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Abstract. In this paper, the concept of sparse differential resultant for a differentially
essential system of differential polynomials is introduced and its properties are proved.
In particular, a degree bound for the sparse differential resultant is given. Based on
the degree bound, an algorithm to compute the sparse differential resultant is proposed,
which is single exponential in terms of the order, the number of variables, and the size
of the differentially essential system.
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1. Introduction

The resultant, which gives conditions for a system of polynomial equations to have com-
mon solutions, is a basic concept in algebraic geometry and a powerful tool in elimination
theory [2, 5, 6, 7, 11, 15, 19, 21, 25]. The sparse resultant was introduced by Gel’fand,
Kapranov, and Zelevinsky as a generalization of the usual resultant [11]. The first effective
method to compute the sparse resultant was given by Sturmfels [25, 26]. A Sylvester style
matrix based method to compute sparse resultants was first given by Canny and Emiris
[3, 7].

The differential resultant for two nonlinear differential polynomials in one variable was
studied by Ritt in [22, p.47]. General differential resultants were defined by Carra’ Ferro using
Macaulay’s definition of algebraic resultants [4]. But, the treatment in [4] is not complete.
For instance, the differential resultant for two generic differential polynomials with degrees
greater than one is always zero if using the definition in [4]. Differential resultants for
linear ordinary differential polynomials were studied by Rueda and Sendra in [24]. In [10], a
rigorous definition for the differential resultant of n + 1 generic differential polynomials in n
variables was presented.

A generic differential polynomial with order o and degree d contains an exponential
number of differential monomials in terms of o and d. Since most of the differential poly-
nomials encountered in practice do not contain all of these monomials, it is useful to define
the sparse differential resultant which can be considered as the differential analog for the
algebraic sparse resultant [5, 7, 11, 25].

In this paper, the concept of sparse differential resultant for a differentially essential
system consisting of n + 1 differential polynomials in n variables is introduced and its prop-
erties similar to that of the Sylvester resultant are proved. In particular, we give a degree
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bound for the sparse differential resultant, which also leads to a degree bound for the dif-
ferential resultant. Based on the degree bound, we give an algorithm to compute the sparse
differential resultant R. The complexity of the algorithm is single exponential of the form
O(n3.376sO(n)

(
(m+1)deg(R)

)O(sl), where s,m, n, and l are the order, the degree, the number
of variables, and the size of the differentially essential system respectively. We prove that
deg(R) ≤ (m+1)ns+n+1. So an upper bound of the complexity is O(n3.376sO(n)(m+1)O(ns2l)).
The sparseness is reflected in the quantities l and deg(R).

In principle, the sparse differential resultant can be computed with any differential elim-
ination method, and in particular with the change of order algorithms given by Boulier-
Lemaire-Maza [1] and Golubitsky-Kondratieva-Ovchinnikov [12]. The differentially essential
system already forms a triangular set when considering their constant coefficients as the
leading variables, and the sparse differential resultant is the first element of the character-
istic set of the prime ideal generated by the differentially essential system under a different
special ranking. Therefore, the change of order strategy proposed in [1, 12] can be used.
In our case, due to the special structure of the differentially essential system, we can give
specific bounds for the order and degree needed to compute the resultant, which allows us
to reduce the problem to linear algebra directly and give explicit complexity bounds.

As preparations for the main results of the paper, we prove several properties about the
degrees of the elimination ideal and the generalized Chow form in the algebraic case, which
are also interesting themselves.

The rest of the paper is organized as follows. In Section 2., we prove some preliminary
results. In Section 3., we define the sparse differential resultant and give the properties of
it. And in Section 4., we present an algorithm to compute the sparse differential resultant.
In Section 5., we conclude the paper by proposing several problems for future research.

2. Degree of elimination ideal and generalized Chow form

In this section, we will prove several properties about the degrees of elimination ideals
and generalized Chow forms in the algebraic case, which will be used later in the paper.
These properties are also interesting themselves.

2.1. Degree of elimination ideal
Let P be a polynomial in K[X] where X = {x1, . . . , xn}. We use deg(P ) to denote the

total degree of P . Let I be a prime algebraic ideal in K[X] with dimension d. We use
deg(I) to denote the degree of I, which is defined to be the number of solutions of the zero
dimensional prime ideal (I,L1, . . . ,Ld), where Li = ui0 +

∑n
j=1 uijxj (i = 1, . . . , d) are d

generic primes [15]. That is,

deg(I) = |V(I,L1, . . . ,Ld)|. (1)

Clearly, deg(I) = deg(I,L1, . . . ,Li) for i = 0, . . . , d. deg(I) is also equal to the maximal
number of intersection points of V(I) with d hyperplanes under the condition that these
points are finite [9]. That is,

deg(I) = max{|V(I) ∩H1 ∩ · · · ∩Hd| : Hi are affine
hyperplanes with |V(I) ∩H1 ∩ · · · ∩Hd| < ∞} (2)
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We investigate the relation between the degree of an ideal and that of its elimination ideal
by proving Theorem 2.2.

Lemma 2.1 Let I be a prime ideal of dimension zero in K[X] and Ik = I ∩K[x1, . . . , xk]
the elimination ideal of I with respect to x1, . . . , xk. Then deg(Ik) ≤ deg(I).

Proof: Since both I and Ik are prime ideals of dimension zero, deg(Ik) = |V(Ik)| and
deg(I) = |V(I)|. To show deg(Ik) ≤ deg(I), it suffices to prove that every point of V(Ik) can
be extended to a point of V(I). Let (ξ1, . . . , ξk) ∈ V(Ik). For any point (η1, . . . , ηn) ∈ V(I),
(η1, . . . , ηk) is a zero point of Ik. So we have K(ξ1, . . . , ξk) ∼= K(η1, . . . , ηk). By [27, Propo-
sition 9, Chapter 1, §3], there exist ξk+1, . . . , ξn such that K(ξ1, . . . , ξn) ∼= K(η1, . . . , ηn).
Thus, (ξ1, . . . , ξn) is a zero of I, which completes the proof. ¤

Theorem 2.2 Let I be a prime ideal in K[X] and Ik = I∩K[x1, . . . , xk] for any 1 ≤ k ≤ n.
Then deg(Ik) ≤ deg(I).

Proof: Suppose dim(I) = d and dim(Ik) = d1. Two cases are considered:

Case (a): d1 = d. Let Pi = ui0 + ui1x1 + · · ·+ uikxk (i = 1, . . . , d). Denote u = {uij : i =
1, . . . , d; j = 0, . . . , k}. Then by [15, Theorem 1, p. 54], J = (Ik,P1, . . . ,Pd) is a prime ideal
of dimension zero in K(u)[x1, . . . , xk] and has the same degree as Ik. We claim that

1) (I,P1, . . . ,Pd) ∩K(u)[x1, . . . , xk] = J .

2) (I,P1, . . . ,Pd) is a 0-dimensional prime ideal.
To prove 1), it suffices to show that whenever f is in the left ideal, f belongs to J .

Without loss of generality, suppose f ∈ K[u][x1, . . . , xk]. Then there exist hl, qi ∈ K[u][X]
and gl ∈ I such that f =

∑
l hlgl +

∑d
i=1 qiPi. Substituting ui0 = −ui1x1 − · · · − uikxk into

the above equality, we get f̄ =
∑

l h̄lgl ∈ I. Thus, f̄ ∈ Ik. But f ≡ f̄ mod(P1, . . . ,Pd), so
f ∈ (Ik,P1, . . . ,Pd), which proves 1).

To prove 2), suppose (ξ1, . . . , ξn) is a generic point of I. Denote U0 = {u10, . . . , ud0}.
Then J0 = (I,P1, . . . ,Pd) ⊆ K(u\U0)[X, U0] is a prime ideal of dimension d with a generic
point (ξ1, . . . , ξn,−∑k

j=1 u1jξj , . . . ,−∑k
j=1 udjξj). Since d1 = d, there exist d elements in

{ξ1, . . . ,ξk} algebraically independent over K. So by [10, Lemma 2.12], −∑k
j=1 u1jξj , . . . ,

−∑k
j=1 udjξj are algebraically independent over K(u\U0). Thus, J0 ∩K(u\U0)[U0] and 2)

follows.
By Lemma 2.1, deg(J ) ≤ deg(I,P1, . . . ,Pd). So by (2), deg(I) ≥ |V(I,P1, . . . ,Pd)| ≥

deg(J ) = deg(Ik).

Case (b): d1 < d. Let Li = ui0 + ui1x1 + · · ·+ uinxn (i = 1, . . . , d− d1). By [15, Theorem
1, p. 54], J = (I,L1, . . . , Ld−d1) ⊆ K(u)[X] is a prime ideal of dimension d1 and deg(J ) =
deg(I), where u = {uij : i = 1, . . . , d− d1; j = 0, . . . , n}. Let Jk = J ∩K(u)[x1, . . . , xk]. We
claim that Jk = (Ik) in K(u)[x1, . . . , xk]. Of course, Jk ⊇ (Ik). Since both Jk and (Ik) are
prime ideals and dim((Ik)) = d1, it suffices to prove that dim(Jk) = d1.

Suppose (ξ1, . . . , ξn) is a generic point of I, then (ξ1, . . . , ξk) is that of Ik. Let J0 =
(I,L1, . . . ,Ld−d1) ⊆ K(u\U0)[X, U0], then (ξ1, . . . , ξn,−∑n

j=1 u1jξj , . . . ,−∑n
j=1 ud−d1,jξj)

is a generic point of it, where U0 = {u10, . . . , ud−d1,0}. Since dim(Ik) = d1, without loss of
generality, suppose ξ1, . . . , ξd1 is a transcendental basis of K(ξ1, . . . , ξk)/K and ξ1, . . . , ξd1 ,
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ξk+1, . . . , ξk+(d−d1) is that of K(ξ1, . . . , ξn)/K. Then by [10, Lemma 2.12], it is easy to
show that J0 ∩K(u\U0)[x1, . . . , xd1 , U0] = (0), and Jk ∩K(u)[x1, . . . , xd1 ] = 0 follows. So
dim(Jk) = d1 and Jk = (Ik).

Since dim(Jk) = dim(J ), by case (a), deg(Jk) ≤ deg(J ) = deg(I). And we also have
deg(Jk) = deg((Ik)) = deg(Ik). As a consequence, deg(Ik) ≤ deg(I). ¤

In this article, we will use the following result.

Lemma 2.3 [18, Proposition 1, p.151] Let F1, . . . , Fm ∈ K[X] be polynomials generating an
ideal I of dimension r. Suppose deg(F1) ≥ · · · ≥ deg(Fm) and let D :=

∏n−r
i=1 deg(Fi). Then

deg(I) ≤ D.

2.2. Degree of algebraic generalized Chow form
Let I be a prime ideal in K[X] with dimension d,

Pi = ui0 +
∑

1≤α1+···+αn≤mi

uα1...αnxα1
1 · · ·xαn

n (i = 0, 1, . . . , d)

generic polynomials of degree mi, and ui the vector of coefficients of Pi. Philippon [21]
proved that

(I,P0, . . . ,Pd) ∩K[u0, . . . ,ud] = (G(u0, . . . ,ud)) (3)

is a prime principal ideal and G(u0, . . . ,ud) is defined to be the generalized Chow form of I,
denoted by GChow(I).

In this section, we will give the degree of the generalized Chow form in terms of the
degrees of I and that of Pi by proving Theorem 2.5.

At first, we will give another description of the degree for a prime ideal. In (3), when Pi

becomes generic primes

Li = vi0 +
n∑

j=1

vijxj(i = 0, 1, . . . , d),

the generalized Chow form becomes the usual Chow form, denoted by Chow(I). That is

(I,L0, . . . ,Ld) ∩K[v0, . . . ,vd] = (Chow(I)) (4)

where vi is the set of coefficients of Li. A basic property of Chow form is that [15]

deg(I) = degvi
Chow(I) (i = 0, . . . , d). (5)

In the following lemma, we will give the degree of an ideal intersected by a generic primal.
To prove the lemma, we apply the following Bezout inequality (see [13] or [9]): Let V, W be
affine algebraic varieties. Then

deg(V ∩W ) ≤ deg(V )deg(W ). (6)

Lemma 2.4 Let I be a prime ideal in K[X] with dim(I) = d > 0 and P a generic polyno-
mial. Then deg(I, P ) = deg(P )deg(I).
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Proof: Firstly, we prove the lemma holds for d = 1. Let v be the vector of coefficients of
P , m = deg(P ), and J = (I, P ) ⊂ K(v)[X]. Then by [15, p. 110], J is a prime algebraic
ideal of dimension zero. Let L0 be a generic prime with u0 the vector of coefficients. By (4),
(J ,L0)∩K(v)[u0] = (Chow(J )). Here, we choose Chow(J ) to be an irreducible polynomial
in K[v,u0]. From (5), we have deg(J ) = degu0

Chow(J ).
LetM = (I,L0) ⊂ K(u0)[X]. ThenM is a prime ideal of dimension zero with deg(M) =

deg(I). And (M, P )∩K(u0)[v] = (GChow(M)) where GChow(M) ∈ K[v,u0] is irreducible.
Clearly, GChow(M) = c · Chow(J ) for some c ∈ K∗ and GChow(M) can be factored as

GChow(M) = A(u0)
deg(I)∏

τ=1

P (ξτ ),

where ξτ are all the elements of V(M). Now, specialize P to Lm
1 where L1 = u10 + u11x1 +

· · ·+ u1nxn is a generic prime. Then we have GChow(M) = A(u0)
∏deg(I)

τ=1 Lm
1 (ξτ ). Clearly,

deg(GChow(M),u0) = deg(J ). Since Chow(I) = B(u0)
∏deg(I)

τ=1 L1(ξτ ) for some B ∈ K[u0]
is irreducible and GChow(M) ∈ K[u0,u1], there exists g ∈ K[u0]∗ such that GChow(M) =
g · (Chow(I))m. So, deg(GChow(M),u0) ≥ mdeg(Chow(I),u0) = mdeg(I). And by Bézout
inequality (6), deg(I, P ) ≤ deg(I)deg(P ), so deg(I, P ) = deg(I)deg(P ).

For the case d > 1, let L1, . . . ,Ld−1 be generic primes, then I1 = (I,L1, . . . ,Ld−1) is
a prime ideal of dimension one and deg(I1) = deg(I). By the case d = 1, deg(I1, P ) =
deg(I1)deg(P ). So deg(I, P ) = deg(I, P,L1, . . . ,Ld−1) = deg(I1, P ) = deg(I1)deg(P ) =
deg(I)deg(P ). ¤

We now give the degree of the generalized Chow form.

Theorem 2.5 Let G(u0, . . . ,ud) be the generalized Chow form of a prime ideal I of dimen-
sion d w.r.t. P0, . . . ,Pd. Then G is of degree deg(I)

∏
j 6=i

deg(Pj) in each set ui.

Proof: It suffices to prove for i = 0.

If d = 0, then G has the expression G(u0) =
∏deg(I)

τ=1 P0(ξτ ), where ξτ ∈ V(I). Clearly,
deg(G,u0) = deg(I).

We consider the case d > 0. Let J0 = (I,P1, . . . ,Pd) ⊂ K[u1, . . . ,ud,X] and J = (J0) ⊂
K(u1, . . . ,ud)[x1, . . . , xn]. Then J is a prime ideal of dimension zero and by Lemma 2.4,
deg(J ) = deg(I)

∏d
i=1 deg(Pi). We claim that G(u0, . . . ,ud) is also the generalized Chow

form of J , hence deg(G,u0) = deg(J ) = deg(I)
∏d

i=1 deg(Pi). Since G(u0, . . . ,ud) is the
generalized Chow form of I, we have (I,P0, . . . ,Pd) ∩ K[u0, . . . ,ud] = (G(u0, . . . ,ud)) =
(J0,P0) ∩K[u0, . . . ,ud]. Let G1(u0, . . . ,ud) ∈ K[u0, . . . ,ud] be the generalized Chow form
of J and irreducible. Then (J ,P0) ∩ K(u1, . . . ,ud)[u0] = (G1). So G ∈ (G1). But G,G1

are irreducible polynomials in K[u0, . . . ,ud], so G = cG1 for some c ∈ K∗ and G is the
generalized Chow form of J . ¤

3. Sparse differential resultant

In this section, we define the sparse differential resultant and prove its basic properties.
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3.1. Definition of sparse differential resultant
Let F be an ordinary differential field and F{Y} the ring of differential polynomials in the

differential indeterminates Y = {y1, . . . , yn}. For any element e ∈ F{Y}, we use e(k) = δke
to represent the k-th derivative of e and e[k] to denote the set {e(i) : i = 0, . . . , k}. Details
about differential algebra can be found in [16, 23].

The following theorem presents an important property on differential specialization,
which will be used later.

Theorem 3.1 [10, Theorem 2.14] Let U = {u1, . . . , ur} be a set of differential indetermi-
nates, and Pi(U,Y) ∈ F{U,Y} (i = 1, . . . , m) differential polynomials in the differential
indeterminates U = (u1, . . . , ur) and Y = (y1, . . . , yn). Let Y0 = (y0

1, y
0
2, . . . , y

0
n), where y0

i

are in some differential extension field of F . If Pi(U,Y0) (i = 1, . . . , m) are differentially
dependent over F〈U〉, then for any specialization U to U0 in F , Pi(U0,Y0) (i = 1, . . . , m)
are differentially dependent over F .

To define the sparse differential resultant, consider n + 1 differential polynomials with
differential indeterminates as coefficients

Pi = ui0 +
li∑

k=1

uikMik (i = 0, . . . , n) (7)

where Mik = (Y[si])αik is a monomial in {y1, . . . , yn, . . . , y
(si)
1 , . . . , y

(si)
n } with exponent vector

αik where |αik| ≥ 1. The set of exponent vectors Si = {0̄, αik : k = 1, . . . , li} is called the
support of Pi, where 0̄ is the exponent vector for the constant term. The number |Si| = li +1
is called the size of Pi. Note that si is the order of Pi and an exponent vector of Pi contains
n(si + 1) elements.

Denote u = {uik : i = 0, . . . , n; k = 1, . . . , li}. Let η1, . . . , ηn be n elements which are
differentially independent over Q〈u〉 and denote η = (η1, . . . , ηn), where Q is the field of
rational numbers. Let

ζi = −
li∑

k=1

uik(η[si])αik (i = 0, . . . , n). (8)

Then, we have

Lemma 3.2 d.tr.degQ〈u〉〈ζ0, . . . , ζn〉/Q〈u〉 = n if and only if there exist n monomials
Mriki

(i = 1, . . . , n) in (7) such that ri 6= rj for i 6= j and Mriki
(η) = (η[sri ])αriki are

differentially independent over Q〈u〉.
Proof: “ ⇐ ” Without loss of generality, we assume ri = i(i = 1, . . . , n) and Miki

(η)(i =
1, . . . , n) are differentially independent. It suffices to prove that ζ1, . . . , ζn are differentially
independent over Q〈u〉. Suppose the contrary, i.e. ζ1, . . . , ζn are differentially dependent.
Now specialize uij to −δiki

. By Theorem 3.1 and (8), Miki
(η)(i = 1, . . . , n) are differentially

dependent, which is a contradiction.
“ ⇒ ” Suppose the contrary, i.e., Mriki

(η)(i = 1, . . . , n) are differentially dependent for
any n different ri and ki = 1, . . . , lri . Since each ζri is a linear combination of Mriki

(η)
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(ki = 1, . . . , lri), ζr1 , . . . , ζrn are differentially dependent, which contradicts to the fact that
d.tr.degQ〈u〉〈ζ0, . . . , ζn〉/Q〈u〉 = n. ¤

Definition 3.3 A set of differential polynomials of form (7) satisfying the condition in
Lemma 3.2 is called a differentially essential system.

A differential polynomial f of form (7) is called quasi-generic ([10]) if for each 1 ≤ i ≤ n,
f contains at least one monomial in F{yi} \ F . Clearly, n + 1 quasi-generic differential
polynomials form a differentially essential system.

Now let [P0, . . . ,Pn] be the differential ideal generated by Pi in Q〈u〉{Y, u00, . . . , un0}.
Then it is a prime differential ideal with a generic point (η1, . . . , ηn, ζ0, . . . , ζn) and of di-
mension n. Clearly, I = [P0, . . . ,Pn]∩Q〈u〉{u00, . . . , un0} is a prime differential ideal with a
generic point (ζ0, . . . , ζn). As a consequence of Lemma 3.2, we have

Corollary 3.4 I is of codimension one if and only if {Pi, i = 0, . . . , n} is a differentially
essential system.

Since I is of codimension one, by [23, line 14, p. 45], there exists an irreducible differential
polynomial R(u;u00, . . . , un0) ∈ Q〈u〉{u00, . . . , un0} such that

[P0, . . . ,Pn] ∩Q〈u〉{u00, . . . , un0} = sat(R) (9)

where sat(R) is the saturation ideal of R. More explicitly, sat(R) is the whole set of dif-
ferential polynomials having zero pseudo-remainders w.r.t. R. And by clearing denomina-
tors when necessary, we suppose R ∈ Q{u;u00, . . . , un0} is irreducible and also denoted by
R(u;u00, . . . , un0). Let ui = (ui0, ui1, . . . , uili) be the vector of coefficients of Pi and denote
R(u0, . . . ,un) = R(u;u00, . . . , un0). Now we give the definition of sparse differential resultant
as follows:

Definition 3.5 R(u0, . . . ,un) ∈ Q{u0, . . . ,un} in (9) is defined to be the sparse differential
resultant of the differentially essential system P0, . . . ,Pn.

The following properties can be proved easily.

1. When all Pi become generic differential polynomials, the sparse differential resultant
is the differential resultant defined in [10].

2. R(u0, . . . ,un) is the vanishing polynomial of (ζ0, . . . , ζn) with minimal order in each
ui0. Since R ∈ Q{u;u00, . . . , un0} is irreducible, ord(R,ui) = ord(R, ui0).

3. Suppose ord(R,ui) = hi ≥ 0 and denote o =
∑n

i=0 hi. Given a vector (q0, . . . , qn) ∈
Nn+1 with

∑n
i=0 qi = q, if q < o, then there is no polynomial P in sat(R) with

ord(P,ui) = qi. And R is the unique irreducible polynomial in sat(R) with total order
q = o up to some a ∈ Q. This property will be used in our algorithm to search the
sparse differential resultant.

Remark 3.6 Note that we cannot define the sparse differential resultant as the algebraic
sparse resultant of P(k)

i considered as polynomials in y
(j)
i . The reason is that the supports of

Pi and P(k)
i do not satisfy the conditions for the existence of the algebraic sparse resultant

[11, p. 252].
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3.2. Properties of sparse differential resultant
Following Kolchin [17], we introduce the concept of differentially homogenous polynomi-

als.

Definition 3.7 A differential polynomial p ∈ F{y0, . . . , yn} is called differentially homoge-
nous of degree m if for a new differential indeterminate λ, we have p(λy0, λy1 . . . , λyn) =
λmp(y0, y1, . . . , yn).

The differential analog of Euler’s theorem related to homogenous polynomials is valid.

Theorem 3.8 [16, p.71] f ∈ F{y0, y1, . . . , yn} is differentially homogenous of degree m if
and only if

n∑

j=0

∑

k∈N

(
k + r

r

)
y

(k)
j

∂f(y0, . . . , yn)

∂y
(k+r)
j

=
{

mf r = 0
0 r 6= 0

Sparse differential resultants have the following property.

Theorem 3.9 The sparse differential resultant is differentially homogenous in each ui which
is the coefficient set Pi.

Proof: Suppose ord(R,ui) = hi ≥ 0. Since R(u; ζ0, . . . , ζn) = 0, differentiate this identity
w.r.t. u

(k)
ij respectively, we have

∂R
∂uij

+ ∂R
∂ζi

(−(η[si])αij ) + ∂R
∂ζ′i

(−(
(η[si])αij

)′
) + ∂R

∂ζ′′i
(
(
(η[si])αij

)′′
) + · · ·+ ∂R

∂ζ
(hi)
i

[−(hi
0

)(
(η[si])αij

)(hi)] = 0 (0∗)
∂R

∂u′ij
+ 0 + ∂R

∂ζ′i
(−(

(η[si])αij
)
) + ∂R

∂ζ′′i
(−(2

1

)(
(η[si])αij

)′
) + · · ·+ ∂R

∂ζ
(hi)
i

[−(hi
1

)(
(η[si])αij

)(hi−1)
] = 0 (1∗)

∂R
∂u′′ij

+ 0 + 0 + ∂R
∂ζ′′i

(−(2
2

)(
(η[si])αij

)
) + · · ·+ ∂R

∂ζ
(hi)
i

[−(hi
2

)(
(η[si])αij

)(hi−2)
] = 0 (2∗)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂R

∂u
(hi)
ij

+ 0 + 0 + 0 + · · ·+ ∂R

∂ζ
(hi)
i

[−(hi
hi

)(
(η[si])αij

)(0)
] = 0 (hi∗)

In the above equations, ∂R

∂u
(k)
ij

and ∂R

∂ζ
(k)
i

(k = 0, . . . , hi; j = 1, . . . , li) are obtained by replacing

ui0 by ζi (i = 0, 1, . . . , n) in each ∂R

∂u
(k)
ij

and ∂R

∂u
(k)
i0

respectively.

Now, let us consider
∑li

j=0

∑
k≥0

(
k+r

k

)
u

(k)
ij

∂R

∂u
(k+r)
ij

.

In the case r = 0, adding (0∗) × uij + (1∗) × u′ij + · · · + (hi∗) × u
(hi)
ij for j from 1 to li,

we obtain
li∑

j=1

uij
∂R

∂uij
+

li∑

j=1

u′ij
∂R

∂u′ij
+ · · ·+

li∑

j=1

u
(hi)
ij

∂R

∂u
(hi)
ij

+ ζi
∂R

∂ζi
+ ζ ′i

∂R

∂ζ ′i
+ · · ·+ ζ

(hi)
i

∂R

∂ζ
(hi)
i

= 0.

So the differential polynomial
li∑

j=0
uij

∂R
∂uij

+
li∑

j=0
u′ij

∂R
∂u′ij

+
li∑

j=0
u′′ij

∂R
∂u′′ij

+ · · · +
li∑

j=0
u

(hi)
ij

∂R

∂u
(hi)
ij

vanishes at (u00, . . . , un0) = (ζ0, . . . , ζn). So it can be divisible by R, i.e.
li∑

j=0

hi∑
k=0

u
(k)
ij

∂R

∂u
(k)
ij

= mR for some m ∈ Z.
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In the case r 6= 0,

(r∗)× (
r
r

)
uij + (r + 1∗)× (

r+1
r

)
u′ij + · · ·+ (hi∗)×

(
hi

r

)
u

(hi−r)
ij

=
(
r
r

)
uij

∂R

∂u
(r)
ij

+
(
r+1

r

)
u′ij

∂R

∂u
(r+1)
ij

+ · · ·+ (
hi

r

)
u

(hi−r)
ij

∂R

∂u
(hi)
ij

+ ∂R

∂ζ
(r)
i

(
− uij

(
(η[si])αij

))

+ ∂R

∂ζ
(r+1)
i

(
− (

r+1
r

)
uij

(
(η[si])αij

)′ − (
r+1

r

)
u′ij

(
(η[si])αij

))
+ · · ·+ ∂R

∂ζ
(hi)
i

(
− (

hi

r

)
uij

(
(η[si])αij

)(hi−r)

−(
r+1

r

)(
hi

r+1

)
u′ij

(
(η[si])αij

)(hi−r−1) − · · · − (
hi

r

)(
hi

hi

)
u

(hi−r)
ij

(
(η[si])αij

))

= uij
∂R

∂u
(r)
ij

+
(
r+1

r

)
u′ij

∂R

∂u
(r+1)
ij

+ · · ·+ (
hi

r

)
u

(hi−r)
ij

∂R

∂u
(hi)
ij

+
(
r
r

)
∂R

∂ζ
(r)
i

(−uij

(
(η[si])αij

)
)

+
(
r+1

r

)
∂R

∂ζ
(r+1)
i

(
− uij

(
(η[si])αij

))′
+ · · ·+ (

hi

r

)
∂R

∂ζ
(hi)
i

(
− uij

(
(η[si])αij

))(hi−r)

So, we have
∑li

j=1

(
r
r

)
uij

∂R

∂u
(r)
ij

+
∑li

j=1

(
r+1

r

)
u′ij

∂R

∂u
(r+1)
ij

+· · ·+∑li
j=1

(
hi
r

)
u

(hi−r)
ij

∂R

∂u
(hi)
ij

+
(
r
r

)
ζi

∂R

∂ζ
(r)
i

+
(
r+1

r

)
ζ ′i

∂R

∂ζ
(r+1)
i

+ · · ·+ (
hi
r

)
ζ
(hi−r)
i

∂R

∂ζ
(hi)
i

= 0.

Thus, it follows that the polynomial
∑li

j=0

(
r
r

)
uij

∂R

∂u
(r)
ij

+
∑li

j=0

(
r+1

r

)
u′ij

∂R

∂u
(r+1)
ij

+ · · · +
∑li

j=0

(
hi
r

)
u

(hi−r)
ij

∂R

∂u
(hi)
ij

is identically zero, for it vanishes at (u00, . . . , un0) = (ζ0, . . . , ζn) and

can not be divisible by R.
From the above, we conclude that

li∑

j=0

∑

k≥0

(
k + r

r

)
u

(k)
ij

∂R

∂u
(k+r)
ij

=
{

0 r 6= 0
mR r = 0

From Theorem 3.8, R(u0, . . . ,un) is differentially homogenous in each ui and the theorem
is obtained. ¤

As in algebra, the sparse differential resultant gives a necessary condition for a system
of differential polynomials to have solutions, as shown by the following theorem.

Theorem 3.10 Let R(u0, . . . ,un) be the sparse differential resultant of P0, . . . ,Pn defined
in (7). Suppose ord(R,u0) = h0 ≥ 0 and denote SR = ∂R

∂u
(h0)
00

. Suppose that when ui (i =

0, . . . , n) are specialized to sets vi which are elements in an extension field of F , Pi are
specialized to Pi (i = 0, . . . , n). If Pi = 0(i = 0, . . . , n) have a common solution, then
R(v0, . . . ,vn) = 0. Moreover, if SR(v0, . . . ,vn) 6= 0, in the case that Pi = 0(i = 0, . . . , n)
have a common solution ξ, then for each k, we have

(
(ξ)[s0]

)α0k =
∂R

∂u
(h0)
0k

(v0, . . . ,vn)
/
SR(v0, . . . ,vn), (10)

where α0k are the exponent vectors defined in (7).

Proof: Since R(u0, . . . ,un) ∈ [P0, . . . ,Pn], R(v0, . . . ,vn) ∈ [P0, . . . ,Pn]. So if Pi = 0(i =
0, . . . , n) have a common solution, then R(v0, . . . ,vn) should be zero.
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Since R(u; ζ0, . . . , ζn) = 0, differentiating this equality w.r.t. u
(h0)
0k for k > 0 in two sides,

we get
∂R

∂u
(h0)
0k

+
∂R

∂ζ
(h0)
0

(−η[s0])α0k = 0 (11)

where ∂R

∂u
(h0)
0k

and ∂R

∂ζ
(h0)
0

are obtained by substituting ui0 by ζi in ∂R

∂u
(h0)
0k

and ∂R

∂u
(h0)
00

respectively.

So the polynomial ∂R

∂u
(h0)
0k

+ ∂R

∂u
(h0)
00

(−Y[s0])α0k ∈ [P0, . . . ,Pn]. Thus, if ξ is a common

solution of Pi = 0, then the polynomial ∂R

∂u
(h0)
0k

(v0, . . . ,vn) + ∂R

∂u
(h0)
00

(v0, . . . ,vn)(−Y[s0])α0k

vanishes at ξ. Hence, the equality (10) follows. ¤
Moreover, if P0 contains the linear terms yi (i = 1, . . . , n), then the above result can be

strengthened as follows.

Corollary 3.11 Suppose P0 has the form

P0 = u00 +
n∑

i=1

u0iyi +
l0∑

i=n+1

u0i(Y[s0])α0i . (12)

If R(v0, . . . ,vn) = 0 and SR(v0, . . . ,vn) 6= 0, then Pi = 0 have a common solution.

Proof: From the proof of the above theorem, we know that for k from 1 to n,

Ak =
∂R

∂u
(h0)
0k

+
∂R

∂u
(h0)
00

(−yk) ∈ [P0, . . . ,Pn].

Clearly, Ak is linear in yk. Suppose the differential remainder of Pi w.r.t. A1, . . . , An in
order to eliminate y1, . . . , yn is gi, then Sa

RPi ≡ gi mod [A1, . . . , An] for a ∈ N. Thus, gi ∈
[P0, . . . ,Pn] ∩ Q〈u〉{u00, . . . , un0} = sat(R). So we have Sb

RPi ≡ 0mod [A1, . . . , An, R] for
some b ∈ N. Now specialize ui to vi for i = 0, . . . , n, then we have

Sb
R(v0, . . . ,vn)Pi ≡ 0mod [A1, . . . , An]. (13)

Let ξk = ∂R

∂u
(h0)
0k

(v0, . . . ,vn)
/

∂R

∂u
(h0)
00

(v0, . . . ,vn) (k = 1, . . . , n), and denote ξ = (ξ1, . . . , ξn).

Then from equation (13), Pi(ξ) = 0. So, ξ is a common solution of P0, . . . ,Pn. ¤

In the following, we consider the factorization of the sparse differential resultant. Denote
ord(R,ui) by hi (i = 0, . . . , n), and suppose h0 ≥ 0. We have the following theorem.

Theorem 3.12 Let R(u0, . . . ,un) be the sparse differential resultant of P0, . . . ,Pn. Let
deg(R, u

(h0)
00 ) = t0. Then there exist ξτk for τ = 1, . . . , t0 and k = 1, . . . , l0 such that

R = A

t0∏

τ=1

(u00 +
l0∑

k=1

u0kξτk)(h0), (14)

where A is a polynomial in F [u[h0]
0 , . . . ,u[hn]

n \u(h0)
00 ].
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Proof: Now consider R as a polynomial in u
(h0)
00 with coefficients in Q0 = Q(∪n

l=0u
[hl]
l \

{u(h0)
00 }). Then, in an algebraic extension field of Q0, we have

R = A

t0∏

τ=1

(u(h0)
00 − zτ )

where t0 = deg(R, u
(h0)
00 ). Note that zτ is an algebraic root of R(u(h0)

00 ) = 0 and a derivative
for zτ can be naturally defined to make F〈zτ 〉 a differential field. From R(u; ζ0, . . . , ζn) = 0,
if we differentiate this equality w.r.t. u

(h0)
0k , then we have

∂R

∂u
(h0)
0k

+
∂R

∂ζ
(h0)
0

(−η[s0])α0k = 0 (15)

where ∂R

∂u
(h0)
0k

and ∂R

∂ζ
(h0)
0

are obtained by substituting ui0 by ζi in ∂R

∂u
(h0)
0k

and ∂R

∂u
(h0)
00

respectively.

Now multiply equation (15) by u0k and for k from 1 to l0 add all of the equations obtained
together, then we get

∂R

∂ζ
(h0)
0

ζ0 +
l0∑

k=1

u0k
∂R

∂u
(h0)
0k

= 0 (16)

Thus, the polynomial G1 = u00
∂R

∂u
(h0)
00

+
l0∑

k=1

u0k
∂R

∂u
(h0)
0k

vanishes at (u00, . . . , un0) = (ζ0, . . . , ζn).

Since ord(G1) ≤ ord(R) and deg(G1) = deg(R), there exists some a ∈ F such that G1 = aR.

Setting u
(h0)
00 = zτ in both sides of G1, we have u00Rτ0 +

∑l0
k=1 u0kRτk = 0, where Rτk =

∂R

∂u
(h0)
0k

∣∣
u
(h0)
00 =zτ

. Denote ξτk = Rτk/Rτ0. Thus, u00 +
∑l0

k=1 u0kξτk = 0 under the condition

u
(h0)
00 = zτ . As a consequence, zτ = −(

l0∑
k=1

u0kξτk)(h0). Thus, (14) follows. ¤

Again, if P0 contains the linear terms yi (i = 1, . . . , n), then the above result can be
strengthened as follows.

Theorem 3.13 Suppose P0 has the form (12). Then there exist ξτk (τ = 1, . . . , t0; k =
1, . . . , n) such that

R = A

t0∏

τ=1

(
u00 +

n∑

i=1

u0iξτi +
l0∑

i=n+1

u0i

(
ξ[s0]
τ

)α0i

)(h0)

= A

t0∏

τ=1

P0(ξτ )(h0), where ξτ = (ξτ1, . . . , ξτn).

Moreover, ξτ (τ = 1, . . . , t0) lies on P1, . . . ,Pn.

Before giving a proof of this theorem, we need the following lemma.

Lemma 3.14 Let I be a zero dimensional prime differential ideal in F{y1, . . . , yn}. Suppose
P0 has the form (12) with coefficients vector u0. Then the followings hold.
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1. There exists an irreducible differential polynomial F ∈ F{u0} such that [I,P0] ∩
F{u0} = sat(F ).

2. There exist ξτ1, . . . , ξτn such that

F = B

t0∏

τ=1

(
u00 +

n∑

i=1

u0iξτi +
l0∑

i=n+1

u0i

(
ξ[s0]
τ

)α0i

)(h)

= B

t0∏

τ=1

P0(ξτ )(h).

where ξτ = (ξτ1, . . . , ξτn), ord(F,u0) = t0 and t0 = deg(F, u
(h)
00 ).

3. ξτ = (ξτ1, . . . , ξτn) (τ = 1, . . . , t0) are zeros of I.
Proof: Let ξ = (ξ1, . . . , ξn) be a generic point of I. Denote u = u0\{u00}. Let ζ =
−∑n

i=1 u0iξi −
∑l0

i=n+1 u0i(ξ[s0])α0i . Then (ξ1, . . . , ξn, ζ) is a generic point of [I,P0] ⊂
F〈u〉{Y, u00}. Since I is of dimension 0, ζ is differentially dependent over F〈u〉, which
implies that [I,P0]∩F〈u〉{u00} 6= ∅. So [I,P0]∩F{u0} is a prime differential ideal of codi-
mension 1. Thus, there exists an irreducible F ∈ F{u0} such that [I,P0]∩F{u0} = sat(F ).

Suppose ord(F, u00) = h. Regarding F as an algebraic polynomial in u
(h)
00 , then in an

algebraic extension field of F(u[h], u
[h−1]
00 ), we have

F (u0) = B

g∏

τ=1

(u(h)
00 − zτ ),where g = deg(F, u

(h)
00 ).

Note that zτ is an algebraic root of R(u(h)
00 ) = 0 and a derivative for zτ can be naturally

defined to make F〈zτ 〉 a differential field. From R(u; ζ) = 0, if we differentiate this equality
w.r.t. u

(h)
0k , then we have

∂F

∂u
(h)
0k

+
∂F

∂ζ(h)
(−η[s0])α0k = 0 (17)

where ∂F

∂u
(h)
0k

and ∂R
∂ζ(h) are obtained by substituting u00 by ζ in ∂F

∂u
(h)
0k

and ∂F

∂u
(h)
00

respectively.

Now multiply equation (17) by u0k, then for k from 1 to l0, add all of the equations
obtained together, then we get

∂F

∂ζ(h)
ζ +

n∑

k=1

u0k
∂F

∂u
(h)
0k

+
l0∑

k=n+1

u0k
∂F

∂u
(h)
0k

= 0 (18)

Thus, the polynomial G1 = u00
∂F

∂u
(h)
00

+
n∑

k=1

u0k
∂F

∂u
(h)
0k

+
l0∑

k=n+1

u0k
∂F

∂u
(h)
0k

vanishes at u00 = ζ. Since

ord(G1) ≤ ord(F ) and deg(G1) = deg(F ), there exists some a ∈ F such that G1 = aF. Set-
ting u

(h)
00 = zτ in both sides of G1, we have u00Fτ0 +

∑n
k=1 u0kFτk +

∑l0
k=1 u0kFτk = 0, where
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Fτk = ∂F

∂u
(h)
0k

∣∣
u
(h)
00 =zτ

. Denote ξτk = Rτk/Rτ0 for k = 1, . . . , l0. Thus, u00 +
∑l0

k=1 u0kξτk = 0

under the condition u
(h)
00 = zτ . As a consequence, zτ = −(

l0∑
k=1

u0kξτk)(h).

To complete the proof of 2), it remains to show that for i = n + 1 to l0, ξτi =
(
ξ
[s0]
τ

)α0i .

From equation 17, we have ξj = ∂F

∂u
(h)
0j

/
∂F

∂ζ(h) and (ξ[s0])α0i = ∂F

∂u
(h)
0i

/
∂F

∂ζ(h) . If (Y[s0])α0i =
∏n

j=1

∏s0
k=0

(
y

(k)
j

)(α0i)jk , then

n∏

j=1

s0∏

k=0

(
(

∂F

∂u
(h)
0j

/ ∂R

∂ζ(h)
)(k)

)(α0i)jk =
∂F

∂u
(h)
0i

/ ∂F

∂ζ(h)
.

So there exists some a ∈ N, such that Gi =
(

∂F

∂u
(h)
00

)a( n∏
j=1

s0∏
k=0

(
( ∂F

∂u
(h)
0j

/
∂F

∂u
(h)
00

)(k)
)(α0i)jk −

∂F

∂u
(h)
0i

/
∂F

∂u
(h)
00

)
is a polynomial in Q{u0} and Gi ∈ sat(F ). Now substituting u

(h+m)
00 = z

(m)
τ

for m ≥ 0 into Gi, then ξτi =
∏n

j=1

∏s0
k=0

(
(ξτj)(k)

)(α0i)jk = (ξ[s0]
τ )α0i . Thus, 2) is proved.

Now we are going to show that ξτ is a zero point of I. For any polynomial p ∈ I,
p(ξ1, . . . , ξn) = 0. So p( ∂F

∂u
(h)
01

/
∂F

∂ζ(h) , . . . ,
∂F

∂u
(h)
0n

/
∂F

∂ζ(h) ) = 0. It follows that there exist some a ∈
N such that G = ∂F

∂u
(h)
00

)ap( ∂F

∂u
(h)
01

/
∂F

∂u
(h)
00

, . . . , ∂F

∂u
(h)
0n

/
∂F

∂u
(h)
00

) ∈ F{u0} ∩ sat(F ). Thus, p(ξτ ) = 0.

¤
Proof of Theorem 3.13. Let I = [P1, . . . ,Pn] ⊂ F〈u1, . . . ,un〉{Y}. Since ord(F,u0) ≥ 0,

I is a prime differential ideal of dimension 0. It is clear that the sparse differential resultant R
also satisfies [I]∩F〈u1, . . . ,un〉{u0}. From Lemma 3.14, the theorem follows immediately.¤

4. Algorithm to compute sparse differential resultant

In this section, we give an algorithm to compute the sparse differential resultant with
single exponential complexity.

4.1. Degree bounds for sparse differential resultant
In this section, we give an upper bound for the degree and order of the sparse differential

resultant, which will be crucial to our algorithm to compute the sparse resultant.

Theorem 4.1 Let P0, . . . ,Pn be a differentially essential system of form (7) with ord(Pi) =
si and deg(Pi) = mi. Let R(u0, . . . ,un) be the sparse differential resultant of Pi (i =
0, . . . , n). Suppose ord(R,ui) = hi for each i. Then the following assertions hold:

1) hi ≤ s− si for i = 0, . . . , n where s =
∑n

i=0 si.

2) R can be written as a linear combination of Pi and their derivatives up to order hi.
Precisely,

R(u0, . . . ,un) =
n∑

i=0

hi∑

k=0

GikP
(k)
i
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for some Gik ∈ Q[u[h0]
0 , . . . ,u[hn]

n ,Y[h]] where h = maxi{hi + si}.
3) deg(R) ≤ ∏n

i=0(mi + 1)hi+1 ≤ (m + 1)ns+n+1, where m = maxi{mi}.
Proof: 1) Let θi = − ∑

1≤|α|≤mi

uiα(η[si])α (i = 0, . . . , n) where η = (η1, . . . , ηn) is the generic

point of the ideal [0], and Wi = ui0 +
∑

1≤|α|≤mi

uiα(Y[si])α is a generic polynomial of order

si and degree mi. Then from the property of differential resultant ([10, Theorem 1.3.]), we
know the minimal polynomial of (θ0, . . . , θn) is of order s− si in each ui0. Now specialize all
the uiα such that θi are specialized to the corresponding ζi. By the procedures in the proof
of Theorem 3.1, we can obtain a nonzero differential polynomial vanishing at (ζ0, . . . , ζn)
with order not greater than s − si in each variable ui0. Since R is the minimal polynomial
of (ζ0, . . . , ζn), ord(R,ui) = ord(R, ui0) ≤ s− si.

2) Substituting ui0 by Pi −
li∑

k=1

uik(Y[si])αik into the polynomial R(u;u00, . . . , un0) for

i = 0, . . . , n, we get

R(u;u00, . . . , un0)

= R(u;P0 −
l0∑

k=1

u0k(Y[s0])α0k , . . . ,Pn −
ln∑

k=1

unk(Y[sn])αnk)

=
∑n

i=0

∑hi
k=0 GikP

(k)
i + T (u,Y)

for Gik ∈ Q{u0, . . . ,un,Y} and T = R(u;−
l0∑

k=1

u0k(Y[s0])α0k , . . . ,−
ln∑

k=1

unk(Y[sn])αnk) ∈
[P0, . . . ,Pn]∩Q〈u〉{Y}. Since [P0, . . . ,Pn]∩Q〈u〉{Y} = [0], T = 0 and 2) is proved. Moreover,
(P[h0]

0 , . . . ,P[hn]
n ) ∩Q[u[h0]

0 , . . . ,u[hn]
n ] = (R(u0, . . . ,un)).

3) Let J0 = (P[h0]
0 , . . . ,P[hn]

n ) ⊂ Q[u[h0]
0 , . . . ,u[hn]

n , Ỹ] where Ỹ are the yi and their
derivatives which effectively appear in P[h0]

0 , . . . ,P[hn]
n . Then by Lemma 2.3, deg(J0) ≤∏n

i=0(mi + 1)hi+1 and (R(u0, . . . ,un)) = J0 ∩ Q[u[h0]
0 , . . . ,u[hn]

n ] is the elimination ideal of
J0. Thus, by Theorem 2.2,

deg(R) ≤ deg(J0) ≤
n∏

i=0

(mi + 1)hi+1. (19)

Together with 1), 3) is proved. ¤
The following theorem gives an upper bound for degrees of differential resultants, the

proof of which is not valid for sparse differential resultants. In the following result, when we
estimate the degree of R, only the degrees of Pi in Y are considered, while in Theorem 4.1,
the degrees of Pi in both Y and uik are considered.

Theorem 4.2 Let Fi (i = 0, . . . , n) be generic differential polynomials in Y = {y1, . . . , yn}
with order si and degree mi and s =

∑n
i=0 si. Let R(u0, . . . ,un) be the differential resultant

of F0, . . . , Fn. Then deg(R,uk) ≤ s−sk+1
mk

∏n
i=0 ms−si+1

i for each k = 0, . . . , n.
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Proof: Without loss of generality, we consider k = 0.
By [10, Theorem 6.8], ord(R,ui) = s− si (i = 0, . . . , n) and R ∈ (F [s−s0]

0 , . . . , F
[s−sn]
n ) ⊂

Q[Y[s], u[s−s0]
0 , . . . ,u[s−sn]

n ]. Let Ia = (F [s−s1]
1 , . . . , F

[s−sn]
n ) ⊂ Q(ũ)[Y[s]], where ũ = ∪n

i=1u
[s−si]
i .

Clearly, Ia is a prime ideal of dimension s− s0.
Let P0, . . . ,Ps−s0 be independent generic polynomials of degree m0 in Y[s] with vi coef-

ficients of Pi. Denote ṽ = ∪s−s0
i=0 vi\{vi0} where vi0 is the constant term of Pi.

Suppose η is a generic point of Ia. Let ζi = −Pi(η) + vi0 and ζi = −F
(i)
0 (η) + u

(i)
00 (i =

0, . . . , s− s0). Clearly, ζi and ζi are free of vi0 and u
(i)
00 respectively. Let G(v0, . . . , vs−s0) =

G(ṽ; v00, . . . , vs−s0,0) ∈ Q[ũ;v0, . . . ,vs−s0 ] be the generalized Chow form of Ia. Then
G(ṽ; v00, . . . , vs−s0,0) is the vanishing polynomial of (ζ0, . . . , ζs−s0) over Q(ũ, ṽ). Now special-
ize vi to the corresponding coefficients of F

(i)
0 . Then ζi are specialized to ζi. By [14, p.168-

169], there exists a nonzero polynomial H(u[s−s0]
0 \u[s−s0]

00 ;u00, . . . , u
(s−s0)
00 ) ∈ Q[u[s−s0]

0 , . . . ,

u[s−sn]
n ] such that

1) H(u[s−s0]
0 \u[s−s0]

00 ; ζ0, . . . , ζs−s0) = 0 and
2) deg(H) ≤ deg(G).
Clearly, H ∈ (F [s−s0]

0 , . . . , F
[s−sn]
n ) ∩Q[u[s−s0]

0 , . . . ,u[s−sn]
n ]. Since (F [s−s0]

0 , . . . , F
[s−sn]
n ) ∩

Q[u[s−s0]
0 , . . . ,u[s−sn]

n ] = (R), R divides H. Thus, deg(R,u[s−s0]
0 ) ≤ deg(H,u[s−s0]

0 ) ≤
deg(G(v0, . . . ,vs−s0)). And by Theorem 2.5, for each i deg(G,vi) = deg(Ia)ms−s0

0 . Since
Ia is generated by (F [s−s1]

1 , . . . , F
[s−sn]
n ) in Q(ũ)[Y[s]], deg(Ia) ≤ ∏n

i=1 ms−si+1
i by Lemma

2.3. So, deg(R,u0) ≤ s−s0+1
m0

∏n
i=0 ms−si+1

i . ¤

4.2. Algorithm
If a polynomial R is the linear combination of some known polynomials Fi(i = 1, . . . , s),

that is R =
∑s

i=1 HiFi, then a general idea to estimate the computational complexity of R
is to estimate the upper bounds of the degrees of R and HiFi and to use linear algebra to
find the coefficients of R.

For sparse differential resultant, we already gave its degree in Theorem 4.1. Now we will
give the degrees of the expressions in the linear combination.

Theorem 4.3 Let P0, . . . ,Pn be a differentially essential system with order si and degree mi

respectively. Denote s =
∑n

i=0 si, m = maxn
i=0{mi}. Let R(u0, . . . ,un) be the sparse differ-

ential resultant of P0, . . . ,Pn with ord(R,ui) = hi for each i. Then R has a representation

R(u0, . . . ,un) =
n∑

i=0

hi∑

j=0

GijP
(j)
i

where Gij ∈ Q[u[h0]
0 , . . . ,u[hn]

n ,Y[h]] and h = max{hi + si} such that deg(GijP
(j)
i ) ≤ (m +

1)deg(R) ≤ (m + 1)ns+n+2.

Proof: By Theorem 4.1 and its proof, R can be written as R(u0, . . . ,un) =
∑n

i=0

∑hi
k=0 GikP

(k)
i .

To estimate the degree of GikP
(k)
i , we need only to consider every monomial M(u;u00, . . . ,

un0) in R(u0, . . . ,un). Consider one monomial M = uγ
∏n

i=0

∏hi
k=0(u

(k)
i0 )dik with |γ| = d and
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d +
∑n

i=0

∑hi
k=0 dik ≤ deg(R), where uγ represents a monomial in u and their derivatives

with exponent vector γ. Using the substitution in the proof of Theorem 4.1, we have

M(u;u00, . . . , un0) = uγ
n∏

i=0

hi∏

k=0

((
Pi −

li∑

j=1

uij(Y[si])αij

)(k)
)dik

.

When expanded, every term has total degree bounded by d +
∑n

i=0

∑hi
k=0(mi + 1)dik in

u[h0]
0 , . . . ,u[hn]

n and Y[h] with h = max{hi + si}. Since d +
∑n

i=0

∑hi
k=0(mi + 1)dik ≤ (m +

1)(d +
∑n

i=0

∑hi
k=0 dik) ≤ (m + 1)deg(R), applying Theorem 4.1, the theorem is proved. ¤

The following result gives an effective differential Nullstellensatz under certain conditions.

Corollary 4.4 Let f0, . . . , fn ∈ F{y1, . . . , yn} have no common solutions with ord(fi) =
si, s =

∑n
i=0 si, and deg(fi) ≤ m. If the sparse differential resultant of f0, . . . , fn is nonzero,

then there exist Hij ∈ F{y1, . . . , yn} s.t.
∑n

i=0

∑s−si
j=0 Hijf

(j)
i = 1 and deg(Hijf

(j)
i ) ≤ (m +

1)ns+n+2.

Proof: When Pi are the differentially essential system with the same supports as fi, it is
clear that R(u0, . . . ,un) has the property stated in Theorem 4.3, where ui are coefficients of
Pi. The result follows directly from Theorem 4.3 by specializing ui to the coefficients of fi.

¤
Now, we give an algorithm SDResultant to compute sparse differential resultants. The

algorithm works adaptively by searching R with an order vector (h0, . . . , hn) ∈ Nn+1 with
hi ≤ s − si by Theorem 4.1. Denote o =

∑n
i=0 hi. We start with o = 0. And for this o,

choose one vector (h0, . . . , hn) at a time. For this (h0, . . . , hn), we search R from degree
D = 1. If we cannot find an R with such a degree, then we repeat the procedure with degree
D+1 until D > (m+1)

∏n
i=0(mi +1)hi+1. In that case, we choose another (h0, . . . , hn) with∑n

i=0 hi = o. But if for all (h0, . . . , hn) with hi ≤ s−si and
∑n

i=0 hi = o, R cannot be found,
then we repeat the procedure with o + 1. In this way, we need only to handle problems with
the real size and need not goto the upper bound in most cases.

Theorem 4.5 Algorithm SDResultant computes the sparse differential resultant with the
following complexities:

1) In terms of deg(R), the algorithm needs at most
O(n3.376sO(n)[(m + 1)deg(R)]O(ls)) Q-arithmetic operations, where l =

∑n
i=0(li + 1) is the

size of all Pi.
2) The algorithm needs at most O(n3.376sO(n)(m + 1)O(nls2)) Q-arithmetic operations.

Proof: In each loop of Step 3, the complexity of the algorithm is clearly dominated by
Step 3.1.2. where we need to solve a system of linear equations P = 0 over Q in c0 and
cij . It is easy to show that |c0| =

(
D+L−1

L−1

)
and |cij | =

((m+1)D−mi−1+L+n(h+1)
L+n(h+1)

)
, where

L =
∑n

i=0(hi + 1)(li + 1). Then P = 0 is a linear equation system with N =
(
D+L−1

L−1

)
+∑n

i=0(hi + 1)
((m+1)D−mi−1+L+n(h+1)

L+n(h+1)

)
variables and M =

((m+1)D+L+n(h+1)
L+n(h+1)

)
equations. To

solve it, we need at most (max{M, N})ω arithmetic operations over Q, where ω is the matrix
multiplication exponent and the currently best known ω is 2.376.
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Algorithm 1 — SDResultant(P0, . . . ,Pn)

Input: A differentially essential system P0, . . . ,Pn.
Output: The sparse differential resultant R(u0, . . . ,un)

of P0, . . . ,Pn.

1. For i = 0, . . . , n, set si = ord(Pi), mi = deg(Pi), ui = coeff(Pi) and |ui| = li + 1.
2. Set R = 0, o = 0, s =

∑n
i=0 si, m = maxi{mi}.

3. While R = 0 do
3.1. For each vector (h0, . . . , hn) ∈ Nn+1 with

∑n
i=0 hi= o and hi ≤ s− si do

3.1.1. U = ∪n
i=0u

[hi]
i , h = maxi{hi + si}, D = 1.

3.1.2. While R = 0 and D ≤ ∏n
i=0(mi + 1)hi+1 do

3.1.2.1. Set R0 to be a homogenous GPol of degree D in U .
3.1.2.2. Set c0 = coeff(R0, U).
3.1.2.3. Set Hij(i = 0, . . . , n; j = 0, . . . , hi) to be GPols of degree (m+1)D−mi−1
in Y[h], U .
3.1.2.4. Set cij = coeff(Hij ,Y[h] ∪ U).
3.1.2.5. Set P to be the set of coefficients of R0(u0, . . . ,un)−∑n

i=0

∑hi
j=0 HijP

(j)
i

as a Pol in Y[h], U .
3.1.2.6. Solve the linear equation P = 0 in variables c0 and cij .
3.1.2.7. If c0 has a nonzero solution, then substitute it into R0 to get R and go to
Step 4., else R = 0.
3.1.2.8. D:=D+1.

3.2. o:=o+1.
4. Return R.

/*/ Pol and GPol stand for ordinary polynomial and generic ordinary polynomial.
/*/ coeff(P, V ) returns the set of coefficients of P as an ordinary polynomial in variables V .

The iteration in Step 3.1.2. may go through 1 to deg(R), and the iteration in Step 3.1.
at most will repeat

∏n
i=0(s− si) ≤ sn+1 times. And by Theorem 4.1, Step 3 may loop from

o = 0 to ns. The whole algorithm needs at most

ns∑
o=0

∑
hi≤s−si∑

i
hi=o

deg(R)∑
D=1

(
max{M, N})2.376

≤ O(n3.376sO(n)[(m + 1)deg(R)]O(ls))

arithmetic operations over Q. In the above inequalities, we assumes that (m + 1)deg(R) ≥
L + n(s + 1) and use the fact that L cannot exceed l(s + 1) and l ≥ (n + 1)2, where
l =

∑n
i=0(li + 1). Our complexity assumes an O(1)-complexity cost for all field operations

over Q. By 3) of Theorem 4.1, deg(R) ≤ ∏n
i=0(mi+1)hi+1 ≤ (m+1)ns+n+1, so the algorithm

has complexity O(n3.376sO(n)(m + 1)O(nls2)).
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5. Conclusion and problem

In this paper, the sparse differential resultant is defined and its basic properties are
proved. In particular, degree bounds for the sparse differential resultant and the usual dif-
ferential resultant are given. Based on these degree bounds, we propose a single exponential
algorithm to compute the sparse differential resultant.

In the algebraic case, there exists a necessary and sufficient condition for the existence
of sparse resultant in terms of the supports [26]. It is interesting to find such a condition for
sparse differential resultants.

It is useful to represent the sparse resultant as the quotient of two determinants, as done
in [5] in the algebraic case. In the differential case, we do not have such formulas, even in the
simplest case of the resultant for two generic differential polynomials in one variable. The
treatment in [4] is not complete. For instance, let f, g be two generic differential polynomials
in one variable y with order one and degree two. Then, the differential resultant for f, g
defined in [4] is zero, because all elements in the first column of the matrix M(δ, n, m) in [4,
p.543] are zero. Furthermore, it is not easy to fix the problem.

The degree of the algebraic sparse resultant is equal to the mixed volume of certain
polytopes generated by the supports of the polynomials [20] or [11, p.255]. A similar degree
bound is desirable for the sparse differential resultant.

There exist very efficient algorithms to compute the algebraic sparse resultants ([7, 8]).
How to apply the principles behind these algorithms to compute sparse differential resultants
is an important problem.
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