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Abstract

We identify a class of monomial supports that are inherently improper because any
surface rational parametrization defined on them is improper. A surface support is
inherently improper if and only if the ged of the normalized areas of the triangular
sub-supports is non-unity. The constructive proof of this claim can be used to de-
tect all and correct almost all improper surface parametrizations due to improper
supports.
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1 Introduction

Rational parametrizations are fundamental curve and surface representations
in computer shape modeling and processing. Perhaps the most basic property
of a rational parametrization is whether it is proper (one-to-one) or improper
(many-to-one). Improper parametrizations are undesirable because the para-
metric degree could be unnecessarily high. A high degree parametrization costs
more to analyze and process. What is worst, operations based on a proper
parametrization simply fail. For example, closed form inversion formulas are
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impossible for an improper parametrization. Therefore it is important to be
able to detect improper parametrizations efficiently, and when one is detected,
to attenuate or remove the improperness.

For curves, Liiroth’s theorem settles the improper parametrization problem
thoroughly. The theorem says that given a curve rational parametrization
(X(t),Y(t)) with coefficient field k, there is a rational function s(t) € k(t)
such that k(X (t),Y (t)) = k(s(t)). If s(¢) is linear in ¢, the given parametriza-
tion is already proper. Regardless, there are rational functions ¢, 1 such
that X(t) = ¢(s(t)), Y(t) = ¥(s(t)). Consequently, the reparametrization
(p(s),1(s)) is always proper and generates the same curve. Furthermore, prac-
tical algorithms to find ¢, ¥, and s(¢) using polynomial ged, involution, and
elimination are described respectively in (Sommerville, 1959; Sederberg, 1986;

Gao and Chou, 1992).

For surfaces the situation is not so satisfactory. When £k is the field of complex
numbers a theorem analogous to Liiroth’s was proved by Castelnuovo but
the proof was non-constructive. When confined to rational or real coefficients,
it is disappointing that a reparametrization similar to that of curves to avoid
improperness may not be possible. These facts are surveyed in (Schinzel, 2000).
Though correcting an improper surface rational parametrization is difficult or
impossible, there are practical algorithms to detect one (Chionh and Goldman,
1992; Pérez Diaz, Schicho, and Sendra, 2002).

However, the situation greatly improves, if instead of dealing with the gen-
eral problem of improper surface parametrizations, we study a class of surface
rational parametrizations arising from some special monomial supports (for
definition, please refer Section 2.1). These monomial supports are special be-
cause any surface rational parametrization constructed from them is always
improper whatever the coefficients are. To emphasize this characteristic, it
seems appropriate to refer to such monomial supports as inherently improper
surface parametric supports, or simply improper supports. The main results
of the paper are thus two-fold:

e highlighting the existence of inherently improper surface parametric sup-
ports, and

e proving a theorem constructively for the detection and correction, wholly or
partially, of improper surface parametrizations due to improper supports.

As surfaces in the 3-dimensional space are the main objects of interest, the
paper focuses on rational parametrizations from the 2-dimensional space to
the 3-dimensional space. An advantage of doing so is the simplification of no-
tation and derivation without losing generality. We expect that the discussions
can easily be rephrased for rational parametrizations from the n-dimensional
space to the (n + 1)-dimensional space, n > 2. This is because the algebraic



tools of implicitization, the BKK degree bound, Jacobians, and n-volume de-
terminantal expressions are all valid in the general n-dimensional setting.

The paper develops as follows. Section 2 defines two key concepts: the improper
index and support transformations. Section 3 proves that the improper index
of a support is the ged of the normalized areas of all its triangular sub-supports.
Section 4 explains why any surface parametrization defined on an improper
support must be improper. Section 5 studies the likelihood of encountering an
improper surface parametric support. Finally, Section 6 concludes the paper
with a summary and suggests possible future research.

2 Preliminaries

In this section we introduce all terminology and notation needed in the en-
tire paper. The most important concepts defined are the improper index and
support transformations. Support transformations are important because they
reparametrize and improper supports can be shrunk by support transforma-
tions.

2.1 Surface Parametric Supports, Surface Parametrizations

Let Z be the set of integers and R be the set of reals. The set Z? is the set of
lattice points and the set R? is the Euclidean plane. For any set S C Z2, the
Newton polygon NP(S) is the convex hull of S in the Euclidean plane. For
any polygon P C R?, the normalized area N A(P) is twice the usual Euclidean
area of P.

A finite set S C Z? is called a surface parametric support, or simply surface
support, if NA(NP(S)) > 0. For example, total degree n surface supports are

and bidegree m x n surface supports are

Bmn={(,7):0<i<m,0<j<n}, m>1n>1. (2)
Note that
NA(NP(T,)) =n2, NANP(Bp,)) = 2mn. (3)

Let S be a surface support in the following discussions.



Any set S C S is a surface parametric sub-support, or simply surface sub-
support, of S if S’ is also a surface parametric support. In particular, a sub-
support S is triangular if |S’'| = 3. Triangular sub-supports turn out to be
significant in the study of improper supports.

Let C be the field of complex numbers. A rational parametrization on S is
defined to be a map from C? to C3:

z(s,t) y(s,t) z(s,t)) (4)

(X (s,t),Y(s,t), Z(s,t)) = (w(s,t)’ w(s,t) w(s,t)

_ Z(ivj)es(xi,ja Yijs Zi,j)S“tJ (5)

2 (ij)es Wi St

where (w; ;,%; 4, Yij, zij) 7 (0,0,0,0) are coefficients from some field £ C C.

It is easily checked that a rational parametrization on S is invariant under
integer translations of S. In practice, for any surface support .S, we may want
to translate S such that the coordinates of points of S are non-negative and
S intersects both the X and Y axes.

Note that a rational parametrization on S need not define a surface. It defines
a point if there are constants w’, ', 3/, 2’ such that

Wij  Lig  Yij  Zigj . .
W w oy BDES ©)

or it may define a curve if X (s,t), Y(s,t), Z(s,t) satisfy more than one implicit
equation f(X,Y,Z) = 0. One way to detect if a rational parametrization on
a surface support degenerates to a curve is to use u-resultants (Chionh and
Goldman, 1991). Fortunately, the theory of BKK degree bounds ensures that a
general rational parametrization on a surface support indeed defines a surface.

A surface parametrization on a surface support S is a rational parametrization
on S that does not degenerate to a point or a curve. For the rest of the paper,
all rational parametrizations on S are assumed to be surface parametrizations;
that is, they are non-degenerate. The discussion in the preceding paragraph
ensures there is no loss of generality in making this assumption.

2.2 Shrinking Support Transformations and Shrinkable Supports

Let T : R? — R? be an invertible affine transformation with

T(z,y) = (ax + by + ¢, dz + ey + f). (7)



The transformation T is a support transformation with respect to a surface
parametric support S if T(S) is also a surface parametric support; that is,
T(S) C Z*. The absolute value of the determinant of the Jacobian matrix of
T is written

ad
J(T) = abs . (8)
be

Given a support transformation 7" for a surface support S, it is a well-known
fact in calculus that we have

_ NANP(T(S5))

TT) = —Nawpis) )

For obvious reasons, a support transformation 7" with J(7) < 1 is called
a shrinking support transformation, and a support that admits a shrinking
transformation is called a shrinkable support.

2.8  Improper Indices and Improper Supports

Consider a general surface (5) with generic coefficients (such as indeterminate
coeflicients) w; j, ; j, vi j, 2, (i,7) € S. The algebraic degree of the general
surface is denoted AD(S). The improper index of S is defined to be

_ NA(NP(S))

IX(S) = AD(S) (10)

It is known that a general surface point corresponds to p parametric points
(Zariski, 1971). Since NA(N P(S)) is the expected surface degree, or the BKK
degree (Cox, Little, and O’Shea, 1998), for a general surface parametrization
on S, the improper index IX(S) gives u, the number of parameter points
(s,t) corresponding to a general surface point (X (s,t),Y(s,t), Z(s,t)). We
state this fundamental property as a proposition.

Proposition 1 Let S be a surface parametric support with improper index
IX(S). For a general surface parametrization defined on S, there are IX(S)
parametric points corresponding to a general surface point.

Consequently, we call a surface support S proper if IX(S) = 1 and improper
if 1X(S)> 1.



2.8.1 Ezample: 1X({(0,0),(2,0),(0,2),(2,2)})
o ®

Let S = {(0,0),(2,0),(0,2),(2,2)}. By the technique of random coefficients
or otherwise, we find AD(S) = 2. Thus

_2><2><2_

IX({<O’O>7(270)7(()?2)’(272)}) - T 4. (11>

Indeed, four parameter points (+s,+t) correspond to a general surface point
(X,Y,2).

2.8.2  Ezxample: 1X({(0,0),(2,0),(1,1),(0,2),(2,2)})
o o

Let S = {(0,0),(2,0),(1,1),(0,2),(2,2)}). Again by the technique of random
coefficients or otherwise, we find AD(S) = 4. Thus

_2><2><2_

IX({(0,0),(2,0),(1,1),(0,2),(2,2)}) - T 2. (12>

Indeed, two parameter points (s,t), (—s, —t) correspond to a general surface
point (X,Y, 7).

2.8.8  Ezxample: Triangular supports |S| =3

Let S = {(i,7), (k,1),(p,q)} be a surface support consisting of three lattice
points. It is easily verified that a general surface rational parametrization on



S gives a plane, thus AD(S) =1 and

il
IX({(i,7), (k. 1), (p,@)}) = NA(NP(S)) = abs |k 1 1. (13)

pql

This means the improper index of a triangular support is simply its normal-
ized area. Consequently, a triangular support is improper if and only if its
normalized area is non-unity.

2.4 Support Transformations Reparametrize

Proposition 2 A support transformation induces a reparametrization.

Proof
Let T'(i,j) = (ai+bj+c,di+ej+f) = (¢, j') be a support transformation with
respect to the surface support S. To obtain the reparametrization induced by

T, let

s=u%? t=u"" (14)

We obtain a new rational parametrization:

o b v
2 (i)es (Tigy Yig» Zig)5' Y P jyes(Tigr Yig» Zig Ju™ v (15)
Y(ig)es Wij S e
_ Ziiges (@i Yig: 2 jJuttITeyditeity (16)
= E(i,j)es wi,juai+bj+cvdi+ej+f
o
— Z(i/,j’)ET(S) (Q:;/J’/, y;,j,, Zz{’,j/)uz v (17>

/ il il
Z(i’,j’)ET(S) U)Z-/’]-/U /U‘]

/ _ / _ / _ /! —
Whel'e ’LUZ-/J/ — wiyj, l’i/’j/ — xihj, yi/,j/ — yi,j, Z’i/,j/ — 2747,7 D

2.5 A Shrinkable Support is Improper

Proposition 3 If there is a shrinking support transformation T for a sur-
face parametric support S; that is, J(T') < 1, then S is an improper surface



parametric support and

IxX(s) 1
IX(T(S))  J(T)

(18)

Proof

By Proposition 2, the induced parametrization on the support 7'(.S) is
reparametrization of the parametrization on the support S. Thus AD(T'(S))
AD(S) and

| o

IX(S)  NA(NP(S)AD(T(S))  NANP(S) 1 19
IX(T(S)) NA(NP(T(S))AD(S) NA(NP(T(S)) J(T) (19)

Since IX(T(S)) > 1, we have IX(S) > 1 and S is improper. O

2.5.1 Ezample: S ={(0,0),(2,0),(1,1),(0,2),(2,2)}

Instead of computing the non-trivial AD(S) to find X (S) (see Example 2.3.2),
we can check that the support is improper because there is a shrinking support
transformation

T(x,y) = (“5_2,9;“”), J(T) =1/2. (20)




2.5.2  Ezxample: Triangular supports |S| =3

In addition to the method of Example 2.3.3, we can check if a triangular
support S = {(4, ), (k, 1), (p, q) } is improper by considering the transformation

ij1] |ij1
zyl|l kL1
T(x,y) = rel : vl (21)
ij1) |ij1
El1| |kl1
pqgl| |pgl

Since T'(S) = {(0,0),(1,0),(0,1)}, T is a support transformation for S with

-1

ij1
J(T)=abs|k 11| =NANP(S) ™ =1X(S)". (22)
pql
The equality
IX(8)J(T) =1 (23)

leads to a statement stronger than Proposition 3: a triangular support is im-
proper if and only if it is shrinkable.

3 The GCD of Normalized Areas of Triangular Sub-Supports

The main result of this section is
IX(S)=ged{ NA(NP(S")): S CS,|5 =3} (24)
The result is significant because it finds the improper index of a support with

elementary means without having to compute the non-trivial general surface
degree.



3.1 Improper Index of a Support Divides Improper Indices of Sub-Supports

First we show that if S’ C S is a sub-support then I.X(S) | IX(5").

Proposition 4 Let S be a surface parametric support. If S" C S is a sub-
support then IX(S)|IX(S").

Proof

The proof is based on the Factors of Zero Theorem (Chionh and Goldman,
1991). The normalized implicit equation, one that takes into account the BKK
degree, of the general surface with support S has the form f"* = 0, where
n = 1X(S) and f is the actual irreducible implicit polynomial in X, Y, Z and
all the indeterminate coefficients w; ;, x;;, vij, 2, (¢,7) € S. To obtain S’
from S, we set w; j, T; j, Ui j, 2i; to zero successively for each (i,5) € S\ 5. To
illustrate the process, assume w;, j, is the very first indeterminate coefficient
that is set to zero. We can write f = wj, j, g1+ g2 where the indeterminate wy, j,
does not divide the polynomial go. After setting w;, ;, to zero, the Factors of
Zero Theorem assures that g, can be factored as gsfi"*, m; > 1, such that
gs is an extraneous factor (not satisfied by the modified parametrization)
but the irreducible f; is satisfied by the modified parametrization. Thus the
normalized implicit polynomial of the modified parametrization is f;"""*. It can
be seen that if this is done for the rest of indeterminate coefficients w; ;, x; ;,
Yij, %ij, one after another for each (7,75) € S\ S’, we obtain the normalized
implicit polynomial for S” which has the form f}'"» for some integer m, > 1.
This means I X (S") = nm,, and thus /X (5)|/X(S"). O

The following corollaries are direct consequences of the above theorem.

Corollary 1 FEvery sub-support of an improper surface support is improper.
Equivalently, if a sub-support of a surface support is proper, then the support
18 also proper.

Corollary 2 Let Sy, ..., S, be sub-supports of a surface support S. If ged
(IX(S1), ..., IX(S,)) =1, then S is a proper surface support. Equivalently,
If S is improper then ged(IX(Sy),...,IX(S,)) > 1.

10



3.1.1  Example: Support {(1,0),(1,1),(0,1),(2,1),(1,2)} is proper
@

The support is proper because any three non-linear adjacent points form a
proper surface support.

3.1.2  Ezample: Support {(1,0),(2,1),(1,2),(0,1), } is proper
®

The improper indices of the bottom, right, top, left triangular sub-supports
are 3, 4, 3, 2 respectively. Since ged(3,4, 3,2) = 1, the given support is proper.

3.2 The Main Result

Now we are ready to prove the main result.

Theorem 1 Let S be a surface parametric support. We have

IX(S) = gcd{NA(NP(5") : §' C S, |5'| = 3}. (25)

Proof

11



Without loss of generality we may assume (0,0) € S. For any (z,v), (z;,y;) €
S, we have

001
NA(NP({(0,0), (,9), (xi,y:)})) = abs | x y 1| = abs(yix — ziy).  (26)

x; Yy 1

Let gcd{ NA(NP(S")) : 8" C S,|S"| = 3} = g. For any (z,y), (z;,y;) € S, there

is an integer f; such that

Yit — 2y = gfi- (27)

Let

ged{yi = (zi,9:) € S} = gy (28)
There exist integers b; such that -, b;y; = g,. Thus

gyt — (Zibiway _ 5~
; =Y bif; (29)

is an integer and the transformation

(o) = (2000 1) (30

g "9y
is a support transformation with Jacobian J(7') =1/g < 1.

Since T is invertible, we have

ged{ NA(NP((S")): 8" CT(S),|S"| =3}
=gcd{NA(NP((T(5")): S C S,|5'| =3}
=J(T)gcd{ NA(NP((S"): 5" C S,|5| = 3}
~ ged{NA(NP(S)): 8" C S, |5 =3}

g

=1.
But IX(S") = NA(NP(S”)) when S” C T'(S) is a triangular sub-support. By

Proposition 4 we conclude I X (7T'(S)) = 1. But by Proposition 3, IX(T'(S)) =
IX(S)J(T). Thus we have IX(S)=g¢g. O

12



3.2.1 Ezample: {(0,0),(2,0),(3,3),(0,2)} is improper
o

The improper indices of the four triangular sub-supports are 4, 6, 6, 8. Their
ged is 2 and thus the given support is improper.

The theorem may also be phrased in the following form:

Corollary 3 For a surface parametric support S, there exists a support trans-
formation T' such that IX(S)J(T) =1 and T(S) is proper.

For any four points O, A, B, C, the normalized area NA(ABC) is a sum or
difference among the values NA(OAB), NA(OBC), NA(OAC), thus instead
of computing the gcd of all triangular sub-supports we need only compute
the ged of triangular sub-supports anchored at some chosen point O. This
observation leads to the following result.

Corollary 4 Let S be a surface parametric support and (a,b) € S. We have
IX(S)=ged{NA(NP(S)):5 CS5,]5=3,(a,b) € S'}. (31)

Note that Corollary 4 provides an algorithm to compute X (S) with O(|S]?)
integer gcd computations.

4 Arbitrary Surface Parametrizations on Improper Supports

All the preceding results hold for a surface defined by a rational parametriza-
tion with generic coefficients on a surface support. We now investigate the
situation when the coefficients are specialized to some values in the coefficient
field. It turns out that any surface parametrization defined on an improper
support is indeed improper.

For a set of coefficients C' of (5) taken from the coefficient field k, we use

13



IX(S,C) to denote the improper index of the rational parametrization when
it defines a surface.

Theorem 2 Let IX(S,C) be the improper index of a surface parametrization
with coefficients C' on a surface parametric support S, and T the transforma-
tion (30). Then IX(S,C) = IX(T(S),T(C)) IX(S), where T(C) is the set of
coefficients of the reparametrization induced by T'. Consequently, if X (S) > 1
then IX(S,C) > 1.

Proof
The reparametrization introduced by 7" in (30) is

s = ugy/97 t = U_(Zl bifﬂi)/gvl/gy‘ (32)

Since g,|g, we can write g = f,g, for some integer f,. The reparametrization
is then simplified to

u=sl, v= s biwi) oy (33)

Recall that the improper index of a rational parametrization is the number
of parameter values corresponding to a general point on the surface (Zariski,
1971). Since transformation 7" leads to a reparametrization of the same surface,
the new rational parametrization RP of (5) after the transformation 7" has the
same implicit surface with (5). A general point on the implicit surface f = 0 of
RP with coefficients T'(C') corresponds to IX(T(S),T(C)) parameter values
(u,v). We may assume wv # 0, since these points correspond to at most
some curves on the implicit surface. By (33), one point (u,v) with uv # 0
leads to f,g, = g points (s,t). Thus a general point on the implicit surface
f = 0 corresponds to IX(T'(S),T(C))g parameter values (s,t). This proves
the theorem since g = IX(S). O

The significance of Theorem 2 is that any surface parametrization on an im-
proper support is improper. But, unlike the case of a general surface parametri-
zation, transformation 7' given in Theorem 1 though reduces but may not
completely remove the improperness of a specialized surface parametrization.
However, the following theorem shows that the transformation 7" in Theorem 1
does give a proper reparametrization in almost all cases.

Theorem 3 Let S be a proper surface parametric support; that is, [ X (S) = 1.
For coefficients C' of (5) taken from a Zariski open set in the coefficients space
kY51 rational parametrization (5) is proper; that is, IX(S,C) = 1.

Proof

14



When (5) has base points, the following homogenous equations in 7, s, t have
nonzero solutions

Ses TigT" IS =0, Y4 T IS =0,
( ,])GS »J ( ,j)ES y 5J (34)

2igyes ZiT ST =000 Y jes wigr™ T TS =0,

where n = max{i + j | (i,7) € S}. Take the resultant R (Cox, Little, and
O’Shea, 1998) of any three of the four equations. If R(C') # 0 for a set of
numerical coefficients C, equations (34) with coefficients C' have no non-zero
solutions. In other words, if C is taken from the Zariski open set k*°I\ Zero(R)
then (5) has no base points. Thus there is no loss of generality by assuming
the parametrization on S has no base points.

By IX(S) = 1 and Proposition 1, the rational parametrization (5) with in-
determinate coefficients is proper. The implicit polynomial f must involve at
least one of X, Y, or Z. Thus one of the discriminants Dx, Dy, Dz of f as
a univariate polynomial in X, Y, Z respectively is not identically zero as f
is irreducible. When the indeterminate coefficients are specialized to C' such
that m = IX(S,C) > 1, the implicit polynomial becomes f = ¢ where g
is the implicit equation of (5) with coefficients C. As the specialized f is no
longer square-free, the chosen non-identically zero discriminant, say D, van-
ishes when it is also specialized to C'. But Dy is a non-zero polynomial in X,
Y, and z; ;, i ;, 2, Wi j, the coefficients of Dz as polynomials in X, Y should
be zero. Let T be such a coefficient. From the above argument, we see that for
a set C' of numerical values of the coefficients of (5), if R(C)T'(C) # 0, (5) must
be proper. The required Zariski open set can be taken as k%%1\ Zero(RT). O

Since a Zariski open set is the whole coefficient space minus a set with lower
dimensions, Theorem 3 means that for almost all numerical coefficients, trans-
formation 7" in Theorem 1 gives a proper reparametrization. We state this
result as a corollary.

Corollary 5 Let S be an improper surface parametric support. For coeffi-
cients C' of (5) taken from a Zariski open set in the coefficients space, the
rational parametrization obtained with transformation (30) is proper.

To find the exact conditions for the coefficients C' such that the /X (S,C) =1
is computationally complicated and is beyond the scope of this paper.

We clarify the situation with surface parametrizations on the support S =
{(0,0),(2,0),(1,1),(0,2),(2,2)} of Example 2.3.2. A transformation 7" con-
structed with Theorem 1 is T'(,7) = (%,j) Thus

T(s)®(1,0) = {(1,0),(1,1),(2,0),(0,2),(1,2)} (35)

15



where @ denotes the Minkowski sum. We use the polynomial

p(8,t) = poo + P20 + Prast + Poat’ + poost? (36)

to generate the desired rational parametrization

(X(S,t),Y(s,t),Z(s,t)):<$<57t) y(s,1) z(s,t))

w(s,t) w(s,t) w(s,t)

on the support S.

4.1 Ezample: IX(S)=1X(S,C)=2,1X(T(S),T(C)) =1

Random integer values are generated to construct four different p(s,t) and
arbitrarily take them to be w(s,t), z(s,t), y(s,t), z(s,t). By implicitization
using the Dixon resultant before and after the transformation, we verify that
IX(S) =1X(S,C) = 2 and obtain a proper reparametrization as expected;
that is, IX(7T'(S),T(C)) = 1.

4.2 Ezample: IX(S) =2, IX(S,C)=8,I1X(T(S), T(C)) =4

Random integer values are generated to construct three different p(s,t) and
arbitrarily take them to be w(s, t), z(s,t), z(s,t). We then set y(s,t) = z(s,1).
By implicitization using the Dixon resultant, we find both the before and after
surface parametrizations to be improper, but the reparametrization has only
half of the original improper index.

5 Likelihood of a Surface Parametric Support to be Improper

This section reports some counts to highlight that improper supports are quite
pervasive for some popular total degree and bidegree configurations. But the
counts seem to suggest that improper supports may become rare when the
degree increases.

16



5.1 Total Degree Supports

A support S C Z? is considered to be total degree n if

min{x; : (z;,y;) € S} = min{y; : (z;,y;) € S} =0,

and

max{z; +v; : (x;,y;) € S} = n.

We have the following numbers

n|# of Supports|# of Improper Supports| %
2 36 10 28%
3 836 118 14%

5.2 Bidegree Supports

A support S C Z? is considered to be bidegree degree m x n if

min{z; : (z;,y;) € S} = min{y; : (z;,y;) € S} =0,

and

max{z; : (x;,y;) € S} = m,max{y; : (z;,y;) € S} =n.

We have the following numbers

m x n|# of Supports|# of Improper Supports| %
2 X2 318 65 20%
3x3 51464 501 1%

6 Conclusion

(38)

(39)

(40)

(42)

Instead of looking at surface rational parametrizations that are improper, we
examine monomial supports from which any rational surface parametrization

17



is improper. We call them inherently improper supports or simply improper
supports. The main result of the paper is Equation (24) which we repeat below:

IX(S) = ged{ NA(NP(S)): §' C S,|S'| = 3}. (44)

The significance of this formula is that it calculates the improper index of a
support S with elementary means and avoids the difficulty of finding the de-
gree of the generic surface defined on the support. The proof of this equality
can be used to detect and reduce the improper index of an improper surface
parametrization due to an improper support with O(|S|?) integer ged compu-
tations.

We have assessed the likelihood of encountering an improper support of some
popular degree configurations and found the presence of improper supports to
be quite significant.

Just like monomial ideals are a special but significant special case of general
ideals, we hope but do not know now if the results on the special case of
improper supports will be useful in the investigation of the general problem
of improper parametrizations.

Finally, we plan to generalize our results to rational parametrizations from
the m dimensional space to the n dimensional space in a forthcoming paper.
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