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Pricing option with transaction costs under
the subdiffusive Black-Scholes model
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Abstract: This paper dealt with the problem of discrete time option pricing by the sub-
diffusive Black-Scholes model with transaction costs. A subdiffusive geometric Brownian
motion was introduced as the model of underlying asset prices exhibiting subdiffusive dy-
namics. In the presence of transaction costs, by a mean self-financing delta-hedging argu-
ment in a discrete time setting, a pricing formula for the European call option in discrete
time setting was obtained.
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0 Introduction

A classic and still most popular model of market is the Black-Scholes(BS) model, presented
in 1973 by F. Black and M. Scholes!!). The model is based on a diffusion process called geometric

Brownian motion(GBM), which assumes the price of the underlying asset S(t) satisfies

S(t) = Spexp{put +oB(t)}, So >0, (0.1)
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or the equivalent form of stochastic differential equation

d5(t) = (u + ”_2> S(t)dt + 081 dB(t),  S(0) = So >0,

2

with constant drift x and volatility o, here B(t) being the standard Brownian motion.

Empirical research shows that GBM cannot describe many characteristic features of mar-
kets, such as: long-range correlations, heavy-tailed and skewed marginal distributions, lack of
scale invariance, periods of constant values, etc. Therefore, there have been a number of gene-
ralizations of the BS model. Marcin Magdziarz[? introduced a so-called subdiffusive BS model
to describe properly financial data exhibiting periods of constant values. He proved that the
subdiffusive BS model is arbitrage free but incomplete, and obtained the corresponding price
formula of Furopean options.

In this paper we deals with the problem of discrete time option pricing by the subdiffusive
BS model with transaction costs. The paper is organized as follows: in Section 1, we give some
properties of subdiffusive BS model and in Section 2, we compute the formula for the European

call option.

1 Subdiffusive Black-Scholes model

1.1 «-stable subordinator and its inverse

Definition 1 For a € (0, 1), the a-stable subordinator {U, (7)}r>0 is a Lévy process with

ula(T) = ¢=74": The inverse a-stable

nonnegative increments and the Laplace transform: Ee™
subordinator {T,,(t)}:>0 is the first-passage time process: Ty, (t) = inf{r > 0: Uy(7) > t}.

T, (t) is of course non-decreasing and since U,(7) is a pure-jump process with cadlag
trajectories, the sample paths of T,(t) are continuous. Additionally, every jump of U,(7)
corresponds to a flat period of T,,(t). To see more about the the a-stable subordinator and its
inverse, please refer [3-5].

Proposition 2 (1) The a-stable subordinator U, (7) is 1/a-self-similar. That is, for every
¢ >0, Uqler) L cx Ua(T), where L7 denotes “equality of all finite dimensional distributions”.
Correspondingly, the inverse process T, (t) is a-self-similar.

(2) For any n € N, A € R, E(T2(¢)) = F(ﬂtTTM and Eere®) = F,(\t*) < +o0, where
E,(+) is the Mittag-Leffler function.

(3) For any n € N, 0 < s <t < 400, E(|Ta(t) = Ta(s)[") = n! [, [Tj=, U(dz; — 2j-1),
where A = {(zg, 21, - 2n) 120 =0,8 <21 <2 < -+ <, <t} and U(z) = F(z—il)

Proof (1), (2) are the results in [6, 7], and (3) can be immediately obtained from Propo-

sition 1 in [8].
1.2 Subdiffusion process

T, (t) is the inverse a-stable subordinator defined in Definition 1., { B(¢)
Brownian motion assumed to be independent of both {T,(t)} and {U,(7)
compound process Z,(t) = B(T,(t)) is a/2-self-similar and E(Z,(¢t)) = 0,

>0 is the standard
. As a result, the

(ZZ(1) = iy

8 = ==
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For 8 > 0, a random function X () is said to be o(x?) if 11{1% % = 0 for every
n € N.
Proposition 3 If 0 < 3, 61,02 < +00, n € N, then

n

o(z") - o(x"?) = o(x**72), in particular (o(z”))
o(zP) + o(a??) = o(x™n{FrBe}),

= o(a"?),

Lemma 4 Forn € N,0 < s <t < 400, there exists positive numbers a,, and b,, such
that

E(ITa(t) = Ta(s)") < an(t — 8)"* and B (| Za(t) — Za(s)|") < bu(t — ).
Proof Tt follows from Proposition 2 (3) that

E(|Ta(t) = Ta(s)[")
- n!Jt U'(21) r U (23 — 1) ..r U'(2n — 2p_1) dan - - das das

s x1 Tn-1

t t—s+x t—s+x, -1
gn!J' U/(arl)J U’(xg—:zrl)~-~J Uy — xp_1)day -+ - dzg day

S 1 Tn—1
I )
- I(a+1)

n!
< . t _ na'
SFaipt—?
Since T, (t) is non-decreasing, B(7) is 1/2-self-similar with stationary increments and the pro-

cesses are independent, we get that
E (|Za(t) - Za(5)|2n) =E (B2n(1)) E(|Ta(t) = Ta(s)[") < cnlt — )"

and so

1

E (|Za(t) - Za(5)|n) < [E (|Za(t) - Za(5)|2n)} < (t - 3)% = by (t — S)%v

-

1
where b,, = cé = (%) ’
Corollary 5 AT, (t) = o(At*~¢), AZ,(t) = o(At% ~¢) for arbitrary ¢ € (0, 9).
Lemma 6 For \eR,t>0,ncN,E (e“'Zﬂ(t)‘) < 400.

Proof

the (2h)1 } 2

E(1Z0F) < [E(1Z.0)])* = [E(BOP) E(Ta@))]* = [m

k 1
LN @k 1
_(2) [F(MHJ . keNUD).
Denote Y (t) = eM#«®l then

00 n k
E(Y"(t)) = Ee"Za 0] — Z %E (1Za(t)[F)
k=0

k
> te 1 (2k)! =
< — | = =
S (”A\/ 2 ) K\ Tha+ 1) D k.
k=0 k=0
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since

(k — 00),

ak+1_ / V(2k+2)(2k+1) aka—i—l -0

kE+1

where B(+, ) is the Beta function. This means E(Y"(t)) < 400. Moreover, from the proof we
can see that E (Y (¢)") are uniformly bounded on any compact subset of [0, +00).

Replacing the time ¢ of (0.1) by the time-change process T, (t), we get a subdiffusion
process named time-changed GBM, and that is

Sy = S(Tw(t)) = Soexp(uTn(t) + 0Zu(t)), So> 0. (1.1)

3 1.14 B 1.14
=] =
Q =]
g 1.12 g 1.12
wn wn
M 1.10 M 1.10
2 o
172} 172]
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Q [}
= 1.06 = 1.06
(o) [}
2 1.04 2 1.04
o o
< 1.02 ~ 1.02
2 2
@« 1.00 @« 1.00
X 1 0.98 1 1 1 1 1 1 1 1
0980 0.1 02 03 04 05 06 0.7 0.8 09 0 0.1 02 03 04 05 06 0.7 0.8 09
time ¢ time ¢

Fig. 1 The left figure is a typical trajectory of the stock price S(t) in the classic BS model and the
right a trajectory of the stock price St defined by (1.1) for = 0.05,0 = 0.1,So = 1, and o = 0.8.

1.3 Model and market assumptions

We follow the other usual assumptions used in the classic BS model but with the following
exceptions:

(1) The price S; of the underlying stock at time ¢ is given by (1.1), i.e.
Sy = S exp (uTw(t) + 0 Za(t)), with p,0, S8 > 0 and o € (2, 1).

(2) Trading takes place only at discrete time points At, 2A¢, 3At--- T, where At > 0 is
a fixed small time step.

(3) The transaction costs are proportional to the value of the transaction in the underlying
stock. If D shares of the underlying stock are bought (D > 0) or sold (D < 0) at the price S,
the transaction cost is given by §|D|St, where k is a positive constant.

(4) The portfolio P; consists of D(t) units of the underlying stock and riskless bonds with
value Q(t), i.e. P, = D(t)S;+ Q(t). Since there is no portfolio that replicates the European call
option in a market with propositional transaction costs!), we only require the hedging portfolio
to replicate the value of option at each trading time point.

(5) The traders’ behavior is assumed to be bounded rational, their decisions can be ex-
plained both by their reaction to the past stock price, according to a standard speculative
behavior, and by imitation of other traders’ past decisions. It is well known that the delta-

hedging strategy plays a central role in the theory of option pricing and that it is popularly used
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on the trading floor. The traders are assumed to follow, anchor, and imitate the Black-Scholes

delta-hedging strategy to price an option.

2  Pricing formula under transaction costs

In this section we derive a discrete-time pricing formula for the European call option under
the above assumptions.

Let C' = C(t,S:) be the value of a European call option on the underlying stock S; at
time ¢. K is the strike price, T is the maturity time and r is the continuous rate of return of a
riskless bond. We obtain the main result as follows.

Theorem 7 At each trading time point ¢, the value of the European call option C' =
C(t, Sy) satisfies the partial differential equation

oC oCc 1

2
+ 7S, + —6(t)2528 ¢

o T oigg, TR0 Sigg —r¢ =0

with the boundary condition C(T, St) = max(St — K,0). And the value of the option is
C(t, 81) = SiN(dr) — Ke™ TN (dy), (2.1)

where

. dy=dy — ()T — 1, (2.2)

&2 (t) = o® [M2(t, At) + kM, (t, At)o '] At (2.3)

M(t,At) and M2(t, At) denote respectively the first and second moments of the random
variable |AZ,(t)], and N(-) is the cumulative normal density function.

Proof Let e > 0 be an arbitrary and sufficient small number. The difference of S; over
time interval [¢t, ¢ + At) of length At is

ASy = Siine — Se = S (G“AT“(tHUAZQ(t) - 1)
=5, (uATa (t) + 0 AZ,(t) + % [uAT,(t) + UAZa(t)]2)

1
+ gstee[ﬂ“a“)““a(tﬂ [WAT,(t) + oA Zy (1))

where 6 = 0(t, At) € (0,1) is a random variable corresponding to the process S.
%ee[“ATa(tH"AZQ(t)] < %e“Tﬂ(T)e"|Zﬂ(t)‘e"|Zﬂ(t+At)‘. It follows from Proposition 2(2), 3,
Corollary 5 and Lemma 6 that At? LeflaTa()+0AZa(t)] = o(At) and

1 :
gee[uATa(t)JraAZa(t)] [;LATa(t) +oAZ, (t)]3 _ O(At%ais).
We have

% = pAT,(t) + 0 AZ, () + %UQ (AZy(t))? + o(AEFO79). (2.4)
t
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Applying the Taylor series expansion to C(t,S;) and using (2.4) we obtain that

aC aC 19%C
AC(S) = Gp At + G AS + 550

e Y. Y. 1, 920
9 At 1+ 18, 2EATL () + 08, 28 AZL (1) + 20282
= g Mt uSigg Alalt) + 0S50 AZa(t) + 5075 5

2 ASZ 4+ o(At3E)

(AZa(1))”

oc
05
(ac> e 92C 10°C

95, ) " asai ™Mt e At ooy

+ 10252 AZo () + o(AL2),

Z _AS? + o(At3F),

From (2.1) to (2.3) we can check that BSQ, g}?, % is o(At2~97), thus

oC
NE

Moreover, by Assumptions (2) and (3) in Subsection 1.3, the change of the value to the
portfolio P, = DS + Q; over the time interval (¢,t + At] is

oc
952

|AZ, ()] + o(At). (2.5)

k k
APt = DtASt + AQt — §|ADt|St+At = DtASt + TQtAt — §|ADt|St+At + O(At), (26)

as the number of shares D; is held fixed during [¢,¢ + At).

By Assumption (4), C(¢,S;) is replicated by the portfolio P(¢) and values of the option
equal values of the replicating portfolio at time point At, 2At, 3At,--- That is, C(¢,S;) =
D.S; + Q. Taking D, = W and using (2.4)—(2.6) we obtain

AP, = gg (uStAT (t) + oS AZy(t) + %025,5 (AZa(t))2> +rQiAt

oC

- = ’A (85 ) ’ Sttt + o(At)

el 1, ) les
k. |0%C
Therefore,
B oCc  oC 1 ,,0%C )
AP —-AC = <TO rSt—— 95, ot ) At — —0°S; 57 (AZ4(1))
ko 0%C
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It follows (2.7) and Assumptions (4), (5) in Subsection 1.3 that

2 2
E(AP — AC) = (rc_rst@ 50) A MA@ AL 55 0°C

as, ot 2 771 9s?
EML(t,At) o ]0*C
- 5 looh 957 + o(At)
aC  aC  M2(t,At) , ,0°C kMLt At) o |0%°C
_ _ g YV a\Y _ al\ At
(Tc T TN A )
+o(At) = 0, (2.8)

where M1 (t, At) and M2(t, At) denote the first and second moments of the random variable
|AZ,(t)|, respectively, i.e.

ML, A) = E(BO))E (ATE (1)) = %E (a7,
M(t Af) = E (B%(1)) E (AT, (1)) = %

by using independence of B(7) and T,,(t) and Proposition 2(2). To get numerical approximation
1
of E (ATO? (t)), one can see [7] for details. Thus, it follows from (2.8) that

aC  9C  MZ2(t,At) 0?°C  kML(t,At) 0?C
C=rSi7=+ — o 257 o S7 . 2.9
TCETts Yo T oA T Ptasz T T oA 70t | 052 (2.9)
1
Denote {Mg(t, At) + kML(t, At)o~Lsign (gzsg)} * At~%o by &(t). It is known that gQTg
is always positive for the simple European call option in the absence of transaction costs, if we
postulate the same behavior of 22T€ here, then
5(t)? = o [M2(t, At) + kM (t, At)o '] At~} (2.10)

Therefore, it follows from (2.9) and (2.10) that

oC oC 1_, ., 5,0°C

__ - —ol(t _ — =

5 +rStaSt + 20( )=S; 957 rC =0
and so

C(t,8) = SyN(dy) — Ke " T~ N (dy),

where N(-) is the cumulative normal density function,

In( S 2Oy (7 —
g = 2T )T Dy g, — gy — e()VT =%
agt)VT —t

Remark 8 Make o 1, then T, (t) and Z,(t) degenerate to ¢t and the standard Brow-

nian motion B(t) with stationary increments. So MX(t,At) — /22t M2(t,At) — At and

7(t)? — o2 (1 + \/gow}gﬂ) , this is the result in Leland!].
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Remark 9 In order to apply the subdiffusive Black-Scholes model to real market data,

it is crucial to give parameters estimation procedures. One can refer [10] to see details for the

estimation of the parameter «.
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