
Finding Roots of Unity

among Quotients of the Roots of an Integral Polynomial

Kazuhiro Yokoyama * Ziming Li t

ISIS, FUJITSU LABORATORIES LIMITED Research Institute for Symbolic Computation

140 Miyamoto, Numazu-shi, Shizuoka 410-03, Japan. Johannes Kepler University, A-4o4O Linz, Austria.

momoko~iias.flab. fujitsu.co.jp Ziming.Li@risc. uni-linz, ac.at

Istv&n Nemes ~

Research Institute for Symbolic Computation

Johannes Kepler University, A-4040 Linz, Austria.

Istvan.NemesQrisc. uni-linz.ac.at

Abstract

We present an efficient algorithm for testing whether a given
integral polynomial has two distinct roots a, B such that

fflp is a root of unity. The test is based on results ob-

tained by investigation of the structure of the splitting field

of the polynomial. By this investigate ion, we found also an
improved bound for the least common multiple of the orders

of roots of unity appearing as quotients of distinct roots.

1 Introduction

Two distinct algebraic numbers a,/? form a unitary pair if
a//3 is a root of unity. By the order of a unitary pair (a, ~)

we mean the order of the multiplicative group generated by

ct/~. We consider a univariate polynomial j(z) of degree
n with non-zero constant over the rational number field Q.

We say that f has a unitary pair if there is a unitary pair

among the roots of ~.
We present efficient solutions for the following problems.

Problem 1 Decide whether a polynomial has a unitary
pair.

Problem 2 If a polynomial has a unitary pair, compute the
order of this pair.

The problem of deciding whether a polynomial has a unitary
pair originates in the theory of linear recurrence sequences.

By a classical result, it is necessary for the appearance of

infinitely many zeros in a linear recurrence sequence that
the characteristic polynomial of the sequence has a unitary
pair, and if the sequence has infinitely many zeros, then the

sequence of the indices of the zero terms, up to finitely many
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indices, is a union of finitely many arithmetic progressions.

In this case the least common multiple (LCM) of the orders

of unitary pairs is a multiple of the LCM of the differences
of the arithmetic progressions [1].

Problem 1 can be considered also as one of the simplest

ways of finding an abelian extension field in the minimal

splitting field of a polynomial. If a polynomial has a uni-
tary pair (a, ~), the field obtained by adjoining all a/~ is

cyclotomic, contained in the minimal splitting field of the

polynomial.

A Straightforward approach to the problems is to com-

pute ~(x) = res~(f(y), f(zy))/(1 – Z)n, whose roots are ex-
actly the quotients of roots of f(x), and as a next step tot

find cyclotomic factors of ~(z). The resultant computation

in this method tends to be time-consuming for large n. In
[I] the resultant ~(z) was used for obtaining a bound on the

LCM of the orders of unitary pairs of f.

Recently Ge [3] found a solution for a long standing prob-
lem of computational number theory. From his solution we
can derive algorithms for Problem 1 and Problem 2. How-

ever, since the problems we are going to solve are very special
instances, they deserve particular study.

The main contribution of our paper is Theorem 3.1 which

gives a bound on the smallest order of unitary pairs. Based

on this result we propose an efficient algorithm for solving

Problem 1, which can be extended for handling Problem 2.

Another useful result is Corollary 3.3 which improves the
bound found by Berstel and Mignotte [1],

2 Preliminaries

Throughout this paper we consider polynomials over Q and

also the ground field is assumed to be Q. For a polynomial
g(z) we denote by ~g the set of all roots of g and by Gg
the Galois group of g, !2 and G will stand for f2f and Gf,

respectively. The group G~ acts on the minimal splitting
field of g and particularly, it acts on flg as a permutation

group.

To solve Problem 1, we need only to consider distinct

non-zero roots of ~(z). Therefore in the rest of the paper

f(z) will stand for a square-free, monic polynomial.
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2.1 Relation between roots

We define cr, ~ in fdg to be equivalent, if (a, /3) is a unitary

pair or a = ~. It is immediate that this relation is an
equivalence relation and elements of G9 map equivalence
class to equivalence class.

If g is irreducible, then the equivalence classes are con-

jugate to each other by the action of Gg. Following [8] we
say that such conjugate equivalence classes form a complete

block system. We shall make use of one property of com-
plete block systems: the size of each block is the same and

consequently it divides deg(g).

2.2 Cyclotomic extensions

For c root of unity let the order of < be its order in the
multiplicative group of the complex numbers and denote it

by oral((). By the degree of ( we mean the extension degree

IQ(O : Q1. we recall C@(<) = IXord(<)), where 4 iS the
Euler’s function. The minimal splitting field of z~ – 1 is

called the cyclotomic field of order m.

Let g(z) be irreducible with root a. We denote by Kg
the largest cyclotomic field included in Q(a). Since Kg is a

Galois extension, Kg does not depend on the choice of a.

Definition 2.1 For an irreducible polynomial g, we call the
order- of Kg the cyclotomic order of g and denote it by ?’9.

Since Kg is a subfield of Q(a), @(rQ) = IKQ : QI divides

deg(g).

Definition 2.2 By the degree of the unitary pair (a, ~) we

mean the degree of a//3.

Definition 2.3 The unitary order f is the LCM of the or-
ders of unitary pairs of f if f has a unitary pair-, and 1
otherwise.

3 Bounds on orders of unitary pairs

We consider bounds for orders of unitary pairs of f(z).

Theorem 3.1 If f has a unity pair, then it has a unitary

pair whose order is not greater than 3n31z.

Theorem 3.2 If the irreducible factors of f are fl, . . . . fe
with degrees nl, ., ne and with cpclotomic orders rl, . . . .

re, respectively, then the unitary order of f divides
LcM(nl, . . . . nt) x LCM(rl, . . ..rt).

Corollary 3.3 The unitary order of f is bounded by

exp(2~-). Moreover, if f is irreducible, then the uni-

tary order off is bounded by 3n5~2.

Proof By Theorem 3,2, the unitary order of ~ is a divisor of
LCM(nl, , , ., T?e) x LcM(rl , , rt). By applying the ar-

gument in the proof of (Theorem 1 in [1]), LCM(nl, . . . . ro)
and LCLf(rl, . . . . re) are both bounded by ezp(<=).

If f is irreducible, then the order of ~ divides n r-f. The
statement for irreducible ~ can be shown by this fact and
by the argument in the proof of Theorem 3.1. ❑

The bound found by Berstel and Mignotte [1] is ezp(2n

m) This was improved by [71, where polynomials
with algebraic number coefficients were considered, in the
special case of rational polynomials the bound is 2n+l. The
bound we obtained in Corollary 3.3 is an improvement also
of this latter result.

Remark. We note that even with the application of this im-

proved bound to decide whether a linear recurrence sequence

has infinitely many zeros still needs exponential time. How-
ever, having a polynomial bound on the unitary order of
irreducible polynomials, if the characteristic polynomial of

the considered sequence is irreducible, then the decision can

be carried out in polynomial time.

3.1 Proofs

For a in G and for ~ in the minimal splitting field of f, we

denote by ~“ the action of u on -y and we denote by G7 the

stabilizer of T in G.

Lemma 3.4 If f has a unity pair, then it has a unitary pair

whose degree is not greater than n.

Proof Assume that f has a unitary pair (a, /3) and let A

be the equivalence class of f containing this pair. Let g be
an irreducible factor of f. Considering how many roots of g
lies in A, the proof splits into two parts.

Case 1.For any g there is at most one root of g in A.
Let g and h be those irreducible factors of f which have a

and ~ as roots, respectively. Set ( = a/~. It suffices to

show

Q(a) = Q(B), (1)

because it implies < E Q(a) which shows

deg(() = IQ(() : QI ~ \Q(a) : Q\ = deg(g) < n.

To prove (I) we show G. = G8. Note that G acts on flg

and also on fdh. With an arbitrary u from G.,

/?( =a =a” = (p<)” =~”(”.

Thus, & = ,B<((m)-l. Since (((0)–1 is a root of unity, we
see that (~, /3C) is a unitary pair. Since @ is also a root of
g and there is at most one root of g in A, 6 = & and hence

G= C GO. Replacing the roles of o. and /3, we can show also

GVC G..

Case 2. There is a g with at least two roots in A.

Since deg(g) s n, to prove the lemma it is enough to show
that any irreducible polynomial g that has a unitary pair,
has a unitary pair whose degree is not greater than deg(g).

For the sake of simplicity, in the sequel we consider f as an
irreducible polynomial instead of g.

Since f is irreducible, the equivalence classes form a com-

plete block system and so every block has the same size,
say m. By the definition of the equivalence we can write
A = {Q~l, C&, . . . . cr(~ }, where (i’s are some roots of unity.
Let A be the product of the elements of A and <O = ~~1 ~,.

Then <O is a root of unity and J = arn~o.
BY the fact that A is a block, the set-wise stabilizer GA

of A in G acts transitively on A and GA contains G.. Then
G. fixes both A and am. This implies that Go fixes [O and

A<o E Q(a). (2)

Thus, we have the following tower of fields

Q(~m) C Q(&~o) C Q(a). (3)

Moreover, we can show

GA = GA. (4)
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To prove (4), it suffices to see that every element a in GA Galois group G is compatible with the equivalence relation,

stabilizes the set A. Consider an element a in GA and let we obtain

a’=a”. Then, GA = GA, = GAh (8)

CYm(il= A == A“ = (am(o)” = (Cl”) m(cl”= C1’m(,”

Thus, a’m = am<’, where (’ = ((oa) – 1co is a root of unity.
By letting k the order of <’, we have (cr’/a)w~ = 1 and so

a’ c A. This implies that A“ n A # 0, hence A“ = A.

To complete the proof of the lemma, we consider (3) and

distinguish the cases when Q (am) and Q(a) coincides or
not. First assume Q(am) = Q(cr). By (3), Q(J, CO) = Q(a)

and so G> n G(O = Ga. Since Q(<o) is a Galois extension,
GCO is a normal subgroup of G. Therefore, G. = GA n G(O is
also a normal subgroup of GA. Since GA acts transitively on

A and GA = GA by (4), for each ai in A, there exists a; E GA

such that a“% = ai, hence G., = G..; = G.”i = Gm,
Therefore, Q(a) = Q(ai) and [i G Q(a), hence

d%((i) = IQ(G) : QI < /Q(a): QI =n.

Finally consider the case Q(am ) # Q(a). We have a G

Ga~ \ G., and (am)” = (a”)m = am. This implies that

(a, a“) is a unitary pair whose order divides m and so also

divides n. Therefore, its degree is smaller than n, ❑

Proof of Theorem 3.1. Theorem 3.1 is implied by Lemma

3.4 using the fact that c1s 3#(d)3/2 for d >2 (Corollary in
[2]). ❑

Lemma 3.5 If f is irreducible, then the unitary order off
divides n x rf.

Proof We have to consider only the case where f has a

unitary pair. Since ~ is irreducible, like in Case 2 at the
proof of Lemma 3.4, we can use arguments of that proof.
Let (a, /3) be a unitary pair and A be the equivalence class

with m elements cent aining a, /3. It suffices to show that
with < = a//3, oral(() divides n rf. Since j is irreducible, m

divides n, thus it is enough to see that oral(() divides m rf,
i.e.

for the set-wise stabilizers.

To prove (7) it suffices to show am’ = /3m r, where

m = LCi14(m9, rrz~) and r = LC’M(r9, Th), because for ir-
reducible g and h we have mg I deg(g) and mh I deg(h).

On the analogy of the notation introduced in the proof
of Lemma 3,4, let & and Ah be the product of the elements

of A9, and that of Ah. Let <9,0 = &/ ffmS’, (h,o = ~k/fimh.
We can apply (2) and (4) for g and h. By (2), ~g,o belongs
to Q(a) and so also to Kg, similarly ~h,~ belongs to Kh.

Moreover, by (2), (4) and (8), we have GA, = GJ, and

Q(&) = Q(A,) c Q(a) n Q(,O).
Consider powers of & and Ah

since <9,0 G Kg, (~,. = 1 which shows A; ‘Img = am’.

Similarly, we have J; “’m’ = /?m r. Because a/~ is a root

‘lmg/A~[mh is a rootof unity, from (9) we see that <’ = &

of unity. Since Q(&) = Q(~h), (’ belongs to Q(~h) and so

also to Kh. Thus, we have (’” = 1. This implies cxm’ :=
rn vjm~

Ag = A~r’m’ =,W’. ❑

4 Deciding the existence of unitary pairs

Based on Lemma 3.4 we are able to give an efficient method

for solving Problem 1. Because, by this lemma it suffices
to test whether f has a unitary pair whose degree is net
greater than n. From now on, we deal with a square-free

integral polynomial -f(z) with non-zero constant and let

f(zj= ~~=o aizi = un’~~=,(z – cu).
Let @d(z) denote the d-th cyclot omit polynomial and C.

the set of @~(z) with degree not greater than n. We write
c. for the number of elements of Cn. Weset Dn={dld;~

2 and #(d) ~ n} and d~ = maz(Dn). In [2] it is shown that

d~ < 3TL3~2 and also dn s 5n if dn <3000.

cl m’f =(jm”f. (5)
4,1 Algorithms

To establish (5) let A be the product of the elements of
A, and let [0 = A/am and ~~ = J/@m. Clearly, (0 and We propose two methods for solving Problem 1.

<~ are roots of unity and by (2), (O c Q(a) and similarly

[’0 c Q(p). Thus both (O and <’0 are from Kf, consequently
Method 1 Construct an integral polynomial ~(z) ❑.

[~f = (’if = 1 which implies (5). ❑
crIl<i#j<n (x – ai/aj ), where c is an integer. B:y

Proof of Theorem 3.2. We have to consider only the case
the definition of resultant, ~(x) can be taken either as
resv(~(g), ~(y/z)zn)/(z - 1)’ or as ~ from the introduc-

where j has a unitary pair (a, /3). It suffices to show that tion.

oral(() [ LC&f(nl, . . . . n/) LCM(rl, . . ,re), (6)

“where < = a/~. If a and /3 are roots of the same irreducible
factor, Lemma 3.5 implies (6), Thus, we need to consider

only the case where a and @ are roots of distinct factors. To
conclude (6) we apply the following lemma. ❑

Lemma 3.6 Let g and h be distinct irreducible polynomials
with a G !& and ~ E oh. If (a, ~) is a unitary pair, then

ord(a/@ I LCA4(deg(g), deg(h))LCiM(r,, rh). (7)

Proof Let f(z) = g(x)h(x) and A be the equivalence class
containing a, /3. Let Ag and Ah be the equivalence class of a
in flg and that of ~ in oh, respectively. Clearly, A = A9 ~Ah.
Let mg = lAg I and mh = lAh 1. Since the action of the

Once we have computed ~(z), then by testing that @d(z) 6

C~ divides ~(z) we can decide whether j(x) has a unitar~y

pair of order d. Using the following proposition we may
avoid the extraneous factor (z – I)n and reduce the size of
the coefficients in the resultant computation.

Proposition 4.1 If g(z, y) = (f(y/z)zn– f (y))/(z– 1) and

degu(g) = m >0, then

res~(f(y), j(zy))/(z – l)n = (–l)na~-mresu(f (y), g(x, y))

Method 1 consists of one resultant computation, and c.,

divisions of ~(z) by cyclotomic polynomials.

Method 2 Construct an integral polynomial fd (z) =

C1-rl<i+ (x – a:), where c is an integer. We take ~d(~)
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as resg(f(y), z – Yd).

For each fd (x), d ~ D., we can test whether f(x) has a uni-
tar~ pair whose order divides d, by deciding square-freeness

of ~~ (x) or by testing whether the discriminant of fd (z) van-
ishes.

This method needs at most c. resultant computations
and at most C. square-free decomposition or discriminant

computations.

4.2 Complexities

We estimate the complexities of the methods in terms of the

number of arithmetic operations over the integers. To bound
the complexity of resultant computations, we considered an
interpolation method.

Proposition 4.2 (i) The construction of f and id needs

O(n5 ) and O(nd3 + n~) arithmetic operations, respectively.

(ii) Method 1 and Method 2 needs 0(n5 + cnd~nz) and
O(c~d~n) arithmetic operations, respectively.

We bound the magnitude of the coefficients of ~ and ~~’s in

t~rms of the square-n~rm by a Hadamard-type bound [4]:

1~1 < nnl~[zn-l and Ifdl < 2nf2]~]d. The Landau-Mignotte

bound gives l@~ I < 2d.

Having these coefficient bounds we are able to use mod-
ular algorithms for the subproblems in the methods, and we
conclude that the methods need polynomial time.

4.3 An efficient test

Proposition 4.2 shows that Method 2 requires more arith-

metic operations than Method 1. However, the computation

of each id(z) can be carried out much easier than the compu-

tation of ~(z), because we may assume that d. = O(n) when

dn < 3000. Based on this fact, combining Method 1 and
Method 2 we propose the algorithm Unitary-Test, which

does not compute ~(x).

Instead of ~(z), we compute ~d (z). To reduce the num-

ber of computations of ~d (z), we also apply a “quick test”
(with parameter k) which can detect unnecessary Qd effi-
ciently, and for the same purpose we provide additionally

“discriminant test .“ We compute ~d (x) only for that d for
which @d(z) passes these tests,

Unitary-Test
Input: f(z).

Output: True if j has a unitary pair, Fake otherwise.

[Choose k much smaller than n]

fors=Otok do;

~(s) := resy(~(y), 9(s, V)),
where g(z, y) = (.f(y/z)zn – f(y)) /(x – 1).

D:=Dn.
(loop) while D # 0 do;

D := D \ {d} with some d in D.
[Discriminant-Test]

if @d(l) X disc(f), then goto (loop).
[@ick-Test]
fors=Otok do;

if ~d(~) ~ ~(s) then goto (loop).

id(:) := resv(~(y), z - yd).
if id has a multiple factor, then return True.

return False.

4.3.1 Quick-Test

The idea for checking divisibility of polynomials in Quick-

Test is specialization. If @d(z) does not divide ~(z), then
the probability of the existence of an integer s with ~d (s) ~

f(s) seems to be very high, because there are only finitely

many s for which the divisibility holds. Since from @d(z) /

f(z) we have

for each integer s with @d(s) I ~(s).

Our experiment shows that Quick-Test eliminates un-
necessary @d(x) efficiently. Especially, it is well suited for
randomly generated f.

4.3,2 Discriminant-Test

The correctness of Discriminant-Test is guaranteed by the
following proposition.

Proposition 4.3 If f (x) has a unitary pair of order d, then

~d(l) divides disc(f).

Proof We recall

Since for some i and j, ~j /~i is a root of unity of or-
der d, each primitive d-th root of unity appears as a

root of the integral polynomial disc(f). Let they be

ail/% >.. . !dj+(d) /cri+(~). Then

d(d)

disc(f) = H(1 – ai,/aj,) x 6 = @~(l) x J.

k=l

Expanding J we get a sum, where each term is in the
form ~2n–2 bl . . ~bn

. Cll ~ with bi s 2n — 2. For distinct roots

~kl> ... ,~kt, %ffkl ~. cut is an algebraic integer (see [5]

page 81). Using this fact, we can show that each summand
is an algebraic integer and so is 6, but 6 is also a rational
number, hence it is an integer. Q

4.4 Experiment

We present our experiment for examining the efficiency of

Unitary-Test by taking dn ~ 5n. We implemented the
procedure in Rlsa/Asir [6], a computer algebra system devel-

oped at ISIS, FUJITSU LABS. By this experiment, we are
convinced that Unit ary-Te st for deciding the existence of
unit ary pairs is efficient. Computing time was measured on
SUN Spare 10, it is given in seconds. The time for garbage
collection is excluded. Instead of res~ ( f (g), 9(s, y)), we used
res~(f(y), ~(g/s)s” — f(y)). For the resultant computations
we used the built-in resultant procedure based on the sub-
resultant algorithm.

The table below shows the performance of Unitary-Test

with respect to different choices of k for 1000 random poly-

nomials. Row ~ shows the time for computing ~(z) for 5

random polynomials. We added row Cn to show the time
for generating necessary cyclotomic polynomials according
to n.
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f 177 783 I 5735

c. [ 0.26 I 0.30 I 0.601

We conclude from the experiment:

● The total time used by Unitary-Test for checking

1000 polynomials is smaller than the time needed to

compute ~(z) for 5 polynomials. This shows that

Unitary-Test is more efficient than possible imple-

mentations of Method 1.

● The proportion of polynomials with a unitary pair to

the generated polynomials is very small. For instance,

out of 1000 random polynomials of degree 15, there
were only 15 having unitary pairs. This behavior em-

phasizes the importance of Quick-Test.

. The parameter k = n – 1 serves very well fOr detecting

unnecessary computations of fd. Even k = 4 works
well for this purpose.
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