homomorphisms except for a finite number of primes. What
about evaluation homomorphisms ? The next lemma asserts
that evaluation homomorphisms are usually not ring homo-
morphisms.

Lemma 2.2 If (ZP[X], a, d) is an Ore polynomial ring, then
the multiplication in (ZP[X], a, b) is commutative.

Proof Note that 2P is generated by 1 as an additive group.
Hence u is the identity mapping of 2P, and, moreover, 5 is
the null mapping of 2P because 6(1) = O by (1). Thus, the
multiplicative rule (2) becomes Xa = aX, which defines the
usual commutative multiplication. ❑

Let Zp[t] [X] be the ring of differential operators over
Zp[t] and k be in Zp. Then (2) implies @~(Xt) = kX + 1.
On the other hand, Lemma 2.2 implies ~~ (X)@k (t)= kX.
Hence, ~k is not a ring homomorphism.

3 Outline of the modular method

Basically we have three algorithms:

●

●

●

GCRD-m: This algorithm reduces the gcrd problem in
Z[i!][X] to a series of gcrd problems in Zp[t] [X], for sev-
eral primes p, by applying modular homomorphisms.

GCR.D-p: This algorithm reduces the gcrd problem
in 2P [t][X] to a series of problems of finding evalua-
tion homomorphic images of the monic associate of the
sought-after gcrd.

GCRD_e: This algorithm computes the evacuation ho-
momorphic images of the monic associate of the gcrd
of two given polynomials in Zp[t][X].

The idea of GCRDm is as follows. For A, B ~ Z[t][X],
we choose several “good” primes p successively, and invoke
GCRD.p to compute the gcrd of @p(A) and @P(13) for these
primes. Determine “lucky” gcrds and combine them by the
Chinese remainder algorithm (CRA). Use rational number
reconstruction to recover the rational coefficients of the com-
bined image, say H. When two successive rational number
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reconstructions yield the same result we attempt a trial-
division of both A and B by H, using more primes if the
division is not exact. We use rational number reconstruction
because known bounds for the head coefficient of gcrd(A, B)
are loose. A similar situation also occurs in the gcd compu-
tation over algebraic number fields [5].

The idea of GCRD-p is similar. For given AP and J3P
in ZP[t][X]. We choose several “good” evaluation points
k successively, and invoke GCRD-e to compute the monic
associate of ok (gcrd(AP, BP)). Notice that this monic as-
sociate is essentially different from the monic associate of
gcrd(+~ (AP), +~ (Bp)), because v~ is not a ring homomor-
phism by Lemma 2.2. The combining process consists of
interpolation and rational function reconstruction. The ter-
mination of GCRD.p is again determined by a trial division.

To outline the idea of the algorithm GCRD-e, let us recall
the usual commutative case. Assume that ZP[t][X] is the
usual commutative polynomial ring. Then the diagram

Zp[t][x] x Zp[t][x] = Zp[t][x]

1 +k 1 $k

Zp[x] x Z,[x] 3 Zp[x]
commutes unless k is a root of some polynomial (relative
to Ap and Bp) in ZP[t]. The commutativity allows us to
compute ok (gcd(AP, Bp)) by Euclid’s algorithm in ZP[X].

If ZP[t][X] is an Ore polynomial ring, then the foregoing
diagram is usually not commutative when the mapping gcd
is replaced by gcrd, because ~k is usually not a ring ho-
momorphism. Thus, Euclid’s algorithm in ZP[X] will not
produce what we desire.

To overcome thk difficulty, we return to the commuta-
tive caae. A careful observation of the classical method re-
veals that one may obtain ~k (gcd(AP, BP)) without using
the property that ~k is a ring homomorphism. The idea
goes as follows. We form the Sylvester matrix M of AP
and BP, apply @k to the entries of ~ to get the matrix il’fk,
and then compute the rank of &fk using Gaussian elimi-
nation. Set d = deg Ap + deg Bp — rank(M~). Then d is
the degree of gcd(AP, Bp) unless k is a root of some known
polynomial (see [6, Theorem 7.2]). We then form the deter-
minant polynomial for the dth subresultant of AP and Bp,
apply @k to its entries to get the determinant polynomia]
Sd, and finally expand Sd, which is Zp-linearly dependent
on ok (gcd(AP, BP)) by the algebraic subresultant theory. In
this approach the multiplication in ZP[X] is not used. This
idea can be generalized to Ore polynomial rings.

4 Detailed description of the modular method

This section has five parts: in Section 4.1 we define the
notion of subresultants for C)repolynomials; Sections 4.2, 4.4
and 4.5 are devoted to describing the algorithms GCRD-e,
GCRD-p, GCRDm, respectively. In Section 4,3 we briefly
review rational number and function reconstructions.

4.1 Subresultants for Ore polynomials

In this section we introduce the notion of subresultants for
Ore polynomials, and prove some properties that are used
later. More details about the subresultant theory for Ore
polynomials are presented in [8]. Throughout this section
we let ‘R[X] be an Ore polynomial ring with the conjugate
operator u and pseudo-derivation 6.

Let A : Al, AZ,.. ., Am be a sequence in 7?[X] and n the
maximum of the degrees of the Ai ‘s. The matrix associated
with A, mat(A), is the m x (n + 1) matrix whose entry
in the ith row and jth column is the coefficient of X“+ 1‘]
in Ai, If m s n + 1, then the determinant polynomial of A,
detpol(A), is detpol(mat(A)) (see [9, 10]).

Definition 4.1 Let A and B be in ‘R[X] with respective
degrees m and n, where m ~ n. The nth subresultant of A
and B is defined to be B. For O s j ~ n – 1, the jth
subresultant of A and B, sresj (A, B), is defined to be the
determinant polynomial of the sequence

Xn-~-lA ,..., XA, A, Xr3-lB, B, XB,BXB, B.

Example 3 Let A, B be the same as those in Example 1.
Then sresl (A, B) is detpol(XA, A, X2B, XII, 1?) equal to

(

1 0 0 000
0 1 0 000

detpol

)

t2–t 4t–2 -3t+2 o 0 0
0 t2–t 2t–1 –3t 3 0
0 0 tz–t o –3t 6

The following lemma can be seen as an extension of the
Leibniz rule in calculus.

Lemma 4.1 If r- E 7? and A c 7?[X] , then the polynomial
(Xi (rA) – a’ (r)X’A) is an 7Z-linear combination of X’-’ A,
xi-2’4 ,.. ., A, forig Z+

Proof If i = 1, then X(rA) –a(T)XA = d(r)A by (2). The
lemma follows by induction on i. o

In the rest of this section let A and B be in 7?[X] with
respective positive degrees m and n, and m > n. For r E ‘R
and i E Z+, the u-facton’al of r with order-i is the prod-
uct of r, u(r), . . . . ai-l(r), and is denoted by r[il. Note
that lc(XB) = a(lc(B)) by (2). Hence it is easy to prove by
induction that ~~~n lc(XiB) = lc(B)[m-n+’l.

Definition 4.2 The (right) pseudo-remainder of A and B,
prem(A, B), is defined to be R with deg R < n such that

lC(B)[*-”+l]A = QB + R. (3)

where Q E R[X] with deg Q = m – n.

Lemma 4.2 (Xiprem(A, B) - prem(XiA, XiB)) is an 72-
linear combination of Xi-lA, . . . . A, Xm-n+iE, .,., B, for
all i= Z+.

Proof Set b = lc(B)Im-n+ll. By (3) we get

X’bA = XiQB + Xiprem(A, B)

and, since lc(Xi B) = a’(lc(B)), for all i E N,

cri(b)XiA = QiXiB + prem(XiA, XiB),

where Q, Qi E ‘R[X] both with degree m — n. Lemma 4.1
implies that X’bA — cri(b)Xi A is an R-1inear combination
of xi-~A, . . . . A. The lemma is proved by subtracting the
above two equations. n

The following two propositions form the basis for our
modular method. In their proofs we use the properties of
determinant polynomials given in [10, pp. 241-243]. Except
Theorem 7.5.1, all the assertions in Section 7.5 in [10] hold
for Ore polynomials. In linear differential case these two
propositions are implicitly stated in [7].
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Proposition 4.3 If d is the degree of the gcrds of A and B,
then the dth subresultant of A and B is a gcrd of A and B.

Proof Let S~ = sresd(.4, B) and R = prem(A, B).
The proof will be done by induction on n. If n = 1,

then either d = 1 or d = O. If d = 1, then B is a gcrd of A
and B, and B is sres~(A, B) b Definition 4.1. If d = O, then

7srmO(A, B) = detpol(A,.Ym– B, . . . . B). It follows from (3)
that

lc(B)[m]sresO(.4, B) = (–l)mlc(B)[m]R.

Since R # O, sresO(.4, B) is non-zero, and it is clearly a gcrd
of A and B.

Assume that Proposition 4.3 holds for i < n. If d = n,
then B is a gcrd of A and B. Hence, we may assume that
d < n, i.e. R # O. Let 1 = deg R and b = lc(B)[m–n+ll.
Then 1 z d. By the definition of subresultants we have

S,{ = detpol(Xm-d-]A, . . ...4. .Y’’’-d-]B, ,B).

It follows from (3) that

cr”-’’-’(b)sd =

detpol(R,, -,f_l,.Ym-d-2.4, ,A, X“’-d-l B,. ., B),

where Rn_d_l = prem(.Y’’-l A, X” X~-B)’B).
By Lemma 4.2, Rn.d_l can be replaced by X’-d-’R.

Hence,

u“-d-’ (b)Sd =

cfetpol(Xn-d- ]R, X’t-d-2A, . . . ,A, X“-d-’B,. ,B).

in the same way we replace .Y’A by X’R, for i = n – d – 2,
Tt–d-3, . . .. Thus.s,

rS~ = detpol(Xn-’l-’R, ,R, Xm-d-l B,. ,B),

for some non-zero r- ~ 7?.. Therefore, there exists a non-zero
h E 7? such that

7’Sd = hdetpol(Xi-d-l B,. ,B,.Yn-d-’R, ,R), (4)

The right-hand side of (4) is equal to h sresd(B, R). There-
fore, r.$d = h Srrsd(B, R). The proposition then follows frOm
the induction hypothesis. ❑

Proposition 4.4 Let M be the matrix associated with the
sequence Xn-’ A, . . ..XA. A, Xm-l B, . . .. XB. B. If the
gcrds of A and B have degree d, then rank(kf) is equal
to (m + n – d).

Proof Sincr S,1 is nonzero, the rows of M represented by
Yn-(f-l .4, , .4, .Ym-d-l B ... , B are ‘R-linearly inde-
pendent. Hence, the rows of ‘M represented by Xn-d - i A,
.,. , A, .Ym-l B, . . . . A’m-d-l B, . . . . B are ?7Ainea.rly inde-
pendent. Thus, we conclude that rank(M) ~ m + n – d.

There are non-zero u, v E 7? and U, V E R.[X] such that
UA = USd and VB = VSd, because sd is a gcrd of A and B
by Proposition 4.3, Hence all the X’A, for O ~ i ~ n – 1,
and X] B, for () s j ~ m – 1, are R-linear combinations of
X’n+”-d-lsd, . . . . Sd. Therefore, rank(hf) < m+n–d. D

Example 4 Let A, B be the same as those in Example 1,
and M = mat(X2.4i -Y.4, .4, X3B, X2B, XB, B), that is,

1 () o 0 000
() 1 0 0 000
0 0 1 0 000

t2–t 6t–3 –3t+6 –3 000
0 t~–t 4t–2 –3t+2 O 0 0
0 0 tz–t 2t–1 –3t 3 0
0 () 0 t2–t o –3t 6

The rank of M is equal to 6. It follows from Proposition 4,4
that gcrd(A, B) is of degree 1 and then from Proposition 4.3
that gcrd(A, B) is Z[t]-linearly dependent on sresl (A, B),
which is equal to –9t(3t – 2)(tX – 2).

4.2 The algorithm GCRD_e

In this section let (ZP[t][X], aP, 15P)be an Ore polynomial
ring. Fix an element k of 2P and the evaluation mapping @k..
Assume .4, B 6 ZP[t][X], with deg A = m and deg B = n,
andm~n>l. Let

M=mat(Xn-l A,..., XA, A, Xm-l B,. ... XB, B).

We show how to use the arithmetic in ZP to compute the
monic associate of @k(gcrd(A, B)).

Lemma 4.5 Let G = gcrd(A, B) with deg G = d, and let
Sd = sresd(A, B). If Ok(k(sd)) is nonzero, then

@~(G) /lw(lc(G)) = @k(S~)/@k(lc(S~))

Proof By Proposition 4.3 there exists a non-zero element r
of ZP[t] such that rG = .$d. Since ~k (lc(Sd)) is nonzero,
@k(lc(G)) ISalso nonzero. Applying ~k to

G/lc(G) = Sd/lc(Srj)

yields the lemma. c1

Definition 4.3 The evaluation point k is unlucky for A
and B if either @k(O’ (lc(B))) = O, for some i with O ~ i ~

(m–1, or ~~(lc(sresd A, B))) = O, where d = deggcrd(A, B).

Now, we present GCRD_e for computing the evacuation
homomorphic images of the monic associate of gcrd(A, B)
when evaluation points are not unlucky.

algorithm GCRD.e

Input: A prime p, a residue k ~ Z,, and A, B ~ ZP[t][X]
with deg A~deg B~l.

Output: g E ZP[X]. If k is not unlucky, g is the monic
associate of $h (gcrd(A, B)), otherwise g is O or
of degree greater than d.

1. m + deg.4; n t deg B;
2. if @k (~~~’ a~(lc(B))) = O then return(o);
3. kfk + the image of M under I+!I~;
4. r t rank(hfk);
5. if r = m + n then return(l);
6. S t the determinant formula of (sres~+~–, (A, B));
7. 9 t the expansion of ~k (S);
8. ifdegg= m+n–r>O theng+g/lc(g);
9. else 9 t O;
10. return(g);

The following example shows how GCRD.e works.

Example 5 We regard A and B in Example 1 as polynomi-
als in 211 [t][X]. Let us use GCRD-e to compute evacuation
homomorphic images of gcrd(A, B). The evaluation points
O and 1 are unlucky, because the leading coefficient of B is
t(t – 1). For k = 2, the matrix M given in Example 4 is
mapped by $2 to M2 whose entries are those of M evaluated
at 2. The rank of Mz is 6, and hence we get an upper bound
for the degree of gcrd(A, B) to be deg(A) + deg(B) – 6 = 1
by Proposition 4.4. In line 6, S, the determinant formula of
sresl (A, B), is formed as given in Example 3. The entries
of the determinant polynomial vz (S) in line 7 are those of
S evaluated at 2. Expanding ~z (S) yields g = 10X + 1 in
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line 7. Since deg g = 1, g is normalized to be X + 10 in
line 8.

If k = 8, then in line 4 we get the rank of Ma, r = 6,
but g computed by the commands in lines 6 and 7 is zero.
Hence 8 is also an unlucky point.

Proposition 4.6 The algorithm GCRD.e is correct.

Proof Let deg gcrd(A, ~) = d and & = sresd(A, B). We
may exclude the case when v~ (a~(lc(B))) = 0, for some i
with O < i < m, Thus, deg@k(X’B) = n + i, for O g
i < m, since IC(XZB) = u~(lc(B)). Let r be obtained from
line 4. Note that r < rank(~), since A’fk is the evacuation
homomorphic image of M,

If r = m+ n, then rank(M) = m+ n, consequently, d = O
by Proposition 4.4. Therefore, it is correct that GCRD_e
returns 1 in line 5.

Suppose that r < m + n. Let 1 = m + n – T. Then
Proposition 4,4 implies that 1 ~ d. Note that ~k in line 3
is the matrix associated with the sequence

~k(xn-’z’i), . . . .
?)k(xm-’~), . . . .

If k is not unlucky, then

+k(Xm-’B), ..,,

@,( X’’-d-’A), . . . . @k(A),

tik (x ‘-d-] ~), . . . . ~k(~).

the members of the sequence

@~(X”-d-’A),
*k(xm-d-l B

), ‘::: $$]

are ZP-linearly independent, because ~k (lc(Sd)) # O. Con-
sequently, we have ~ = m + n – d. Hence, the polyno-
mial g obtained from lines 6 and 7 is @k(&) of degree d. By
Lemma 4.5 GCRD.e is correct.

Now, assume that ~k (lc(Sd ))) = O. Then we have either
1> d or 1 = d and deg ~k (S~) < d. In the former case the
polynomial g obtained from lines 6 and 7 has degree either
greater than d or less than 1, so GCRD -e returns either Oor
a polynomial with degree greater than d. In the latter case
GCRD-e returns O, according to line 9. 0

To analyze GCRD-e for linear differential operators over
ZP[t], we count the number of word operations needed, and
we assume that arithmetic operations in ZP can be per-
formed in unit time. By the complexity of an algorithm
we mean the worse-cae complexity.

Proposition 4.7 If

m = max(deg A, deg B), and mt = max(degt A, degt B),

then the complexity of GCRD_e is 0(mtm2 + m3),

Proof Since o is the identity mapping, GCRD.e takes
O(m~ ) in line 2. There are two calculations in line 3, namely,
constructing A4 by differentiation and computin ~ M~ by
Homer’s evaluation, each of which takes O(mtm ). The
time for computing the rank of Mk in line 4 is bounded by
0(m3), and so is the time for expanding ~k (S) in line 7. The
time for other calculations can certainly be neglected. ❑

In GCRD-e, the homomorphic image of the (m+ n – r)th
subresultant of A and B is computed by expanding its de-
terminant @mu/a (not by the subresultant algorithm). It
can also be read off from the Gaussian elimination for com-
puting the rank of A4, provided the pivot rows are chosen
properly. The interested reader is referred to [8] for a more
sophkticated and efficient version of GCRD-e.

4.3 Rational Number and Function Reconstruc-
t ions

To use interpolation to combine the evaluation homomor-
phic images of the monic gcrd of two Ore polynomials, say A
and B, in ZP[t][X], we need to know a multiplicative bound
for the denominators of the monic gcrd of A and l?. In
the algebraic case, such a bound is gcd(lc(A), lc(B)). How-
ever, there are counterexamples showing that neither the gcd
nor the lcm of lc(A) and Ic(B) is the desired multiplicative
bound. A multiplicative bound is the leading coefficient of
the dth subresultant of A and B if gcrd(A, B) has degree d.
Unfortunately, this multiplicative bound is loose. Inspired
by the work in [5], we use rational function reconstruction to
combine the evaluation homomorphic images of gcrd(A, B).
A similar problem arises when A and B are in Z[t][X]. So,
the rational number reconstruction is also needed.

We will not go into the details about rational number
and rational function reconstructions. The reader may find
relevant materials about rational number reconstruction in
[13, 14, 4], and those about rational function reconstruction
in [8], as well as the Maple function Ratrecon.

Applying rational number (function) reconstruction to
the coefficients of a polynomial, one may easily get:

algorithm COEFFn

Input: A modulus m E Z+ and a residue R ~ Zm [t][X].
Output: A E Q[t][X], such that A s R modm

and the denominators and numerators of
the rational coefficients in ,4 range from

-~ to ~ if such a polynomial
exists. Otherwise, NIL is returned.

algorithm COEFF~

Input: A modulus A4 c Z,[t] and a residue R E ZP[t][X].
Output: A ● ZP(t)[X], such that A s R mod M

and the denominators and numerators of the
rational function coefficients in A have
degrees less than (degi M)/2 if such a
polynomial exists. Otherwise, NIL is returned.

In these two algorithms we use the least non-negative
representation for integral residues. We also remark that the
solution satisfying the specification of COEFFm (COEFFI)
is unique if existent.

4.4 The algorithm GCRD_p

Let (ZP [t][X], UP,6P) be an Ore polynomial ring. We present
the modular algorithm GCRD-p for computing gcrds in this
ring. First, we reduce the gcrd problem in ZP[t][X] to a
series of problem of computing the evaluation homomorphic
images in ZP [X], which will be later solved by the algorithm
GCRD_e. The “lucky” evaluation homomorphic images are
combined by Newton’s interpolation and COEFFf. The
termination of GCRD-p is determined by trial division. It
is a rare, though possible case that there are not enough
lucky evaluation points in ZP. If this happens, GCRD-p
reports ~adure.

algorithm GCRD-p

Input: A prime p, and A, B E ZP[t][X] with
deg A>deg B>l.

Output: C, where C = gcrd(A, B).
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~~it~~~he modulus, residue, and degree]

2. repeat
3. if k = p then report failure;
4 R~ e GRCD.e(p, k, A, B); k +- k + 1;
~. until Rk # ~
6. dA.+ deg Rk;
7. if dk = O then return(l);
8. ~f+-t-k;RFRk.;d+-dk;C+ O;
[main loop]
9. while true do {
10. repeat
11. if k = p then report failure;
1~, Rk +- GRCD_e(p, k, A, B); k t k + 1;
13. until Rk # O
1~. dk +- deg Rk;

[ test for unlucky evaluation homomorphism]
1,5. if dk < d then goto line 7;
16. if dk = d then {

[ combine]
17. R t Interpolation(R, M, R~, t – k);
18. M + (t – k)M;
19. C’ + COEFF.f(M, R);
20. if C#Oand C= C’ then

[ trial division ]
21. if AZ Omod Canal B= Omod C then
22. C +- the numerator of C;
23. return(C);
24. (’4-C’’;}}

Example 6 Let A and B be the same as those in Exam-
ple 5. We compute gcrd(A, l?) by the algorithm GCRD.p.
The loop from line 2 to 5 discards the evaluation points O
and 1 and finds R2 = .Y + 10, as computed in Example 5,
Hence M, R, ancl d are initialized to be t –2, X +10, and 1,
respectively. The while-loop yields:

k Rk R c’
3 x+3 x+4t+2 NIL
4 x+5 .Y+10t2+9t+7 x+9/t
5 X+4 X+t+6t2+9t3 x + 9/t

COEFF1 yields the same result in the second and third
iterations. We then invoke the trial division in line 21 which
affirms gcrd(.4, B) = tX + 9.

Proposition 4.8 The algorithm GCRD_p is correct

Proof Let G = gcrd(A, B) with degt G = df. If there are
less than (2d~ + 2) lucky points in ZP, then GCRD-p re-
ports failure. Assume that there are more than (2di + 1)
lucky points in Z,, Then the tentative degree d in GCRD-p
will be eventually equal to deg G, because, for each unlucky
point, GCRI-e returns either O or a polynomial in ZP[X],
whose degree is greater than deg G. The unlucky evaluation
points can be detected in line 15 as soon as a lucky one is
encountered, So, we may suppose that d is equal to deg G.
Then each Rk entering Newton’s interpolation in line 17 is
equal to @k(G/lc(G)) by Proposition 4.5. Hence, the con-
gruence R ~ G/lc(G) mod M holds in GCRD-p Since the
solution to the rational function reconstruction problem is
unique, COEFF1 in line 19 recovers G/lc(G) when degt M
exceeds 2dt. COEFF_f produces G/lc(G) again when the
next lucky evaluation point is encountered. Then the con-
dition C = C“ in line 20 is satisfied. Therefore, GCRD-p
returns G after a trial division. o

The next lemma ensures that GCRD_p does not report
failure if p is “sufficiently” large.

Lemma 4.9 If A, B E ZP[t][X], deg A = m, deg B = n,
and m > n, then there are at most

‘egLrIu’(lc(B))) +mdegtB+ndegtA “)
unlucky evaluation points for A and B,

Proof If k is unlucky for A and B, then k is a root of

the polynomial (~~~1 u~(lc(13))) lc(sresd(A, l?)), where d
is the degree of gcrd(A, B). The integer (5) is a degree
bound for this polynomial. ❑

In analyzing the computing time of GCRD_p for linear
differential operators over ZP[t], we assume that no unlucky
evaluation points occur, and that the verification of the gcrd,
by means of the trial divisions, is successful on the first try.
We let m be the maximum of degrees of A and B in X, d
the degree of gcrd(A, B), d~ the maximum of degrees of A,
B and gcrd(A, B) in t, and dt >0.

Proposition 4.10 If d is equal to O, then the complexity
of GCRD_p is O(dt m2 + rn3). Otherwise it is

0(d~m2 + dtm3 + dd~) + TP(m, d,d~),

where the function TP(rn, d, dt ) is the complexity of trial
division.

Proof If d is equal to O,then we need only perform GCRD_e
once. The proposition then follows from Proposition 4.7.

If d >0, then we compute (2d~ +2) monic homomorphic
images of gcrd(A, B) at a cost 0(dt(dtm2 + m3)) by Propo-
sition 4.7. COEFFf is applied (2d~ + 1) times to (d + 1)
sets of inputs with degree less than (2dt + 2); the total cost
is O(dd~). This cost dominates the costs of interpolation in
line 17 and simplification in line 22. u

Performing the trial division in GCRD-p is equivalent to
deciding if sres~_ 1(A, C) and sresd_ L(B, C) are zero. Using
evaluation homomorphisms we can obtain a modular algo-
rithm for the trial division with complexity O(m3d~ +m4d~),
which dominates other costs of GCRD_p. However, we sep-
arate the cost T’P(m, d, mt ) from others because the trial
division takes little time in practice.

4.5 The algorithm GCRD-m

In this section, we let A, B G Z[t][X] with deg A = m and
deg B = n. Let m ~ n ~ 1 and G = gcrd(A, B). Us-
ing modular homomorphisms we transform the problem of
computing G to a series of the problems of computing the
monic associates of the modular homomorphic images of G.
First, we define unlucky primes.

Definition 4.4 A prime p is unlucky for A and B if one of
the following holds:

1. p is a divisor of hc(cr(t))lc(A)lc( 13);

2. p is a divisor of lc(sresl(A, B)), where 1 = deg G;

3. p is a divisor of he(G);

4. @P(G) is not primitive with respect to X.

Lemma 4.11 If p is not unlucky and Zp[t][X] is the Ore
polynomial ring as defined in Lemma 2.1, then

gcrd(@P(A), @,(B)) = q5P(G)/@P(hc(G)). (6)
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Proof Let deg G = 1. Since deg A = deg @P(A) and deg B =
deg 4P(B), sresl(@P(A), @P(B)) = @P((sresl(A, B)) # O. So,
the degree of gcrd(r#P(A), 4P(B)) is not greater than 1, since
every common right factor of A and B must be a right fac-
tor of their subresultants. On the other hand, Lemma 2.1
implies that @P(G) is a common right factor of #P(A) and
4P(B) Thus, 4P(G) is a gcrd of +,(A) and @,(B) since
deg q5P(G) = 1. Hence, (6) holds because @p(G) is primitive
with respect to X. n

Clearly, there are only finitely many unlucky primes for
A and B. For each lucky prime p, ~P(G)/hc(&(G)) can
be constructed by gcrd(@P(A), I#P(13)). These considerations
lead to the algorithm GCRDm.

algorithm GCRD m

Input: A, B E Z[t][X];
Output: C, where C = gcrd(A, B).

[ initialize]
I. if deg(A) ~ deg(B) then { Al + A; -42 + ~; }

2. else {Ale B; A2+ A;}
3’. Al + the primitive part of Al w.r.t. X;
4. Az + the primitive part of A2 w.r.t. X;
5. b t hc(Al)hc(A2)hc(a( t));
[ initialize the modulus, residue, and degrees]
6. p + a large prime not dividing b;
7. RP +- GCR1l.p(P, q5P(-41), @P(A2));
8. dP +-- deg RP; dt,P t degt RP;
9. if d, = O then return(l);
10. L+p; R+ RP; d+dp; dt+dt,P; C+O
[main loop]
f 1. while true do {
12. p + a new large prime not dividing b
13. R, - GCRD.P(p, #,(AI), 4,(-42))

14. dP + deg RP; dt,P + degt RP;
[ test for unlucky primes]

15. if d, < d then goto line 9;
16. if dp = d and dt,p > dt then goto line 10;

[ combine]
17. if d, = d and dt,P = dt then {
18. R i- CRA(R, L, ~,p);
19. Li-pL;
20. C’ + COEFFn(L, R);
21. if C#Oand C= C’ then

[ trial division]
22. if Al s O mod C and A2 ❑ O mod C then
23. C + the numerator of C;
24. return(C);
25. Ctc’; }}

Remark 1 By a “large prime” p we mean that p is so large
that GCRD-p does not report failure, By Lemma 4.9 it is
always possible to choose such p.

Example 7 Let A and B be the same as those in Exam-
ple 5. We compute gcrd(A, B) by GCRD-m We begin with
p = 11. As given in Example 6, m, R are initialized to be
11, tX +9, respectively. The while-loop yields:

~
COEFF-n yields the same result in the first and second itera-
tions. Then the trial division in line 21 aflirms gcrd(A, 1?) =
tX – 2, as stated in Example 1.

Proposition 4.12 The algorithm GCRDm is correct.

Proof As b is assigned to be hc(Al)hc(A2)hc( a(t)) in line 5,
GCRD-p can only result RP in lines 7 and 13 such that ei-
ther deg RP > deg G or deg~ R, < degt G if p is unlucky.
The unlucky primes can be detected in lines 15 and 16 as
soon as a lucky prime is encountered. Since there are only
a finite number of unlucky primes, we may further assume
that d = deg G and dt = degt G. Accordingly, the poly-
nomial R in line 18 satisfies R s G/he(G) mod L, Then
the polynomial C’ computed by COEFFn in line 20 is
equal to G/he(G) as soon as @ exceeds the maximum
of the absolute values of the integral coefficients of G. Thus,
GCRDm returns G. ❑

The advantages of GCRDm are clear. The problem of
findhg gcrd(A, B) is mapped to a domain in which the arith-
metic does not cause any intermediate swelling. In addition,
GCRDm can recognize the case that gcrd(A, B) = 1 as soon
as a lucky prime is encountered.

We analyze GCRDm for linear differential operators
over Z under the similar assumptions made in the previ-
ous sections. These estimates will involve two additional
parameters: S, the maximum of the absolute values of the
integral coefficients A and B; and s, that of the integral co-
efficients of G. To make things simple we assume that A
and B are primitive with respect to X, that m, d and dt are
the same as those in Proposition 4.10, and that the primes
used in GCRDm are lucky and of length one.

Proposition 4.13 If d is equal to O, then the complexity
of GCRDm is O(dtm log S + dtm2 + m3). Otherwise it is

O((dtmlog S + d~m2 + d~m3 + dd~) logs + dd~log3s)

+Tp(m, d, d~)O(logs) + T(S, s, m, d, dt)

where T, (m, d, dt) is the same as that in Proposition 4.10
and ‘T(S, s, m, d, dt) is the complexity of the trial division in
GCRDm.

Proof If d = O then we need only one prime and one eval-
uation point, Thus, G CRDm returns 1 in

O(dtmlog S + dtm2 + m3)

word operations, where the first term receives contribution
from computing @P(A) and #P(B), and the others from com-
puting gcddp (A), #p (B)) (see Proposition 4.7).

If d >0 then we compute O(logs) modular gcrds in

O((dtrn log S + d~m2 + dtm3 + dd~ + T’p(m, d, dt)) logs)

word operations by Proposition 4.10. COEFFm is applied
O(logs) times to O(ddt) sets of inputs of length O(log s);
the total cost for COEFFm is O(ddL log3 s). This cost also
dominates the costs of Chinese remainder algorithm in line
18 and the simplification in line 23. •1

The trial division in GCRDm can be realized by de-
ciding if sres~. 1(A, C) and sresd. 1(El, C) are zero. Using a
naive modular method we can see that

T(S, S,m, d, dt) = Z’P(rn,d, d~)O(log(rn!Ss’’’ -d-l)),

which dominates other costs in GCRDm. However, we pre-
fer to separate the cost T(S, s, m, d, dt) from others because
the trial division takes little time in practice, as shown in
the next section.

As a crudification of this result, let D = max(m, d, dt )
and L = max(S, s), and neglect the cost of trial divisions.
Then the complexity of GCRDm is 0(D4 log L+D2 log3 L).
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5 Experimental Results

This section presents experimental results to compare the
algorithm GCR E)_nl, subrrvmltant aigorithm, and primitive
Euclidean algorithm, We implemented in Maple V (Re-
le:L<e 3) thes[, tlmee algorithms for the linear differential op-
rrators and linear shift operators with coefficients in Z[t].

The first suite was generated as follows. We used the
\lapk, function randpoly to generate pairs of bivariate poly-
nomials in Z[t, .Y] with total degree n. and 71– 1. where
)! = 5. 10, and 15. These polynomials have five terms
~vith(wefficients ranging from –99 to 99. We then regarded
these Imlynomia]s as differential operators and shift opera-
tors over Z[t]. resl)w,tively, and computed the gcrd of each
l,~iir. The t,ilninxs arc summarized in Figure 1, in which the
(X)IUUN1labeled r~gives the total degrees of the polynomi-
als; the column. labeled DM, DS, DPE, give the respective
computing times for GCR,D_rn, subrmultant algorithm, and
primitive Euclidean algorithm whose inputs are differential
operators: similarly, the columns labeled SM, SS, SPE, give
thc respective computing times for C,CRD-m, subresultant
algorithm, and primitive Euclidean algorithm whose inputs
are shift operators. All the entries arr Maple CPLTtime and
glveu ixl seconds

rl DN DS DPE sh4 Ss SPE -
~ 0.20 0.27 019 0.17 0.25 0.21
10 099 38.86 39.’71 0.59 42.73 40.71
15 1.65 301.25 374.00 077 436.47 485.91

Figurr 1. Computing times for the first suite

The timings of Figure 1 shows that GCRDm is con-
siderably faster than the non-modular ones when the input
polynomials are of total degree more than eight. This is not
wsurprise since two random polynomials usually do not have
a nontrivial gcrd. In practice, GCRDm can decide if two
lwlynomials arc relatively prime by one or two primes.

To construct the second suite, we used randpoly to gen-
erate three polynomials. say A, B, and C, with respective
total dcgwes 71– 2, 7L– 3, and 2, where n = 5, 10, and 15,
The mlrnber of terms and length of coefficients arc the same
as those in the first suite \Ve took the differential (shift)
products .4C and BC as the input polynomials. Thus, the
gcrd of each pair of the input polynomials was usually non-
trivial. Thr tinlings arc summarized in Figure 2, A dash (-)
imiicates that our implementation of the primitive Euclidean
algorithm took more than 3 hours without any output. This
could happen because it took very long time to compute the
l~rimitivc part, of a polynomial in z[t][x] when the content
had large integral coefficients. In these examples the trial
IIivisi(]n in GC’RDIn took less than one percent of the total
computing time

11 Dhl DS DPE SM SS SPE -
~ 2.26 0.25 0.15 1.29 0.30 0.15
1() ‘3.91 64.25 16,72 3.74 57.66 18.67
15 27.23 1348.83 6.46 1999.64 -

Figure 2: Computing times for the second suite

Again, the timings in Figure 2 indicate that GCRD-rn
is more efficient than the non-modular ones. We also re-
]Uiirk that, the subresultant algorithm may be slower than
the primitivt, Euclidean algorithm when the input polyno-
Iniids Ilave a urn-trivial gcrd. This is because the primitive

Euclidean algorithm removes more extraneous factors after
each division when the gcrd is not monic (see [8, $2.2]).
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