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0 Introduction

Let My, be the space of m x n complex matrices and M, = M, ,. Let ||| denote
any unitarily invariant norm on M,. So, |[UAV| = ||A|| for all A € M,, and for all unitary
matrices U,V € M,,. For A = (a;;) € M,, the Hilbert-Schmidt norm, the trace norm, and the
n

spectral norm of A are defined by [|Al|, = 53 (A), [All, = > 55 (A), and [|A[[;, = s1 (A),

j=1 j=1
respectively, where s1 (A) > s2(A4) = -+ = sp—1 (A) > s, (A) are the singular values of A, that
is, the eigenvalues of the positive semidefinite matrix |A| = (AA*)%, arranged in decreasing

order and repeated according to multiplicity.
The classical Young inequality for nonnegative real numbers says that if a,b > 0 and
0 <wv <1, then
a’b* " <wva+ (1—v)b (0.1)
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with equality if and only if @ = b. If p, ¢ > 0 such that 1—17 + % = 1, then the inequality (0.1) can
be written as ab < a—pp + %.

Several matrix versions of the Young inequality(0.1) have been recently established 9!,
It seems that matrix versions of the Young inequality have aroused considerable interest. The

main purpose of this paper is to give some Young type inequalities for matrices.

1 Young type inequalities for scalars

We begin this section with the Young type inequalities for scalars.
Lemma 1.1 Suppose that a,6 > 0. If 0 < v < %, then

[(va)" b "] + 02 (a — b)? < v2a® + (1 — v)? b2 (1.1)
If%gvgl,then
{a’[(1=0) b 7"} 4+ (1 —0)? (a— b)® <v?a® + (1 —v)° b2 (1.2)
Proof If0< v < % Then, by inequality (0.1), we have
v2a® + (1 —v)2 0% = 02 (a — b)* = b[2v (va) + (1 — 20) b]
> b(va)® b2 = [(va)" bl_”]Q :
and so

va® + (1 —0)° 0% = [(va)" bl_”]2 + 0 (a—b)>.
If%gvgl,then
2 2 2,2 2 2 2
viat+(1-0)b"—(1—-v)"(a=b)"=a[(2v—-1)a+2(1 —v) D]
> aa® (1= 0) B = {0 (1= )] T,
and so
v2a® + (1 =020 = {a"[(1 —v) b "2 + (1 —v)* (a —b)>.

This completes the proof.

Hirzallah and Kittaneh!” obtained a refinement of the scalar Young’s inequality as follows:

(@) 412 (a — b)* < (va+ (1 —v)b)?, (1.3)

where g = min {v,1 — v}. In Kittaneh and Manasrah’s paper?, the following related refine-

ment of the scalar Young’s inequality was obtained
(a”bl_”)2 + 70 (a—b)* <va? + (1 —v) b2 (1.4)

When comparing Lemma 1.1 with the inequalities (1.3) and (1.4), it is easy to observe
that both the left-hand and the right-hand sides of Lemma 1.1 are greater than or equal to the
corresponding sides in (1.3) and (1.4), respectively. It should be noticed that neither Lemma
1.1 nor (1.3) and (1.4) is uniformly better than the other.
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2 Young type inequalities for matrices
A matrix Young inequality in [3] says that if A, B € M,, are positive semidefinite, then
sj (A"B'™") < s; (vA+ (1 —v)B)
for j =1,---,n. The above singular value inequality of Ando entailed the norm inequality
|A“B'7Y| < [lvA+ (1 —v) BJ|.

Kosakil*, Bhatia and Parthasarathy!® proved that if A, B, X € M, such that A and B

are positive semidefinite and if 0 < v < 1, then
A X B~ ||2 < |[vAX + (1 —v) XBJ3. (2.1)

Based on the refined Young inequality (1.3), it has been shown in [7] that if A, B, X € M,
such that A and B are positive semidefinite and if 0 < v < 1, then

A" XB'~°||2 + 72 ||AX — X B2 < |0AX + (1 —v) XBJ|2. (2.2)

Obviously, (2.2) is an improvement of (2.1) for the Hilbert-Schmidt norm. In Kittaneh and

9]

Manasrah’s paper!”), the following Young inequalities for matrices were obtained

|A"X B + A" X B"||, + 2ro(v/|[AX |2 — VIIXBll2) < [|AX + X B2,

)
|A*X B~ + A" X B”||5 + 2r¢ | AX — XB|3 < |AX + XB|3.

In this section, we give the trace norm, the Hilbert-Schmidt norm, and determinant ver-
sions of Young type inequalities based on the Young type inequalities (1.1) and (1.2). To do
this, we need the following lemma.

Lemma 2.109 Let A, B € M,,. Then

n n

D s (AB) <Y s (A)s; (B).

j=1 j=1

Theorem 2.2 Let A, B € M,, be positive semidefinite. If 0 < v < %, then

v |ATBY < W IAll5 + (1 —v)* | Bl — v2 (| All, — I|Blly)*. (2.3)

If - <wv <1, then

1
2

(L= 0)' 7 A"B 7, < o AR + (1= o) [BIZ - (1 — ) (JAll, - [Bl,)>.  (24)
Proof If0<wv< %, by the inequality (1.1), we have

(37 (A4)" 55 (B)' ™ + 0% (s (4) — 55 (B)* < 0’2 (A) + (1~ v) 2 (B)
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for j =1, -+ ,n. Thus, by the Cauchy-Schwarz inequality, we have

tr(v? A2 + (1 —v)? B?) = v*tr4? + (1 —v)* trB?

=" 0?5} (A) + (1) (B))

—+
<

j=1

2(23? (4) +i3? (B) - 2283' (A) s; (B))

> Z [v"s; (A") s; (Bl’”)]2

1

<.
Il

1 1

o (||A||§ +IBI2 - 2( nl 52 <A>> 5 <Z <B)> )

=™ Y [s; (A% s (B 40 (4L~ 1Bl (25)

On the other hand, we also have
v rA? + (1 —v)?trB? = o? | A|5 + (1 —0)* || B|l3. (2.6)

Therefore, it follows from (2.5) and (2.6) that

A3+ (1 =) |BIS = v (|4l — Bl,)* > v* D [5; (4%) 55 (B)]". (2.7)

Jj=1

By Lemma 2.1 and (2.7), we have

ot [[AB < \/U2 1AIZ + (1 =v)* B3 — v (I All, — 1 B]l,)".

If % < v < 1, then by the inequality (1.2) and the same method above, we have the inequality
(2.4). This completes the proof.
Theorem 2.3 Let A, B, X € M, such that A and B are positive semidefinite. If 0 <
v < %, then
[0AX + (1 —v) XB|2 > 0| AX — X B +v*|| A" X B |3
+20(1 —v) |AY2X BY?)3. (2.8)

If%gvgl,then
[WAX + (1 =v) XB|3 > (1 —v)* |[AX = XB[3 + (1 —v)* """ |A*X B3
+ 20 (1 —0)||AY2X BY2|2, (2.9)

Proof Since every positive semidefinite matrix is unitarily diagonalizable, it follows that
there are unitary matrices U,V € M,, such that A = UDU* and B = VDV*, where
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D:dlag()\lu 7An)7 E:dlag(ulu 7Mn)7 and )\7,7/1'7, 20722 17 ) 1.
Let Y =U*XV = (y;5). Then

VAX+(1—-v)XB=U@WDY +(1—-0)YE)V*=U ((vA + (1 —v) 5) i) V",

AX — XB=U ((\ — ) yij) V¥, AV2X BY2 = U2 Py ve

and AV’XB'"v =U (A;’u}_vyij) VEIf0o<v < %, by inequality (1.1), we have

n

IAX + (1= 0) XBJ2 =3 (A + (1 =) 1) [y

ij=1
2 2
= > (N + (1 =) + 20 (1—0) Nigy) [y
ij=1
- 2 2 ) - v 1—v)2 2
>0 Y (=) il 0™ Y ()
ij=1 ij=1
2
+ > 20 (1 =) Aipgg [y
ij—1

> 0?2 ||AX — XB|2 + v®|AYX B V||2 + 20 (1 — v) | AV2X BY23.

If % < v < 1, then by the inequality (1.2) and the same method above, we have the inequality
(2.9). This completes the proof.

Remark 2.4 The inequality (2.8) is related to the inequality (2.1). It should be noticed
that neither (2.1) nor (2.8) is uniformly better than the other.

Theorem 2.5 Let A, B € M,, be positive definite. If 0 < v < %, then

det (VA + (1 — v) B)? > v*™ det (A”Bl_”)2 + v?"det (A — B)?
+ (20 (1 —v))" det BY/2AB/2. (2.10)
If%gvgl,then
det (VA + (1 —v)B)* = (1 —0)*"7) det (A”Blfv)2 + (1 =v)*"det (A — B)?
+ (20 (1 —v))" det BY/2AB/2. (2.11)
Proof To prove the determinant inequality, note that by the inequality (1.1), we have
v2”[s;’(B*1/2AB*1/2)]2 02 (s;(BTYPABTM?) —1)? < v2s?(B*1/2AB*1/2) F (1= v)?

for j=1,--- ,n. Therefore,

det(vB™'2PABT2 + (1 —v)I)? = [ (vs;(B~'?AB™'2) + 1 — v)?

Jj=1

=[] W*s3(B7'PAB™'2) + (1 —v)* + 20(1 — v)s; (B~ AB™'7))

Jj=1
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> H (Uzvs?”(BflﬁAB*lp) +02(s;(B7Y2AB™2) —1)2 + 20(1— v)s; (B2 AB71/2))
j=1
> ,U2n'u H S?U(Bfl/2ABfl/2) + ,U2n H (Sj(Bfl/QABfl/2) _ 1)2

j=1 j=1
+ (20(1 — )" ﬁ s;(B~Y/2AB~1/?)
j=1
=" det(B~Y2AB™Y/2)? 402" det(B~/2AB™/?—I)? 4+ (20(1 — v))" det B~/2AB~1/2,
Thus, we have
det (vA + (1 —v) B)® > v*™ det (A”Bl_”)2 +v?" det (A — B)? + (20 (1 — v))" det BY/2AB'/2,

If % < v < 1, then by the inequality (1.2) and the same method above, we have the inequality

(2.11). This completes the proof.
Remark 2.6 If A, B € M, are positive definite, a determinant version of the arithmetic-

geometric mean inequality is known['!:
A+ B\?
det (%) > det (AB). (2.12)

Obviously, the inequality (2.10) or (2.11) is a generalization of the inequality (2.12).
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