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Abstract: Liouville’s Theorem proved that the Euclidean space can be mapped conformally

on itself only by a composition of Möbius transformations. For Riemann spaces, Brinkmann

obtained general results. Little work has been done on Finsler spaces. This paper, by

navigation idea and properties of conformal map, proved that the conformal transformation

between Einstein Randers (or Kropina) spaces must be homothetic.
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0 Introduction

In Riemann’s thesis of 1854, he introduced a metric structure in a general space based on

the element of arc

ds = F (x1, · · · , xn; dx1, · · · , dxn),

which is known as Finsler geometry. An important special case is

F 2 = gij(x)dx
idxj .

Historical developments have conferred the name Riemannian geometry to this case.
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An Einstein manifold is a Riemannian or pseudo-Riemannian manifold whose Ricci tensor

is proportional to the metric. The study of Riemannian spaces conformally related to Einstein

spaces is a problem which has been addressed since the 1920 s[1-10]. It is well known that an

n-dimensional Euclidean space, that is, a Riemann space whose squared line element is

ds2 = (dx1)2 + (dx2)2 + · · · + (dxn)2,

can, for n > 3, be mapped conformally on itself only by inversions and similarity transforma-

tions (Liouville’s Conformality Theorem). When n-dimensional Euclidean space is replaced by

Riemann Einstein spaces, Brinkmann[1] firstly obtained general result. He studied the necessary

and sufficient conditions for Riemannian spaces to be conformally related to Einstein spaces in

n dimensions. Until now, the problem have not been solved completely.

Let F be a Finsler metric on an n-dimensional manifold M . F is called an Einstein metric

with Einstein scalar σ if Ric = σF 2, where σ = σ(x) is a scalar function on M . It generalizes

the definition of Einstein metrics in Riemannian geometry.

As is known that every Riemann surface is Einstein. However, Finsler surfaces are typically

not Einstein, with counterexamples provided by Numata metrics. Thus Einstein metrics in

Finsler geometry are more complicated than those in Riemann’s. Recently, some progress has

been made on Finsler Einstein metrics of (α, β) type. An (α, β)-metric on M is expressed

in the form F = αφ(s), s = β
α
, where α =

√
aij(x)yiyj is a positive definite Riemannian

metric and β a 1-form. The (α, β)-metrics form an important class of Finsler metrics appearing

iteratively in formulating physics, mechanics, seismology, biology, control theory, etc. Bao and

Robles[11] have investigated Randers Einstein metrics in 2003. They have obtained necessary

and sufficient conditions for Randers metrics to be Einstein. For every non-Randers (α, β)-

metric with a polynomial function of degree greater than 2, it was proved that it is an Einstein

metric if and only if it is Ricci-flat[12]. Zhang and Shen[13] obtained that a Kropina metric F is

an Einstein metric if and only if h is a Riemann Einstein metric and W is a unit Killing vector

field with respect to h, where the pair (h,W ) is the navigation data of F .

Randers metrics, named by Ingarden, were introduced by Randers in the context of general

relativity. They arise naturally as the geometry of light rays in stationary spacetimes. They

can be written as F = α + β, the simplest (α, β)-metrics. The Kropina metric F = α2

β
is also

an (α, β)-metric, which was considered by V. K. Kropina firstly. Such a metric is of physical

interest in the sense that it describes the general dynamical system represented by a Lagrangian

function, although it has the singularity.

Little work has been done on conformally related Einstein Finsler spaces. In this paper

we solved such problem in two special Finsler spaces, i.e., Randers spaces and Kropina spaces.

Theorem 0.1 Conformal transformation between Einstein Randers spaces must be ho-

mothetic.

We obtain the corresponding result for Kropina metrics.

Theorem 0.2 Conformal transformation between Einstein Kropina spaces must be ho-

mothetic.
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For a Minkowski metric, a special Einstein metric, we have the following result.

Corollary 0.3 Every conformally flat Einstein Randers metric (or Kropina metric) must

be a Minkowskian.

1 Preliminaries

Let x denote a point on the manifold M and y ∈ TxM a tangent vector based at x.

Tangent space coordinates yi can then arise from the expansion y = yi ∂
∂xi in terms of a local

coordinate basis. A Finsler metric F satisfies positively homogeneous of degree one in y, i.e.,

F (x, cy) = cF (x, y) for all positive c. The fundamental tensor, formally analogous to the metric

tensor in Riemannian geometry, is defined as

gij(x, y) :=
1

2
[F 2(x, y)]yiyj ,

where ()yi denotes the partial derivatives with respect to yi. F is called a Minkowski metric if

F (x, y) = F (y). We call F conformally flat if F is conformal to a Minkowski metric.

Let Gi be the geodesic coefficients of F , which are defined by

Gi :=
1

4
gil{[F 2]xkylyk − [F 2]xl}.

For any x ∈M and y ∈ TxM\{0}, the Riemann curvature Ry is defined by Ry:= Ri k
∂
∂xi

⊗
dxk

with

Rik := 2
∂Gi

∂xk
−

∂2Gi

∂xj∂yk
yj + 2Gj

∂2Gi

∂yj∂yk
−
∂Gi

∂yj
∂Gj

∂yk
.

Ricci curvature is the trace of the Riemann curvature, which is defined by

Ric := Rkk.

F is called an Einstein metric with Einstein scalar σ if

Ric = σF 2, (1)

where σ = σ(x) is a scalar function on M . It generalizes the definition of Einstein metric

in Riemannian geometry. In particular, F is said to be Ricci constant (resp. Ricci flat) if F

satisfies (1) with σ=constant (resp. σ= 0). For more basic knowledge of Finsler geometry, one

can refer to [14].

2 The rigidity theorem for certain conformal map

Let (M,h) be a Riemann metric on n-dimensional manifold, n > 3. Let W be a vector

field on M . Taking the nature coordinates (U ;xi), we can write W = W i(x) ∂
∂xi . Denote

Wi := hijW
j and W0 := Wiy

i. Accordingly, we have a Riemann manifold (M, h̃) and a vector

field W̃ on M . In the following, we shall denote the quantities for h̃ by the same letter with

the tildes and corresponding indices. Let “|” and “, ” denote the covariant differentiation with

respect to h and h̃, respectively. For convenience, if h̃ = ψ−1h and W̃i = ψ−1Wi hold for some
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positive C∞ function ψ = ψ(x) on M , then we call (h,W ) and (h̃, W̃ ) a conformal pair and ψ

conformal factor. Such a pair is denoted by {(h,W ); (h̃, W̃ );ψ}.

Let us recall the properties of conformal map between Riemannian metrics.

Lemma 2.1 Let (M,h) and (M, h̃ = ψ−1h) be two n-dimensional Riemannian spaces,

where h =
√
hij(x)yiyj and h̃ =

√
h̃ij(x)yiyj , respectively. Suppose ψ is a positive C∞ function

on M . Then



γ̃ijk = γijk − ψ−1δijψk − ψ−1δikψj + ψ−1ψihjk,

R̃ij = Rij + (n− 2)ψ−1ψi|j + {ψ−1ψk|k − (n− 1)ψ−2ψkψk}hij ,

where ψk := ∂ψ
∂xk and ψk := hikψi.

A vector field W = W i(x) ∂
∂xi on a Riemann manifold (M,h) is called a conformal vector

field with a conformal factor c = c(x) if it satisfies

Wi|j +Wj|i = chij ,

where Wi := hijW
j and “|” denotes the covariant derivative with respect h.

Theorem 2.2 (Rigidity Theorem) For a conformal pair, the conformal transformation,

which preserves Einstein metrics and non-zero conformal vector fields, must be homothetic.

Proof Let M be n-dimensional manifold and {(h,W ); (h̃, W̃ );ψ} a conformal pair. As-

sume that h and h̃ are both Einstein metrics on M with Einstein scalars δ and δ̃, respec-

tively. W and W̃ are conformal vector fields with respect to h and h̃, respectively. That is

Wj|k +Wk|j = chjk and W̃j,k + W̃k,j = c̃h̃jk hold for some functions c = c(x) and c̃ = c̃(x) on

M .

By Lemma 2.1, we have

W̃j,k =
∂W̃j

∂xk
− W̃iγ̃

i
jk = ψ−1Wj|k + ψ−2ψjWk − ψ−2Wiψ

ihjk.

So we have

W̃j,k + W̃k,j = ψ−1(Wj|k +Wk|j) + ψ−2(ψjWk + ψkWj) − 2ψ−2Wiψ
ihjk.

Assume W̃j,k + W̃k,j = c̃h̃jk. We obtain

0 = W̃j,k + W̃k,j − c̃h̃jk

= ψ−1(Wj|k +Wk|j) + ψ−2(Wjψk +Wkψj) − 2ψ−2W iψihjk − c̃ψ−2hjk,

which is equivalent to

0 = (cψ − c̃− 2W iψi)hjk +Wjψk +Wkψj . (2)

Contracting (2) with hjk yields cψ − c̃ = 2(n−1)
n

W iψi. So we can simplify (2) to

0 = −
2

n
W iψihjk +Wjψk +Wkψj . (3)
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Contracting (3) with W jW k yields W iψi = 0 for W iWi = ‖W‖2
h 6= 0. Plugging W iψi = 0 into

(3) gives

0 = Wjψk +Wkψj . (4)

Contracting (4) with W j , we have ψk = 0, which means that ψ is constant. It completes the

proof of Theorem 2.2.

3 The proof of main theorems

An (α, β)-metric on M is expressed in the form F = αφ(s), s = β
α
, where α =

√
aij(x)yiyj

is a positive definite Riemannian metric and β = bi(x)y
i a 1-form.

Let φ = 1 + s. Then (α, β)-metric defined by φ is given by F = α+ β. It is easy to verify

that F is a Finsler metric if and only if ||βx||α < 1 for all x ∈ M , where ||βx||α := aijbibj.

Such a metric is called a Randers metric, which is the simplest (α, β)-metrics. Thus more

intensive study has done on Randers metrics. If φ = s−1, then (α, β)-metric defined by φ is

given by F = α2

β
, which we call a Kropina metric. Throughout the paper, we shall restrict our

consideration to the domain where β = bi(x)y
i 6= 0 for Kropina metrics.

First we focus on Randers metric. It is known that a Finsler metric is a Randers metric

if and only if it is a solution to the navigation problem on a Riemannian manifolds[15]. Put

bi := aijbj and ǫ := 1−||βx||
2
α. Define Riemannian metric h =

√
hij(x)yiyj and W = W i(x) ∂

∂xi

with

hij(x) := ǫ(aij − bibj), W i := −
bi

ǫ
.

Then the solution determined by h and W yields the Randers metric

F =

√
ǫh2 +W 2

0

ǫ
−
W0

ǫ
, W0 = Wiy

i,

where Wi := hijW
j , 1 −W iWi = 1 − h(x,W )2 = ǫ. The pair (h,W ) is called the navigation

data of F . Navigation is an efficient method to characterize and study Randers metrics.

Proof of Theorem 0.1 Let F = α+β and F̃ = ψ−1F . Assume F̃ = α̃+ β̃. Let (h,W )

and (h̃, W̃ ) be the navigation data of F and F̃ , respectively. Then ãij = ψ−2aij and b̃i = ψ−1bi.

So we have





ǫ̃ = 1 − b̃2 = 1 − ãij b̃ib̃j = 1 − aijbibj = ǫ,

h̃ij = ǫ̃(ãij − b̃ib̃j) = ǫψ−2(aij − bibj) = ψ−2hij ,

W̃i = −ǫ̃̃bi = −ǫψ−1bi = ψ−1Wi.

This means that {(h,W ); (h̃, W̃ );ψ} is a conformal pair. It is known that a Randers metric F

is an Einstein metric if and only if h is an Einstein metric and W is a conformal vector, where

(h,W ) is the navigation data of F [11]. Then by Theorem 2.2, we prove Theorem 0.1.

Secondly, using the similar method in proving Theorem 0.1, We can get Theorem 0.2.
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A Finsler metric F = α2

β
is of Kropina type if and only if it solves the navigation problem

on some Riemannian manifold (M,h), under the influence of a wind W with h(W,W ) = 1[13].

The pair (h,W ) is called the navigation data of F . We can define Riemannian metric h =√
hij(x)yiyj and W = W i ∂

∂xi with

hij = e2ρaij , 2Wi = e2ρbi and e2ρb2 = 4. (5)

Then we obtain that F = h2

2W0

.

Proof of Theorem 0.2 Let F̃ = ψ−1F and F̃ = eα2

eβ
. Let (h,W ) and (h̃, W̃ ) be the

navigation data of F and F̃ , respectively. Suppose h̃ij = e2eρãij and hij = e2ρaij . Then

ãij = ψ−2aij and b̃i = ψ−1bi. So we have





b̃2 = ãij b̃ib̃j = aijbibj = b2,

h̃ij = e2eρãij = e2eρψ−2aij = e2(eρ−ρ)ψ−2hij ,

2W̃i = e2eρb̃i = e2eρψ−1bi = 2e2(eρ−ρ)ψ−1Wi.

(6)

From (5) and the first equation of (6), we get ρ̃ = ρ. So the last two equations of (6) can

be simplified as




h̃ij = ψ−2hij ,

W̃i = ψ−1Wi,

which means that {(h,W ); (h̃, W̃ );ψ} is a conformal pair.

As is known that a Kropina metric F is an Einstein metric if and only if h is an Einstein

metric and W is a unit Killing vector, where (h,W ) is the navigation data of F [13]. Then by

Theorem 2.2, we prove Theorem 0.2.

By Theorem 0.1 and Theorem 0.2, we can prove Corollary 0.3.

Proof of Corollary 0.3 Let F be a conformally flat Einstein Randers metric (or

Kropina metric) on manifold M . It is known that a Randers metric (or a Kropina metric)

F is conformally flat if and only if there exists a local coordinate system in which F can be

expressed as F = ψ−1(
√
aijyiyj + biy

i) (or F = ψ−1 aijy
iyj

biyi ), where ψ is a positive function on

M , aij and bi are constants. Let F̃ =
√
aijyiyj + biy

i (or F̃ =
aijy

iyj

biyi ). Obviously, F̃ is an

Einstein metric. So by Theorem 0.1 (or Theorem 0.2), we conclude that ψ must be constant.

Thus F is also a Minkowskian.

Remark Theorem 2.2 is essential to proofs of Theorem 0.1 and Theorem 0.2. Thus

a nature question arises: whether every conformal transformation, which preserves Riemann

Einstein metrics and certain conditions (similar to conformal vector fields), must be homothetic?

[ References ]

[ 1 ] BRINKMANN H W. Einstein spaces which are mapped conformally on each other[J]. Mathematische Annalen,

1925, 94(5): 119-145.

[ 2 ] EINSENHART L P. Riemannian Geometry[M]. Princeton: Princenton Univ Press, 1926.



166 uÀ���ÆÆ�(g,�Æ�) 2013 c

[ 3 ] FEDISHCHENKO S I. Special conformal mappings of Riemannian spaces. II[J]. Ukrain Geom Sb. 1982, 25:

130-137, 144 (Russian).

[ 4 ] PENROSE R, HERMANN WEYL. space-time and conformal geometry[C]//Hermann Weg (1885-1985). Zrich:

Eidgenssische Tech Hochschule, 1986: 25-52.

[ 5 ] KÜHNEL W. Conformal transformations between Einstein spaces[C]//Conformal Geometry Aspects Math E 12,

F. Braunschweig: Vieweg Sohn, 1988: 105-146.
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[ 8 ] MIKES J, GAVRILLCHENKO M L, GLADYSHEVA, E. I. Conformal mappings onto Einstein spaces[J]. Mosc

Univ Math Bull, 1994, 49(3): 10-14.

[ 9 ] AMINOVA A V. Projective transformations of pseudo-Riemannian manifolds[J]. J Math Sci, 2003, 113(3): 367-

470.

[10] KISOSAK V A, MATVEEV V S. There are no conformal Einstein rescalings of complete pseudo-Riemannian

Einstein metrics[J]. C R Math Acad Sci, 2009, 347(17-18): 1067-1069.

[11] BAO D W, ROBLES C. On Ricci curvature and flag curvature in Finsler geometry[C]//A Sampler of Finsler

Geometry: MSRI Series 50. Cambriclge: Camb Univ Press, 2004: 197-259.

[12] CHENG X Y, SHEN Z M, TIAN Y F. A Class of Einstein (α, β)-metrics[J]. Israel Journal of Mathematics, 2012,

192: 1-29.

[13] ZHANG X L, SHEN Y B. On Einstein Kropina metrics[J]. Differential Geometry and Its Applications, 2013(31):

80-92.

[14] BAO D W, CHEN X S, SHEN Z M. An Introduction to Riemann-Finsler Geometry[M]. Springer, 2000.

[15] BAO D W, ROBLES C, SHEN Z M. Zermelo navigation on Riemannian manifolds[J]. Differential Geometry,

2004, 66: 377-435.


